
International Journal of Minerals, Metallurgy and Materials
Volume 19, Number 8, Aug 2012, Page 699
DOI: 10.1007/s12613-012-0616-0

Corresponding author: A. Ramírez-López E-mail: adaramil@yahoo.com.mx
© University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2012

A cellular automata model for simulating grain structures with straight and
hyperbolic interfaces

A. Ramírez-López1, 2, 3), M. Palomar-Pardavé1), D. Muñoz-Negrón2), C. Duran-Valencia3),
S. López-Ramirez3), and G. Soto-Cortés1)

1) Materials and Energy Department, Metropolitan Autonomous University, Mexico
2) Department of Industrial Engineering, Technological Autonomous Institute of Mexico, Mexico
3) Department of Molecular Engineering, Mexican Institute of Petroleum, Mexico
(Received: 11 May 2011; revised: 4 July 2011; accepted: 11 July 2011)

Abstract: A description of a mathematical algorithm for simulating grain structures with straight and hyperbolic interfaces is shown. The
presence of straight and hyperbolic interfaces in many grain structures of metallic materials is due to different solidification conditions, in-
cluding different solidification speeds, growth directions, and delaying on the nucleation times of each nucleated node. Grain growth is a
complex problem to be simulated; therefore, computational methods based on the chaos theory have been developed for this purpose.
Straight and hyperbolic interfaces are between columnar and equiaxed grain structures or in transition zones. The algorithm developed in this
work involves random distributions of temperature to assign preferential probabilities to each node of the simulated sample for nucleation
according to previously defined boundary conditions. Moreover, more than one single nucleation process can be established in order to gen-
erate hyperbolic interfaces between the grains. The appearance of new nucleated nodes is declared in sequences with a particular number of
nucleated nodes and a number of steps for execution. This input information influences directly on the final grain structure (grain size and
distribution). Preferential growth directions are also established to obtain equiaxed and columnar grains. The simulation is done using rou-
tines for nucleation and growth nested inside the main function. Here, random numbers are generated to place the coordinates of each new
nucleated node at each nucleation sequence according to a solidification probability. Nucleation and growth routines are executed as a func-
tion of nodal availability in order to know if a node will be part of a grain. Finally, this information is saved in a two-dimensional computa-
tional array and displayed on the computer screen placing color pixels on the corresponding position forming an image as is done in cellular
automaton.

Keywords: grain growth; interfaces; grain size and shape; computational methods; algorithms; cellular automata; computer simulation

1. Introduction

Simulation of grain structures is a very important topic in
materials science. Metallic pieces are frequently processed
and formed by foundry, laminated, rolling, etc. During manu-
facturing and processing, different grain sizes and mor-
phologies are obtained according to particular solidification
conditions and thermal treatments. Fractals, stochastic
methods, cellular automata, models based on Monte Carlo,
random walk, and the chaos theory have been employed to
simulate the anisotropic features of grain structures and the
phenomena related such as recrystallization and grain de-

formation during processing.

Many authors [1-15] have developed mathematical mod-
els to simulate grain growth during solidification of metallic
materials (metals and alloys). The beginners [2] used basic
geometrical models due to the limited computational capaci-
ties. Nevertheless, the development of new mathematical
methods, more efficient algorithms, and the increment in
computational data speed and storage capacities have been
possible to solve complex problems that involve no-regular
geometries and random processes using Monte Carlo [1, 2, 4,
7] and cellular automaton [5, 8, 11-15] methods in problems
related to materials science. Some of these authors [1, 4-8,

700 Int. J. Miner. Metall. Mater., Vol.19, No.8, Aug 2012

10-12] have developed models for solidification processes
as a function of solid and liquid fractions for different metals.
Others [1-4, 6, 9, 12-15] have been working in models to
simulate dendrite growth, which is the basic structure in
primary metallic products obtained after foundry.

In a previous work, Ramírez et al. [15] explained the de-
velopment of a basic computational algorithm to create
grain structures as a function of an initial stochastic tem-
perature distribution during the solidification of a squared
metallic sample. Heterogeneous distributions of temperature
provide nodes with particular probabilities to be nucleated.
The results are zones with big and small grains. The assig-
nation of preferential growth directions gives samples with
different grain sizes. Nevertheless, in the original algorithm,
there was only one single nucleation execution.

The grain structures formed in metals are heterogeneous
and the grain morphology can also be very different due to
the factors involved in the manufacturing process. Grains
with equiaxed and columnar morphologies, with different
sizes and distributions, can be simulated as shown in Figs.
1(a) and 1(b), respectively, using the original algorithm de-
veloped [15]. Nevertheless, the interfaces between the grains
(grain boundaries) are always straight (straight lines for
two-dimensional (2D) models and flat planes for three-di-
mensional (3D) models) as shown in better detail in the
close-ups, which show the boundaries between these. This
work describes an improved algorithm to generate more
complex 2D grain structures. The new algorithm includes
multiple nucleation sequences to generate different grain
sizes and hyperbolic interfaces between them.

