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Abstract: A description of a mathematical algorithm for simulating grain structures with straight and hyperbolic interfaces is shown. The 
presence of straight and hyperbolic interfaces in many grain structures of metallic materials is due to different solidification conditions, in-
cluding different solidification speeds, growth directions, and delaying on the nucleation times of each nucleated node. Grain growth is a 
complex problem to be simulated; therefore, computational methods based on the chaos theory have been developed for this purpose. 
Straight and hyperbolic interfaces are between columnar and equiaxed grain structures or in transition zones. The algorithm developed in this 
work involves random distributions of temperature to assign preferential probabilities to each node of the simulated sample for nucleation 
according to previously defined boundary conditions. Moreover, more than one single nucleation process can be established in order to gen-
erate hyperbolic interfaces between the grains. The appearance of new nucleated nodes is declared in sequences with a particular number of 
nucleated nodes and a number of steps for execution. This input information influences directly on the final grain structure (grain size and 
distribution). Preferential growth directions are also established to obtain equiaxed and columnar grains. The simulation is done using rou-
tines for nucleation and growth nested inside the main function. Here, random numbers are generated to place the coordinates of each new 
nucleated node at each nucleation sequence according to a solidification probability. Nucleation and growth routines are executed as a func-
tion of nodal availability in order to know if a node will be part of a grain. Finally, this information is saved in a two-dimensional computa-
tional array and displayed on the computer screen placing color pixels on the corresponding position forming an image as is done in cellular 
automaton. 
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1. Introduction 

Simulation of grain structures is a very important topic in 
materials science. Metallic pieces are frequently processed 
and formed by foundry, laminated, rolling, etc. During manu-
facturing and processing, different grain sizes and mor-
phologies are obtained according to particular solidification 
conditions and thermal treatments. Fractals, stochastic 
methods, cellular automata, models based on Monte Carlo, 
random walk, and the chaos theory have been employed to 
simulate the anisotropic features of grain structures and the 
phenomena related such as recrystallization and grain de-

formation during processing. 

Many authors [1-15] have developed mathematical mod-
els to simulate grain growth during solidification of metallic 
materials (metals and alloys). The beginners [2] used basic 
geometrical models due to the limited computational capaci-
ties. Nevertheless, the development of new mathematical 
methods, more efficient algorithms, and the increment in 
computational data speed and storage capacities have been 
possible to solve complex problems that involve no-regular 
geometries and random processes using Monte Carlo [1, 2, 4, 
7] and cellular automaton [5, 8, 11-15] methods in problems 
related to materials science. Some of these authors [1, 4-8, 
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10-12] have developed models for solidification processes 
as a function of solid and liquid fractions for different metals. 
Others [1-4, 6, 9, 12-15] have been working in models to 
simulate dendrite growth, which is the basic structure in 
primary metallic products obtained after foundry. 

In a previous work, Ramírez et al. [15] explained the de-
velopment of a basic computational algorithm to create 
grain structures as a function of an initial stochastic tem-
perature distribution during the solidification of a squared 
metallic sample. Heterogeneous distributions of temperature 
provide nodes with particular probabilities to be nucleated. 
The results are zones with big and small grains. The assig-
nation of preferential growth directions gives samples with 
different grain sizes. Nevertheless, in the original algorithm, 
there was only one single nucleation execution.  

The grain structures formed in metals are heterogeneous 
and the grain morphology can also be very different due to 
the factors involved in the manufacturing process. Grains 
with equiaxed and columnar morphologies, with different 
sizes and distributions, can be simulated as shown in Figs. 
1(a) and 1(b), respectively, using the original algorithm de-
veloped [15]. Nevertheless, the interfaces between the grains 
(grain boundaries) are always straight (straight lines for 
two-dimensional (2D) models and flat planes for three-di-
mensional (3D) models) as shown in better detail in the 
close-ups, which show the boundaries between these. This 
work describes an improved algorithm to generate more 
complex 2D grain structures. The new algorithm includes 
multiple nucleation sequences to generate different grain 
sizes and hyperbolic interfaces between them. 

 
Fig. 1.  Different grain structures with straight interfaces: (a) equiaxed grains; (b) columnar grains. 

