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Abstract: An artificial neural network and regression procedures were used to predict the recovery and collision probability of quartz flota-
tion concentrate in different operational conditions. Flotation parameters, such as dimensionless numbers (Froude, Reynolds, and Weber), 
particle size, air flow rate, bubble diameter, and bubble rise velocity, were used as inputs to both methods. The linear regression method 
shows that the relationships between flotation parameters and the recovery and collision probability of flotation can achieve correlation coef-
ficients (R2) of 0.54 and 0.87, respectively. A feed-forward artificial neural network with 3-3-3-2 arrangement is able to simultaneously esti-
mate the recovery and collision probability as the outputs. In testing stages, the quite satisfactory correlation coefficient of 0.98 was achieved 
for both outputs. It shows that the proposed neural network models can be used to determine the most advantageous operational conditions 
for the expected recovery and collision probability in the froth flotation process. 

Keywords: flotation; recovery; collision; probability; neural networks 

 

 

 

1. Introduction 

Derjaguin and Dukhin were the first to describe bub-
ble-particle interactions in flotation by considering surface 
forces. They considered that, before adhering on the surface 
of an air bubble, the particles must pass through three dis-
tinct zones, hydrodynamic, diffusiophoretic, and wetting 
zones [1]. 

The primary aim in flotation is the selective attachment 
of hydrophobic particles to air bubbles under dynamic con-
ditions (agitation, mixing, and vortex formation) generated 
by the action of an impeller when the process is carried out 
by mechanical cells. Therefore, it is useful to consider the 
extent of hydrodynamic parameters which influence the flo-
tation performance, since they play a major role in parti-
cle/bubble collision, attachment, and transport within an en-
vironment that hold some degree of turbulence [2-4]. The 
influences of some dimensionless hydrodynamic parameters, 
such as Reynolds number (Re), Froude number (Fr), and 

Weber number (We), on the microflotation performance of 
quartz coarse particles were studied in this paper. 

Besides surface forces, hydrodynamic interaction also 
plays a very important kinetic role in determining the colli-
sion efficiency between particles, the state of particulate 
suspension, and flotation. The extent of the hydrodynamic 
effect is determined by the character of the liquid field 
flowing around the particles, which is dependent on the type 
of flow in turn, i.e., the Reynolds number. Hydrodynamic 
forces influence the rates of aggregate growth and breakup 
in several ways [5-9]. Bubble-particle capture is the very 
heart of the froth flotation process for the selective flotation 
of mineral particles. In addition, bubble-particles are pro-
duced as a result of a comminuting process, which inevita-
bly produces a distribution of particle sizes. The bub-
ble-particle capture process is clearly of key interest to the 
mineral processor, each particle possesses a flotation rate 
constant that reflects, in part, both the particle size and the 
degree of hydrophobicity. There have been a few successful 
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attempts to link the latter quantities in a coherent manner 
[10]. 

Artificial neural network (ANN) modeling is essentially a 
‘black box’ operation, linking input to output data and using 
a particular set of nonlinear basis functions. ANNs consist 
of simple synchronous processing elements, which are in-
spired by biological nervous systems [11]. The basic unit in 
ANN is the neuron [12]. ANNs are the powerful tool and 
have been applied successfully in numerous fields of min-
eral processing, for example, the prediction of coal micro-
bial and chemical desulphurization [13-15], Al2O3 leaching 
recovery in the Bayer process [16], and coal Hargrove 
grindability index [17-18]. 

Flotation is one of the processes for which ANNs can be 
utilized with great benefit. The multiplicity of factors to be 
taken into consideration in the flotation process complicates 
any modeling using classical statistical techniques. Cilek 
predicted the locked cycle flotation test by use of neural 
networks, and Labidi et al. used neural networks to predict 
the effect of operational parameters on the efficiency of ink 
removal from paper by flotation [19-20]. They found that 
the neural network model can be used to accurately deter-
mine the optimal operational conditions. 

In this work, the regression and ANN predictions of re-
covery and collision probability in quartz flotation were 
based on the dimensionless parameters (such as Froude 
number, Reynolds number, and Weber number), particle 
size, air flow rate, bubble diameter, and bubble rise velocity. 
The main aim of the present study is to assess whether it is 
possible to use experimental data to predict the recovery and 
collision probability of quartz froth flotation by means of 
neural networks and regression. To the authors’ knowledge, 
this is the first time that ANNs have been used to predict 
both recovery and collision probability in the froth flotation 
process. 

2. Experimental 

Flotation experiments were carried out using coarse 
quartz particles in four diameter classes (−300+212, 
−420+300, −500+420, and −590+500 µm). The chemical 
composition of the sample is given in Table 1. 

The most extensively used types of anionic collectors are 
long-chain fatty acids and their salts, especially oleic acid or 
its soap, sodium oleate. Almost 100% of the fatty acids used 
in ore flotation are derived from tall oil, a by-product of the 
paper industry. Additionally, the sensitivity of fatty acids to 

Table 1.  Chemical composition of quartz used in the experi-
ments                                            wt% 

SiO2 98.83 
CaO 0.16 
Fe2O3 0.24 
Na2O 0.10 
K2O 0.05 
MgO 0.10 
Al2O3 0.27 

Loss of ignition (L.O.I.) 0.25 

 

slimes and ions in the flotation cell, the higher temperature 
requirement, and the relatively high consumption alternative 
sources of surfactants are under investigation [21].  

In this research, oleic acid (1000 g/t) was used in the flo-
tation tests at pH 12.5, and the frother was methyl isobutyl 
carbinol (MIBC) (75 g/t). Sodium hydroxide (analytical 
grade) was used for pH regulation. The anionic flotation of 
quartz at pH 12.5 could be attributed to the presence of cal-
cium ions and the activation of the quartz surface by this 
hydroxy ions (Ca2+). 

Flotation tests were carried out in a mechanical cell. An 
impeller diameter of 0.07 m was used for pulp agitation, and 
a square section cell with the length and the height of 0.12 
and 0.1 m, respectively, was used. The impeller rotating 
speeds were 700, 900, 1100, and 1300 r/min, and the air 
flow rates were 15, 30, 45, and 75 L/h, respectively 

2.1. Flotation response of quartz coarse particles 

The Reynolds number (Re) is the ratio between inertial 
and viscous forces, the Froude number (Fr) is the ratio be-
tween inertial and gravity forces, and the Weber number 
(We) is the ratio between inertial and capillary forces. These 
dimensionless hydrodynamic parameters are calculated us-
ing the following equations [22]. 

( )2
pRe ND ρ µ=  (1) 

( )2Fr N D g=  (2) 

( )2 3We N D ρ γ=  (3) 

where ρ is the pulp density, µp the pulp dynamic viscosity, g 
the gravity acceleration, γ the surface tension of the 
air/solution interface, N the impeller speed, and D the im-
peller diameter. Pulp viscosity is calculated by [23] 
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( ) 2.5
p w 1µ µ φ −= −  (4) 

where µw is the water dynamic viscosity, and φ is the frac-
tion of the pulp volume occupied by solids . 

For different air flow rates, the influences of Re, Fr, and 

We on the recovery of quartz particles in four classes are il-
lustrated in Fig 1. Quartz particles show a plateau of maxi-
mum recovery at Re=89800, Fr=2.4, and We=1588. For ei-
ther more quiescent (Re<73500 and Fr<1.61) or more tur-
bulent (Re>106200 and Fr>3.35) conditions, the flotation 
recovery decreases steadily. 

 

Fig. 1.  Flotation response of quartz particles with dimensionless hydrodynamic parameters (Re, Fr, and We) at various air flow 
rates: (a) 15 L/h; (b) 30 L/h; (c) 45 L/h; (d) 75 L/h. 

2.2. Bubble size distribution and rise velocity 

In this research, the bubble size distribution and rise ve-
locity were measured by a device similar to the McGill bub-
ble viewer. It consists of a sampling tube attached to a 
viewing chamber with a window inclined 15° from vertical. 
The closed assembly was filled with water similar to that in 
the flotation cell to limit the changes in bubble environment 
during sampling. The tube was then immersed to the desired 
location below the froth. Bubbles rose into the viewing 
chamber and were imaged by a digital video camera. The 
bubbles slid up the inclined window and were illuminated 
from behind [24]. The mean bubble diameter adopted is the 
Sauter diameter (d32), calculated by the following equation 
[25]: 

3

32 2
i i

i i

n d
d

n d
= ∑
∑

 (5) 

where n is the number of bubbles, and d the bubble diameter. 
The parameters influencing the bubble Reynolds number 

(Reb) are the bubble rise velocity and bubble diameter, as 
well as the density and dynamic viscosity of the surrounding 
fluid. The bubble Reynolds number is calculated by [26] 

b b b f /Re V d ρ η=  (6) 

where Vb is the bubble rise velocity, db the bubble diameter, 
η the fluid dynamic viscosity, and ρf the fluid density. As 
shown in Fig. 2 and Table 2, bubble diameter and bubble 
rise velocity distributions were measured under different 
conditions. 