Straight lines are presented in grain boundaries during the 
evolution of the simulation as shown in Figs. 1(a) and 1(b). 
These are formed because all the nodes are nucleated in only 
one single sequence and because all of them have the same 
growth rate. Nevertheless, this does not happen during real 

solidification. 

Fig. 1(a) shows an equiaxed grain structure. This kind 
resulted after the metal is foundry and cast. Grain size dis-
tribution is frequently a function of the nucleation node dis-
tribution in the sample and the growth procedure. Neverthe- 



A. Ramírez-López et al., A cellular automata model for simulating grain structures with straight and hyperbolic interfaces 701 

 

less, Fig. 1(b) shows a columnar structure. This structure is 
obtained after a secondary process such as lamination, roll-
ing, or extrusion, where the original grain structure is 
squeezed and deformed. 

Although the algorithm developed does not relate solidi-
fication with physical evolution, it is evident that the chaos 
theory and cellular automata models generate samples of 
grain structures very similar to those in the real metallic 
specimens. Nucleation and grain growth are influenced by 
many factors, such as solidification speed and phase trans-
formations in the metallic materials, as described next. 

The influence of the previous temperature distribution 
and solidification speed is related to the number of nuclea-
tion nodes to be placed in a region of the sample simulated. 
The nodes in regions quickly quenched will have a greater 
probability to be nucleated than those in regions where the 
solidification speed is slow. This condition will reduce the 
grain size because this node remains a very short time in 
mushy. These regions are frequently near the surfaces where 
heat removal is applied. Here, a great number of nucleation 
nodes will appear due to the high initial solidification speed. 
In consequence, the growth process of these nodes will be 
interrupted because the available space will be quickly oc-
cupied; in consequence, the simultaneous growth of many 
grains will be blocked by each other, forming an interface. 

In contrast, the nodes nucleated in regions with a minor 
population and lower solidification speeds will have larger 
spaces for growing. Nucleation speed is reduced in zones 
near the core sample because here the nodes remain a long 
time in mushy and the evolution of the liquid and solid frac-
tions (Xliq I,J and Xsol I,J) is also slow. 

Liquid metallic samples are cast to produce mechanical 
elements and pieces for machines, tools, etc. The regions 
where heat removal is applied will be quickly quenched; 
here, equations for forced convection and radiation are fre-
quently used for calculation. However, inside the piece core, 
latent heat remains; this heat is slowly distributed by con-
duction from the core towards the surfaces. 

2. Initial solidification speed distribution 

The model in the present work was developed to create a 
cellular automaton image using two numerical codes. The 
first code is used to assign the nucleation probabilities to 
each node. The second code is used to identify and display 
the grain structure. In this way, there were two algorithms: 
the first algorithm was programmed to generate an original 

stochastic distribution of the temperature and the solidifica-
tion speed. The second was executed to simulate the nuclea-
tion and grain growth processes. 

The basic assumptions for the simulation of the solidifi-
cation speed distribution are the following. (1) A 2D 
squared sample of a metallic material is simulated. (2) A 
structured regular squared mesh is used for the discretization. 
(3) The numbers of nodes used for the discretization are nx 
and ny for the horizontal and vertical axes, respectively. (4) 
The sub-indexes I and J are used to identify the nodal posi-
tion in the computational domain. (5) The values of nx and 
ny are declared as integer data type; these are fit in order to 
provide a regular squared mesh. (6) Each node in the tem-
perature distribution will represent the same node in the 
grain structure and it will be represented with a color pixel 
in the cellular automata. 

Temperature and solidification speed distributions for the 
simulations are generated using an algorithm based on a 
stochastic assignation value subroutine. Here, every tem-
perature value is classified as done for populations in a sta-
tistical analysis according to their frequency. Then, a prob-
ability to be presented in the sample is defined as boundary 
conditions for the four sides (sample boundaries). Then, the 
appearing probability in a nodal position PT,I,J is calculated 
using Eq. (1) as a function of the corresponding nodal posi-
tion (I,J) in the sample. Here, the sub-index T is used for 
temperature. Although during solidification of the real sam-
ple the nucleation points appear as a function of the heat 
removal conditions, here it is assumed as a random process. 
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The process to calculate nodal probabilities is executed in 
a pair of nested loops for all the samples. This process is re-
peated for all the defined temperatures (nT), and the nodal 
probability is obtained using Eq. (2). Then, the probability 
for all the temperatures is given by the sum of the particular 
probabilities because (Ptot,I,J=100). Instead, the probabilities 
are compared with a randomly generated number (Z); if the 
value of (Z) is in the range between PT−1 and PT (PT−1<Z<PT), 
the probability of the temperature is assigned to the node. 
This process is shown in the shaded area of the flowchart in 
Fig. 2. 
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The process for generating a random probability for nu-
cleation is also nested in a pair of loops to create regions 
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Fig. 2.  Flowchart to generate the initial temperature and so-
lidification speed distributions. 