2.3. Collision probability 

The probability (P) of a particle being collected by an air 
bubble in the pulp phase of a flotation cell can be given by 
[26] 

( )c a d1P P P P= −  (7)  

p
c

b

n
dP A d

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

=
 (8) 
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Fig. 2.  Bubble Reynolds number (a) and bubble size (b) distributions under different conditions. 

Table 2.  Experimental results for quartz flotation in different operational conditions 

Sample  
No. 

Fr Re We 
Particle size,  

dp / µm 
Air flow rate, 
Q / (L·h−1) 

Bubble diameter, 
d32 / mm 

Bubble rise velocity, 
Vp / (cm·s−1) 

Collision probability, 
Pc / % 

Recovery, 
R / % 

1 3.35 106166.70 2175.94 256 30 0.83 18.47 7.00 8.44 
2 0.97 57166.67 630.89 360 30 1.02 16.68 6.77 3.52 
3 2.40 89833.33 1557.92 360 75 1.40 18.45 4.96 4.67 
4 0.97 57166.67 630.89 360 45 0.96 16.73 10.43 9.82 
5 1.61 73500.00 1042.91 360 30 0.68 17.69 14.57 4.11 
6 0.97 57166.67 630.89 256 30 1.02 16.68 3.42 23.52 
7 1.61 73500.00 1042.91 360 45 0.95 17.58 9.57 7.42 
8 3.40 106166.70 2175.94 256 15 0.55 16.26 10.67 17.58 
9 3.35 106166.70 2175.94 360 15 0.55 16.26 21.09 0.83 
10 1.61 73500.00 1042.91 360 75 1.21 18.21 6.10 15.75 
11 3.35 106166.70 2175.94 360 30 0.83 18.47 13.84 0.38 
12 3.35 106166.70 2175.94 360 75 1.52 19.28 5.27 6.98 
13 0.97 57166.67 630.89 545 15 1.34 16.58 11.03 8.28 
14 0.97 57166.67 630.89 360 75 1.26 18.02 6.00 56.36 
15 1.61 73500.00 1042.91 256 75 1.21 18.21 3.08 72.09 
16 2.40 89833.33 1557.92 545 45 0.71 17.86 29.45 18.13 
17 2.40 89833.33 1557.92 360 45 0.71 17.86 12.85 49.93 
18 1.61 73500.00 1042.91 256 15 0.83 14.60 6.34 71.87 
19 2.40 89833.33 1557.92 256 15 0.65 14.10 8.67 71.96 
20 0.97 57166.670 630.89 256 15 1.34 16.58 2.43 69.01 
21 3.35 106166.70 2175.94 256 45 0.82 18.98 6.50 74.24 
22 0.97 57166.67 630.89 256 75 1.26 18.02 3.03 96.48 
23 2.40 89833.33 1557.92 256 45 0.71 17.86 6.50 100.00 
24 1.61 73500.00 1042.91 460 75 1.21 18.21 9.96 4.23 
25 0.97 57166.67 630.89 256 45 0.96 16.73 5.28 37.36 
26 0.97 57166.67 630.89 460 45 0.96 16.73 17.04 4.80 
27 2.40 89833.33 1557.92 256 75 1.40 18.45 2.51 34.59 
28 0.97 57166.67 630.89 460 30 1.02 16.68 11.05 0.87 
29 2.40 89833.33 1557.92 460 75 1.40 18.45 8.10 1.90 
30 1.61 73500.00 1042.91 460 30 0.68 17.69 23.79 0.93 
31 2.40 89833.33 1557.92 360 30 0.69 17.90 18.15 14.62 
32 1.61 73500.00 1042.91 460 45 0.95 17.58 15.63 4.06 
33 1.61 73500.00 1042.91 360 15 0.83 14.60 12.54 21.04 
34 1.61 73500.00 1042.91 256 30 0.68 17.69 7.37 38.02 
35 1.61 73500.00 1042.91 460 15 0.83 14.60 20.48 6.03 
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(Continued) 

Sample  
No. 

Fr Re We 
Particle size,  

dp / µm 
Air flow rate, 
Q / (L·h−1) 

Bubble diameter,
d32 / mm 

Bubble rise velocity, 
Vp / (cm·s−1) 

Collision probability, 
Pc / % 

Recovery, 
R / % 

36 1.61 73500.00 1042.91 256 45 0.95 17.58 4.84 41.67 
37 2.40 89833.33 1557.92 460 15 0.65 14.10 27.98 7.09 
38 2.40 89833.33 1557.92 360 15 0.65 14.10 17.14 23.91 
39 3.35 106166.70 2175.94 460 75 1.52 19.28 8.61 2.30 
40 0.97 57166.67 630.89 460 15 1.34 16.58 7.86 11.06 
41 2.40 89833.33 1557.92 256 30 0.69 17.90 9.18 47.91 
42 2.40 89833.33 1557.92 545 15 0.65 14.10 39.28 4.96 
43 3.35 106166.70 2175.94 545 75 1.52 19.28 12.09 1.40 
44 2.40 89833.33 1557.92 545 30 0.69 17.90 41.59 2.60 
45 2.40 89833.33 1557.92 460 45 0.71 17.86 20.98 21.28 
46 3.35 106166.70 2175.94 545 15 0.55 16.26 48.35 0.17 
47 0.97 57166.67 630.89 360 15 1.34 16.58 4.81 32.51 
48 3.35 106166.70 2175.94 545 30 0.83 18.47 31.73 0.10 
49 0.97 57166.67 630.89 545 75 1.26 18.02 13.75 19.81 
50 3.35 106166.70 2175.94 545 45 0.82 18.98 29.45 5.75 
51 3.35 106166.70 2175.94 460 15 0.55 16.26 34.44 0.47 
52 1.61 73500.00 1042.91 545 75 1.21 18.21 13.98 1.99 
53 2.39 89833.33 1557.92 460 30 0.69 17.90 29.63 5.13 
54 0.97 57166.67 630.89 545 45 0.96 16.73 23.91 2.44 
55 3.35 106166.70 2175.94 460 30 0.83 18.47 22.60 1.33 
56 2.40 89833.33 1557.92 545 75 1.40 18.45 11.36 0.88 
57 0.97 57166.67 630.89 545 30 1.02 16.68 15.51 0.40 
58 1.61 73500.00 1042.91 545 45 0.95 17.58 21.94 2.40 
59 1.61 73500.00 1042.91 545 30 0.68 17.69 33.40 0.54 
60 3.35 106166.70 2175.94 460 45 0.82 18.98 20.98 8.69 
61 3.35 106166.70 2175.94 360 45 0.82 18.98 12.85 25.28 
62 0.97 57166.67 630.89 460 75 1.26 18.02 9.80 26.11 
63 1.61 73500.00 1042.91 545 15 0.83 14.60 28.74 3.01 
64 3.35 106166.70 2175.94 256 75 1.52 19.28 2.67 45.67 
 

where Pc is the probability of bubble particle collision, Pa 
the probability of adhesion, Pd the probability of detachment, 
dp the diameter of the particle, db the diameter of the bubble, 
and A and n are the parameters varying with the Reynolds 
number. Table 3 gives these values for three different flow 
regimes considered, i.e., Stokes, intermediate, and potential 
flows. 

As shown in Table 2, the probability of collision is cal-
culated for different particle sizes, air flow rates (15, 30, 45, 

Table 3.  Values of A and n in different flow conditions [26] 

n A Flow condition 
2 2/3 Stokes 

2 
0.723 4

2 15
Re+  

Intermediate I 

2 0.56

3 163 12 1 0.249
Re
Re

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

+
+

 

Intermediate II 

1 3 Potential 

and 75 L/h), and hydrodynamic dimensionless parameters 
(Re, Fr, and We) using the Stokes equation. Table 2 shows 
the laboratory results. 

3. ANN procedure description 

ANNs are composed of simple elements operating in 
parallel. These elements are inspired by biological nervous 
systems [27]. ANNs are able to produce a set of outputs for 
a given set of inputs according to some mapping relation-
ships [28]. In nature, the network function is determined 
largely by the connections between elements. A neural net-
work can be “trained” to perform a particular function by 
adjusting the values of the connections (weights) between 
elements [27]. During the training period, such relationships 
are coded into the network structure depending upon the 
network parameters [28]. Commonly, neural networks are 
adjusted or trained so that a particular input leads to a spe-
cific target output. The network is adjusted based on a com-
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parison of the output and the target, until the network output 
matches the target [27]. 