with less or greater probabilities for nucleation and growth 
in the same sample. 

These loops rule the process and can be used for becom-
ing an only simple routine in a computational tool to de-
velop a more sophisticated parcel model. In the same way as 
the previous calculation, the boundary conditions of each 
parcel are defined independently to calculate the nodal 
probabilities. 

The algorithm for creating the distribution is shown in 
Fig. 2. Here, the variables nI and nJ are used to know the 
number of defined regions in the sample. These are used as 
boundary conditions to command the loops for generating 

the distributions on each parcel. These go from II=2 to II≤nI 
and from JJ=2 to JJ≤nJ for horizontal and vertical axes. Here, 
a 3D array is used to store the values. The computational 
array was declared as Madpro[o][T][A]. Here, o represents a 
number code used to identify the region on the axes; o can 
take values from II or JJ according to the executing loop. 
The value of T is used for declaring the probability for nu-
cleation of the corresponding class. Finally, the third value A 
corresponds to a numerical code used to identify the axis: 
“1” is for the horizontal and “2” is for the vertical. 

The new process includes the assignation to the boundary 
conditions for each parcel to the variables I1, I2, J1, and J2 as 
shown in Eqs. (3) to (6). Here, the second and third terms 
correspond to the mathematical and computational notations, 
respectively. 

I1=MdII−1,T,I=Madpro[II−1][T][1] (3) 

I2=MdII,T,I=Madpro[II][T][1] (4) 

J1=MdJJ−1,T,J=Madpro[JJ−1][T][2] (5) 

J2=MdJJ,T,J=Madpro[JJ][T][2] (6) 

Then, the probabilities for horizontal and vertical axes are 
obtained using Eqs. (7) and (8), respectively. The second 
and third terms are used for the same notations as Eqs. (3) to 
(6). 
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The cumulative nodal probability is obtained by solving 
Eq. (9) and saved in a one-dimensional array called poa[T]. 
Finally, a random number is generated, and when the sen-
tence “if” in the flowchart is true, the corresponded prob-
ability for nucleation is assigned to the node. 

[ ] prx prypoa[ ] poa 1
2

T T +
= − +  (9) 

3. Grain growth algorithm 

The solidification speeds are used to assign a nodal pro-
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bability for nucleation, resulting in a grain structure formed 
in a cellular automata image. Here, integer data type is used 
as a code number to identify each grain, and the final values 
are taken from the final assignation to be stored in a new 2D 
array. Nodal positions for the nucleated nodes are also 
stored in this 2D array declared as MaPuNu[m][data]. Here, 
m is the nucleated node number and “data” uses a numerical 
code to save different values in the storage; in this case, the 

first location (1) is used to store the horizontal position, the 
second location (2) is for the vertical, and the third (3) is for 
the color assignation. 

The flowchart of the mathematical algorithm developed 
for nucleation and growth is shown in Fig. 3. The column of 
the middle is the main function for simulation. The subrou-
tines required are placed beside in shaded zones. 

 
Fig. 3.  Flowchart of the computational algorithm to simulate nucleation and grain growth procedures. 

The computational source code was written in the pro-
gramming language C++. Nevertheless, the mathematical 
and logical procedures can be programmed using any other 

programming language. This algorithm is applied after the 
random temperature distribution has been executed. 

Instead, the new algorithm was developed to include dif-
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ferent nucleation sequences. With a defined number of 
simulation steps for execution, a different number of nodes 
for nucleation and with different growth ratios (rx/ry) are 
used in order to obtain grain morphologies with straight and 
hyperbolic interfaces. This information is stored in a 2D 
computational array to be used to command the execution of 
the nucleation and growth routines. 

This procedure was also programmed to develop a more 
efficient algorithm for the simulation. In this algorithm, the 
nucleated nodes and their characteristics (position on the ar-
ray and the latest growth radius) are stored in a new 2D 
computational array to avoid the need for searching them in 
the sample. Here, the growth radius is stored and updated 
after each step during simulation. 

Initially, a routine cleans all the values previously stored 
in the memory before the main function is executed in order 
to avoid returns of false values, which can generate errors or 
conflict with the actual simulation (all the variables are re-
turned to its initialized values). 

The initial assumptions for the simulations of the nuclea-
tion and growth procedures are the following. (1) The simu-
lation begins at the step zero. (2) There are no nucleated 
nodes at the simulation beginning. (3) The nucleated node 
counter is returned to zero after each nucleation sequence. (4) 
The step counter is increased after the growth algorithm has 
been executed. (5) The first nucleation sequence is executed 
at the first step. 

The main function begins executing the reading data 
subroutine shown at the left upper column of Fig. 3. Here, 
the user defines the number of sequences for nucleation 
(SNu), which is defined as an integer data type. (SNu) is the 
upper limit that rules the reading data loop, and n is the 
variable used to count the nucleation sequences during 
simulation. 

The steps between nucleation sequences and the number 
of nucleation nodes are defined by the user for each se-
quence. These values are stored in a 2D computational array 
called nppa[n][1 and 2] in the locations indicated, respec-
tively. After the user confirmation, the cumulative values of 
these variables are calculated and stored in the next avail-
able locations of the same array (nppa[n][3 and 4]) in an or-
dered format. This process is repeated until the sentence “if 
(n≤SNu)” shown remains being true. 

The same loop is used in order for the algorithm to be-
come more efficient and to avoid unnecessary instructions. 
Here, steps between sequences mean the number of itera-

tions required to execute the next sequence for nucleation. 
The number of nucleation nodes is the number of new nu-
cleated nodes that appear when the nucleation sequence is 
executed. Both values are also integers. These values are 
required for commanding the simulation loops. Logical 
warnings have been included to avoid error during reading 
data, e.g., many of these variables cannot be less or equal 
than zero in order to avoid declaring mistakes. 

Immediately, the main function makes ii=1. The variable 
ii is also an integer data type used for counting the number 
of sequences (ns) for nucleation during simulation. The as-
sumption ii=1 is taken because ii must be initialized with the 
first sequence. ii can not be initialized as ii=0 because this 
sentence does not have a logical sense. ii is used to execute 
the routine for nucleation nodes illustrated in the right col-
umn but only if the sentence “nppa[ii][4]=jj” is true. In the 
same way, ii is only increased after the execution of the nu-
cleation subroutine. The lower and upper limits are 1 and ns, 
respectively, for the main calculation loop, and the variable 
used to count the steps here is jj. This loop is repeated until 
the condition of available nodes is greater or equal than (1). 
If there is no one available node for growing or nucleating, a 
break warning is applied and the simulation is finished. This 
means that the solidification has been completed and each 
node forms a part of a grain. The result is an image formed 
with color pixels on the computer screen in which a nu-
merical correspondence is used as the code to store the cor-
responding values. 

The nucleation and the growth processes are nested in-
side the main loop. The nucleation routine is executed at the 
beginning, and growth process is only executed for the nu-
cleated nodes. In this subroutine, nn is the variable used for 
counting the number of nodes nucleated. nn is initialized as 
nn=0 for the first sequence. Then, nn will be initialized with 
the number of the cumulative nucleated points until the last 
nucleation sequence. The random functions are used to gen-
erate random coordinates for placing the new nucleated 
nodes and a random number is also generated for the color 
identification (ID-color). Then, these values are stored in the 
2D array called MaPuNu[nn][1 to 3] using the number posi-
tions in the array indicated in the flowchart for recognition. 
The only restrictions for the coordinates of the nucleated 
nodes are given in order to guarantee these will be in the 
range of the nodes used for discretization. 