The number of hidden layers and nodes may vary in dif-
ferent applications and depend on the user specifications. No 
specific technique is available to decide the optimum num-
ber, and it is usually found through a trial and error proce-
dure [28]. 

The main advantages of neural networks over conven-
tional regression analysis are freedom from linear supposi-
tion, a large number of freedom degrees, and more effective 
handling of nonlinear functional forms [29]. There are sev-
eral classes of neural network architectures, classified ac-
cording to their learning mechanisms. To develop a nonlin-
ear ANN model of a system, feed-forward architecture, 
namely, MLP, is used most commonly. The feed-forward 
neural networks (FFNN) are the most popular architectures 
due to their structural flexibility, good representational ca-
pabilities, and availability of a large number of training al-
gorithms [30]. This network consists of neurons arranged in 
layers in which every neuron is connected to all neurons of 
the next layer (a fully connected network). The structure of a 
feed-forward neural network is shown in Fig. 3.  

 

Fig. 3.  Architecture of FANN. 

The difference between the actual output and the network 
output is called error. There are several ways of measuring 
error, including normalized mean squared error (NMSE), 
mean absolute error (MAE), mean squared error (MSE), 
minimum absolute error, and maximum absolute error. MSE 
is the conventional measure for fitting data [31]. Hence, 
MSE is used to measure the error according to the following 
equation: 

2

1

1 ˆMSE ( )
Q

K
K

y y
Q =

= −∑   (9) 

where Q is the number of observations in the data set, K the 
iteration number, y the network output, and ŷ  the actual 
output.  

Therefore, in the present work, a multilayered feed-for-

ward network with a back-propagation algorithm was used 
for the prediction of ash fusion temperature. The gradient 
descent optimization technique was employed to minimize 
the error [28]. 

4. Results and discussion 

4.1. Regression 

Linear regression estimates the coefficients of the linear 
equation, involving one or more independent variables 
which can best predict the value of the dependent variable. 
For example, you can try to predict a salesperson's total 
yearly sales (the dependent variable) from independent 
variables, such as age, education, and years of experience 
[32]. 

By a least squares mathematical method, the correlation 
coefficients of Fr, Re, We, dp, Q, d32, and Vp with recovery 
(R) are −0.14, −0.14, −0.14, −0.70, 0.11, 0.05, and −0.02, 
respectively, and with collision probability (Pc) are 0.29, 
0.31, 0.29, 0.69, −0.41, −0.59, and −0.23, respectively. The 
best-fit equations for recovery and collision probability in 
terms of these parameters are as followed. 

R=134.73−2.37Fr−6.2e−0.005Re−0.165dp+0.317Q−10d32− 
2.366Vp, R2=0.54 (10) 

Pc=13.961+3.832Fr−7.6e−0.005Re+0.068dp−0.001Q− 
18.886d32−0.584Vp, R2=0.87 (11) 

The differences between the predicted recovery and col-
lision probability from Eqs. (10) and (11) and the actual 
measured values are shown in Figs. 4 and 5. 

 

Fig. 4.  Distribution of differences between the actual recovery 
and the estimated recovery from Eq. (10) for 64 samples. 
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Fig. 5.  Distribution of differences between the actual recovery 
and the estimated collision probability from Eq. (11) for 64 
samples. 

4.2. ANN results 

According to Eqs. (10) and (11), the selected variables 
were used as input variables for the predictions of recovery 
and collision probability. After determining the number of 
input variables by statistical means, the most appropriate 
architecture for the network was determined. Several net-
works were created, trained, and tested. The number of lay-
ers, the optimum number of neurons per layer, and the 
transfer functions in the hidden layers were obtained by trial 
and error. In this study, a combined feed forward neural 
network (FANN) model was developed by using two hidden 
layers in MLP architecture and using the training of 
back-propagation (BP) algorithm. The BP algorithm first 
adjusted the weights connected to the output layer. Then, 
working backward toward the input layer, the algorithm ad-
justed the weights in each successive layer to reduce the er-
rors at each level [30]. 