The values stored in the position MaPuNu[nn][4] corre-
spond to the growth ratio rxy=rx/ry initially declared. Finally, 
nn is increased and the nucleation process is repeated while 
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the sentence nn≤nppa[ii][3] is valid. The ratio rxy=rx/ry that 
involves the growth radius ratio is included in the same 
process adding the variable rxy, and all the information about 
the new nucleated node is updated and stored. 

A very important parameter is the radius growth ratio 
rxy=rx/xy. If this value is to equal to one (rxy=1), all the nucle-
ated nodes grow at the same rate. If the ratio rx/ry=1, the 
growth directions form a circumference simulating an isot-
ropical growth. When the growth process is nested in a loop, 
the new incremented radius (rx++) is updated at each step of 
the simulation. Here, a grain structure randomly oriented 
results as illustrated in Fig. 1(a). The variation of the ratio 
(rx/ry≠1) results in columnar grains with different longitudes 
and preferential growth directions. However, the interfaces 
between grains remain straight. If the ratio rx/ry<1, the 
growth direction forms an ellipse with its largest radius 
along vertical axis. A representation of this condition is 
shown in Fig. 1(b). If the ratio rx/ry>1, the growth direction 
forms an ellipse with its largest radius along horizontal axis. 
The morphology of this condition will be similar to that 
shown in Fig. 1(b) but with an orientation rotated 90°. 

The availability of the node is validated using a basic 
routine to verify if the node can be a new nucleated node. 
The following four sentences must be true in order to verify 
if the node is in the sample: for coordinates on the horizontal 
axis I≥1 and I≤nx and for coordinates on the vertical axis 
J≥1 and J≤ny. Then, the numeric value of the pixel on the 
coordinate is taken to be compared with the numeric code in 
order to know if the node is a part of a node. If this condi-
tion is false, a new nucleated grain is established. However, 
if this condition is true, a new pair of coordinates is gener-
ated randomly and the process is repeated until a new 
un-solidified node has been found. The availability routine 
is also employed to verify if a node can be a part of a nucle-
ated grain during grain growth. This routine works verifying 
the numerical status of the cellular automaton taking the 
values directly from the screen and comparing with those of 
the nearest neighbors. 

The main function now works using a nested loop that 
reloads and includes the new nucleated nodes during the 
growth process. m is the variable used to identify all the nu-
cleated nodes. The lower and upper limits are 1 and 
nppa[i−1][3], respectively, to rule the loop. The number of 
nucleated nodes is increased after a new execution of the 
nucleation subroutine due to the updating of ii. 

The algorithm can assume an isotropic growth or a pre-
defined growth ratio rxy for the nucleated nodes. The first 

step to simulate the grain growth process is to increment the 
radius of each nucleated node (MaPuNu[m][4]++). The new 
coordinates of the points for the circumference generated 
with the new radius are calculated nesting the θ loop within. 
The coordinates x1 and y1 are obtained trigonometrically us-
ing sine and cosine functions as shown in the equations of 
the flowchart. The inclusion of mathematical libraries is re-
quired for the calculation of trigonometric functions and θ is 
declared as a floating point data type. The coordinates rep-
resent the position of the pixel as a function of the 
corresponding radius and angular position using integer data 
types. The coordinates x1 and y1 are also floating point data 
types. Nevertheless, the final coordinates of the node (x1+I, 
y1+J) are integers in order to be placed in a nodal position, 
and the floating part is eliminated. The result of the growth 
process is a new circumference surrounding the original nu-
cleated node. 

Finally, a new pixel according to the node analyzed is 
placed on the screen if the new grain position is valid. The 
condition for the validation is that the new pixel position has 
not been assigned previously as a part of any other grain. 
This condition is checked by executing the neighboring 
availability routine. 

The use of integer data types for the variables that com-
mand the loops and count the nucleated nodes and the steps 
is because all these values are increased and updated one by 
one, step by step. These do not need to be declared as float-
ing data type. In the same way, the inclusion of completed 
subroutines for reading data, nucleation nodes, and loading 
data reduces the source code becoming the algorithm more 
efficient and making an easy management. 

4. Simulated grain structures  

Two temperature distributions shown in Figs. 4(a) and 
4(b) were assumed as initial states for simulations in the 
present work. The first of them is a section of material with 
a heterogeneous distribution. In the second, there are regions 
with different probabilities for nucleation as a function of 
the distribution on the horizontal axis. In consequence, the 
grain size and morphology will be different. Here, the sam-
ple is one single parcel. Only two populations of tempera-
ture were assumed for the distribution. The lowest tempera-
tures are in the first population. In consequence, the highest 
probabilities for nucleation also are presented in this popula-
tion. 

The samples simulated are 1200×800 nodes. The bound-
ary conditions to create the initial temperature distribution 
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Fig. 4.  Original temperature distributions for the simulations: 
(a) heterogeneous; (b) preferential solidification on the left in 
comparison with the right due to higher and lower tempera-
ture values distributed. 

are shown in Table 1; and the number sequences, nucleated 
nodes, and growth conditions are indicated in Table 2. Also, 

the results of the initial boundary conditions used for gener-
ating the distributions are shown in Figs. 4(a) and 4(b). In 
Table 2, NNP is the number of nucleated nodes on each nu-
cleation sequence. 

Table 1.  Boundary conditions to generate the initial tem-
perature distribution 

Sample Population I=1 I=nx J=1 J=ny 

1  50  50 50 50  

2  50  50 50 50 

1 100   0 50 50  

2   0 100 50 50 
 

Figs. 5(a) to 5(c) correspond to the cases (a) to (c) de-
scribed in Table 2, respectively. Here, a heterogeneous dis-
tribution of the grain size and morphology can be appreci-
ated. The nucleated nodes randomly appeared as a function 
of the original solidification speed distribution. Each grain 
had an average space to growth according to its appearing 
moment during the simulation. Nevertheless, the grain size 
was also influenced by the coarsening of some grains that 
were defined with the same ID-color during their original 
nucleation; then, these grains grow until joined and form a 
bigger complex grain. 

Table 2.  Solidification speed distributions and nucleation sequences for the samples simulated 

Number of nucleated nodes (NNP) 
on each sequence Solidification speed probability 

1 2 3 
I=1 I=nx J=1 J=ny 

Case 

A B A B A B A B

Nucleation Sequences 
SNu 

Steps NNP Steps NNP Steps NNP

a  50 50 50  50 50 50 50 50 2 0 200  5 200  0   0 
b  50 50 50  50 50 50 50 50 2 0 300  5 100  0   0 
c  50 50 50  50 50 50 50 10 2 0 200 10 200  0   0 
d 100  0  0 100 50 50 50 20 2 0 300 20 150  0   0 
e 100  0  0 100 50 50 50 10 2 0 200 10 200  0   0 
f 100  0  0 100 50 50 50 20 3 0 100 20 100 10 100 

 
Fig. 5(c) shows a close-up of the grain structures where 

the straight and hyperbolic interfaces between the grains can 
be appreciated. 

Figs. 6(a) and 6(b) show grain structures obtained for the 
simulation of the cases (d) and (e) described in Table 2. 
Here, populations of small grain size are shown in the left 
side of the sample, and populations of bigger grain sizes are 
shown in the right side. The grain sizes and the curvature of 
the interfaces are different due to the steps between se-

quences and the number of nucleated nodes. Finally, Fig. 
6(c) shows the simulation of the case (f). Here, three differ-
ent sequences for nucleation were applied during simulation; 
in consequence, the presence of different grain sizes is ab-
solutely evident because the growing nodes for the latest 
nucleated nodes are reduced. 

Figs. 7(a) and 7(b) show the formation of straight and 
hyperbolic interfaces. The same three nucleated grains are 
shown, but the nucleation event occurs on different solidifi-  

1

2
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Fig. 5.  Simulation of grain structures with hyperbolic interfaces using 2 nucleation sequences according to the nucleation sequences 
described in cases a to c in Table 2 and considering an heterogeneous original temperature distribution according with sample 1 de-
scribed in Table 1 (values in Table 1 are used to create an original temperature distribution and information in Table 2 is used to 
rule the nucleation sequences and the grain growth process). 