The 3-3-3-2 ANN model, which is recognized the effects 
in different operational conditions on the quartz flotation 
adequately, can predict both recovery and collision prob-
ability. The magnitudes of the data ranges are significantly 
different for each input as well as across the inputs. To en-
sure successful training, the data need to be prepared prior to 
training the neural network model [33]. To have a successful 
training process, the input and output data are preprocessed. 
In the present work, all inputs (before feeding to the network) 
and output data in training phase were preprocessed by 
normalizing the inputs and targets, so that they had the mean 
of 0 and the standard deviation of 1. 

p p ps, mean p, std.( ) /N A A A= −  (12) 

where Ap is the actual parameter, Aps, mean  the mean of the 
actual parameters, Ap, std. the standard deviation of the actual 
parameter, and Np the normalized parameter (input) [34]. 
The mean and standard deviation for preprocessing the input 
and output variables are shown in Table 4. 

Table 4.  Pre-processing parameters for ANN 

Variable Minimum Maximum Mean 
Standard
deviation

Fr 0.97 3.35 2.08 0.89 
Re 57166.67 106166.70 81666.67 18405.58
We 630.89 2175.94 1351.91 582.67 

dp / µm 256.00 545.00 405.25 109.08 
Q / (L·h−1) 15.00 75.00 41.25 22.36 
d32 / mm 0.55 1.52 0.96 0.29 

Vp / (cm·s−1) 14.10 19.28 17.34 1.41 
 
A total of 64 datasets were used for the recovery and col-

lision probability predictions by ANN, 54 datasets were 
used for training, and 10 sets were used for testing the net-
work. The training process was stopped after 5000 epochs. 
In each epoch, the entire training set was presented to the 
network, case by case; errors were calculated and used to 
adjust the weights in the network using a sigmoid transfer 
function. This method was based on the BP error algorithm, 
which was an iterative supervised learning technique. A set 
of training examples was considered, and for each of these, 
the desired output of the MLP was known. [35]. The per-
formance function used was the mean square error (MSE), 
which was the average squared error between the network 
predicted outputs and the target outputs. For the training 
data of the combined model, the MSE was 0.002. 

The testing set, which actually tests how good the model 
is, shows that the model can estimate recoveries and colli-
sion probability quite satisfactorily. The correlation coeffi-
cient (R2) values for testing sets are 0.98 in both recovery and 
collision probability predictions, as shown in Figs. 6 and 7.  

 

Fig. 6.  Distributions of the actual recovery and the estimated 
recovery by neural network. 
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Fig. 7.  Distributions of the actual collision probability and the 
estimated collision probability by neural network. 

It is observed that simultaneous recovery and collision 
probabilities can be predicted satisfactorily using an ANN 
model. 

5. Conclusions 

(1) The effects of Froude number, Reynolds number, 
Weber number, particle size, air flow rate, bubble diameter, 
and bubble rise velocity on recovery and collision probabil-
ity in the froth flotation of quartz were investigated in a 
laboratory flotation cell. 

(2) Quartz particles showed a plateau of maximum re-
covery at Re=89800, Fr=2.4, and We=1588. For either more 
quiescent (Re<73500 and Fr<1.61) or more turbulent 
(Re>106200 and Fr>3.35) condition, flotation recovery de-
creased steadily. The maximum collision probability of 
around 48.35% was obtained at the impeller speed of 1100 
r/min, air flow rate of 15 L/h, and particle size of 545 µm; 
and the minimum collision probability of around 2.43% was 
obtained at the impeller speed of 700 r/min, air flow rate of 
15 L/h, and particle size of 256 µm. 

(3) The measured laboratory data on the optimum pa-
rameters were compared to the simulation values by 
mathematical methods. Linear regression predicted recover-
ies and collision probabilities with correlation coefficients of 
0.54 and 0.87, respectively, which are not significant ac-
cording to the differences from the actual determined 
amount. 

(4) Feed-forward artificial neural network procedures 
were used to improve the correlation coefficients. An FANN 
with 3-3-3-2 arrangement is capable of estimating both re-
covery and collision probability with high accuracy, simul-
taneously. 

(5) In the ANN testing process, the model predicted both 

recovery and collision probability quite satisfactorily. The 
correlation coefficient (R2) values for testing sets are 0.98 
for both outputs. 

(6) These studies on the dimensionless parameters in 
froth flotation constitute the new unexamined conditions, 
and ANNs have never been used to predict the amount of 
both recovery and collision probability. 

(7) The method used and its related results can further be 
used as an expert system in froth flotation to optimize the 
process parameters and evaluate the parameter interactions 
for the expected recovery and collision probability without 
conducting new experiments in the laboratory. 
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