 
Fig. 6.  Simulation of grain structures with different grain sizes at different solidification speeds and nucleation sequences with 
straight and hyperbolic interfaces: but considering cases d (a), e (b), and f (c) described in Table 2. 
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Fig. 7.  Formation of grain interfaces between grains: (a) straight interfaces; (b) hyperbolic interfaces. 

cation times. If the three grains are nucleated at the same 
sequence, the three interfaces between these will be straight 
due to the points where the growing radii are intersected form 
constant angles with the vertex. However, if the nodes are 
nucleated in different sequences, this angle will not be con-

stant; in consequence, the interface will be hyperbolic. Fi-
nally, all the grain structures simulated in the present work 
are stored in a 2D array to be characterized computationally. 
The values of each node are ordered and stored using the nu-
merical code to identify the grain interfaces as shown in Fig. 8. 

 
Fig. 8.  Grain interfaces identified using the numerical code on the cellular automata. 

The model developed in this work is a quasi-dynamic 
model because nucleation and growth processes are simu-
lated and because the final grain structure is formed during 
evolution of an original distribution. However, no physical 
factors are included in the algorithms for simulation. Nev-
ertheless, this kind of models is better than original geomet-
rical models. 

Geometrical models were the first approaches developed 
by the beginners, who relate the chaos theory with applica-
tions in materials science. Here, a set of nodes was ran-
domly placed in a sample and these were assumed as ver-
texes and then were joined with each other according to 

proximity. In other algorithms, some nodes near the 
boundaries were taken as initial points and then a random 
walk algorithm was employed to generate new nodes for 
joining. Geometrical models are basic algorithms. These are 
easily programmed and the files generated for saving the 
information do not require much space on memory or disk. 

The information required on geometrical models is the 
following: the coordinates of each vertex, the ID number for 
each vertex, the coordination number, and the ID number of 
the neighbors. 

Derivations of these algorithms are used in computer 
software simulators to generate non-structured meshes in 
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order to discretize complex solids or surfaces. Although 
these models can provide a remote approach for a grain 
structure, these cannot be classified as dynamic models, 
these cannot be nested or included in sub-routines to show 
an evolution of an original system, and the interfaces on 
grain structures simulated are always straight. 

Dynamic models give a better approach because it is pos-
sible to obtain complex grain interfaces; thus, anisotropy 
and complex geometry of grain structures will be fidelity 
represented. In this way, cellular automaton models require 
larger or huge file sizes because it is needed to save the final 
status of the system. Here, each nodal value must be saved 
and the size will be a function of the number of nodes used. 

Dynamic models can be appreciated in Figs. 9(a) to 9(c). 
Fig. 9(a) shows the original temperature distribution at the 
beginning of the simulation (t=0). Fig. 9(b) shows the exe-
cution of the second nucleation sequence. Here, nodes nu-
cleated during the first sequence are with a consolidated ad-
vanced front, whereas nodes nucleated in the second se-
quence are just placed on the sample. In Fig. 9(c), there is a 
greater population of nucleated nodes in the left side of the 
sample due to the initial temperature and solidification 
speed distributions. Moreover, the growth for all the nodes 
is assumed as isotropic with a constant solidification front. 
Here, it is also possible to observe the formation of some 
interfaces due to the interruption on the grain growth (some 
advanced fronts are blocked). 

5. Conclusions and comments 

The straight and hyperbolic interfaces between the grains 
shown in Figs. 7(a) and 7b are formed during grain growth. 
A grain interface is defined when the growing process be-
tween two grains is interrupted because the next nodal posi-
tion calculated has been occupied with pixel identified with 
a numerical code as a part of any other grain. The geometri-
cal form of the interface is taken according to the following 
conditions. 

(1) If two grains nucleated at the same sequence are 
joined, the interface formed between them will be straight. 

(2) If two grains nucleated near each other are joined and 
if these have the same “numeric code”, under this unique 
condition, no interface forms. These grains are joined to 
form a bigger coarsened single grain. This new grain will 
frequently be bigger than the average grain size. Coarsening 
rarely happens during a real solidification. This condition is 
only during solidification if the fronts of two or more crys- 

 
Fig. 9.  Grains structure formation: (a) initial temperature 
distribution; (b) executing the second nucleation sequence; (c) 
final grain structure. 

tals growing independently with the same growth direction 
are joined. 

(3) If two grains are nucleated at different nucleation se-
quences and their growing fronts are crashed, the interface 
formed will be hyperbolic. 

(4) Bigger coarsened grains can be found in the grain 
structure if conditions (2) and (3) are present. According to 



710 Int. J. Miner. Metall. Mater., Vol.19, No.8, Aug 2012 

 

this, more than two grains nucleated separately can be 
coarsened to form a bigger one. In the same way, grains nu-
cleated during different sequences can also be coarsened, 
generating grains with straight and hyperbolic interfaces. 

(5) If the advanced fronts of three different grains are 
joined in a node, a vertex is formed. 

The algorithm developed in the present work can give a 
good approach for grain structure formation in materials 
with straight and hyperbolic interfaces. It was programmed 
with an efficient algorithm to allow reducing the computing 
time and to avoid unnecessary codes. 

Finally, the algorithms developed in this work can be 
used as sub-routines and can also be nested in additional 
loops if the user likes to build a more sophisticated model 
for 3D grain structure. 

Acknowledgements 

The authors wish to thank Consejo Nacional de Ciencia y 
Tecnología (CONACyT), Universidad Autónoma Metro-
politana (UAM-AZC), Instituto Tecnológico Autónomo de 
México (ITAM), and Instituto Mexicano del Petróleo (IMP). 

References 
[1]  O.M. Ivasishin, S.V. Shevchenko, and N.L. Vasiliev, 3D 

Monte-Carlo simulation of texture-controlled grain growth, 
Acta Mater., 51(2003), p.1019. 

[2]  M.C. Flemings, Solidification Processing, McGraw Hill 
Book Company, New York, 1974. 

[3]  E.A. Holm, M.A. Miodownik, and A.D. Rollett, On abnormal 
subgrain growth and the origin of recrystallization nuclei, 
Acta Mater., 51(2003), p.2701. 

[4]  S. Mishra and T. DebRoy, Measurements and Monte Carlo 
simulation of grain growth in the heat-affected zone of  

 Ti-6Al-4V welds, Acta Mater., 52(2004), p.1183. 
[5]  Y.J. Lan, D.Z. li, and Y.Y. Li, Modeling austenite decompo-

sition into ferrite at different cooling rate in low-carbon steel 
with cellular automaton method, Acta Mater., 52(2004), 
p.1721. 

[6]  H. Yoshioka, Y. Tada, and Y. Hayashi, Crystal growth and its 
morphology in the mushy zone, Acta Mater., 52(2004), 
p.1515. 

[7]  M.M. Tong, D.Z. Li, and Y.Y. Li, Modeling the austen-
ite-ferrite diffusive transformation during continuous cooling 
on a mesoscale using Monte Carlo method, Acta Mater., 
52(2004), p.1155. 

[8]  L. Zhang, C.B. Zhang, Y.M. Wang, S.Q. Wang, and H.Q. Ye, 
A cellular automaton investigation of the transformation from 
austenite to ferrite during continuous cooling, Acta Mater., 
51(2003), p.5519. 

[9]  R. McAfee and I. Nettleship, The simulation and selection of 
shapes for the unfolding of grain size distributions, Acta Ma-
ter., 51(2003), p.4603. 

[10]  W. Wang, P.D. Lee, and M. McLean, A model of solidifica-
tion microstructures in nickel-based superalloys: predicting 
primary dendrite spacing selection, Acta Mater., 51(2003), 
p.2971. 

[11]  C.W. Lan, Y.C. Chang, and C.J. Shih, Adaptive phase field 
simulation of non-isothermal free dendritic growth of a bi-
nary alloy, Acta Mater., 51(2003), p.1857. 

[12]  W. Feng, Q. Xu, and B. Liu, Microstructure simulation of 
aluminum alloy using parallel computing technique, ISIJ Int., 
42(2002), p.702. 

[13]  K.Y. Lee and C.P. Hong, Stochastic modeling of solidifica-
tion grain of structures of Al-Cu crystalline ribbons in planar 
flow casting, ISIJ Int., 37(1997), p.38. 

[14]  Y.H. Shin and C.P. Hong, Modeling of dendritic growth with 
convection using a modified cellular automaton model with a 
diffuse interface, ISIJ Int., 42(2002), p.359. 

[15]  A. Ramírez, F. Chávez, L. Demedices, A. Cruz, and M. 
Macias, Randomly grain growth in metallic materials, Chaos 
Solitons Fractals, 42 (2009), p.820. 

 