Fig. 1. Different grain structures with straight interfaces: (a) equiaxed grains; (b) columnar grains.

Straight lines are presented in grain boundaries during the
evolution of the simulation as shown in Figs. 1(a) and 1(b).
These are formed because all the nodes are nucleated in only
one single sequence and because all of them have the same
growth rate. Nevertheless, this does not happen during real

solidification.

Fig. 1(a) shows an equiaxed grain structure. This kind
resulted after the metal is foundry and cast. Grain size dis-
tribution is frequently a function of the nucleation node dis-
tribution in the sample and the growth procedure. Neverthe-

A. Ramírez-López et al., A cellular automata model for simulating grain structures with straight and hyperbolic interfaces 701

less, Fig. 1(b) shows a columnar structure. This structure is
obtained after a secondary process such as lamination, roll-
ing, or extrusion, where the original grain structure is
squeezed and deformed.

Although the algorithm developed does not relate solidi-
fication with physical evolution, it is evident that the chaos
theory and cellular automata models generate samples of
grain structures very similar to those in the real metallic
specimens. Nucleation and grain growth are influenced by
many factors, such as solidification speed and phase trans-
formations in the metallic materials, as described next.

The influence of the previous temperature distribution
and solidification speed is related to the number of nuclea-
tion nodes to be placed in a region of the sample simulated.
The nodes in regions quickly quenched will have a greater
probability to be nucleated than those in regions where the
solidification speed is slow. This condition will reduce the
grain size because this node remains a very short time in
mushy. These regions are frequently near the surfaces where
heat removal is applied. Here, a great number of nucleation
nodes will appear due to the high initial solidification speed.
In consequence, the growth process of these nodes will be
interrupted because the available space will be quickly oc-
cupied; in consequence, the simultaneous growth of many
grains will be blocked by each other, forming an interface.

In contrast, the nodes nucleated in regions with a minor
population and lower solidification speeds will have larger
spaces for growing. Nucleation speed is reduced in zones
near the core sample because here the nodes remain a long
time in mushy and the evolution of the liquid and solid frac-
tions (Xliq I,J and Xsol I,J) is also slow.

Liquid metallic samples are cast to produce mechanical
elements and pieces for machines, tools, etc. The regions
where heat removal is applied will be quickly quenched;
here, equations for forced convection and radiation are fre-
quently used for calculation. However, inside the piece core,
latent heat remains; this heat is slowly distributed by con-
duction from the core towards the surfaces.

2. Initial solidification speed distribution

The model in the present work was developed to create a
cellular automaton image using two numerical codes. The
first code is used to assign the nucleation probabilities to
each node. The second code is used to identify and display
the grain structure. In this way, there were two algorithms:
the first algorithm was programmed to generate an original

stochastic distribution of the temperature and the solidifica-
tion speed. The second was executed to simulate the nuclea-
tion and grain growth processes.

The basic assumptions for the simulation of the solidifi-
cation speed distribution are the following. (1) A 2D
squared sample of a metallic material is simulated. (2) A
structured regular squared mesh is used for the discretization.
(3) The numbers of nodes used for the discretization are nx
and ny for the horizontal and vertical axes, respectively. (4)
The sub-indexes I and J are used to identify the nodal posi-
tion in the computational domain. (5) The values of nx and
ny are declared as integer data type; these are fit in order to
provide a regular squared mesh. (6) Each node in the tem-
perature distribution will represent the same node in the
grain structure and it will be represented with a color pixel
in the cellular automata.

Temperature and solidification speed distributions for the
simulations are generated using an algorithm based on a
stochastic assignation value subroutine. Here, every tem-
perature value is classified as done for populations in a sta-
tistical analysis according to their frequency. Then, a prob-
ability to be presented in the sample is defined as boundary
conditions for the four sides (sample boundaries). Then, the
appearing probability in a nodal position PT,I,J is calculated
using Eq. (1) as a function of the corresponding nodal posi-
tion (I,J) in the sample. Here, the sub-index T is used for
temperature. Although during solidification of the real sam-
ple the nucleation points appear as a function of the heat
removal conditions, here it is assumed as a random process.

() (), 1 , nx , 1 , ny

, ,
nx ny

2

T I T I T J T J

T I J

I JP P P P
P

= = = =+ + +
= (1)

The process to calculate nodal probabilities is executed in
a pair of nested loops for all the samples. This process is re-
peated for all the defined temperatures (nT), and the nodal
probability is obtained using Eq. (2). Then, the probability
for all the temperatures is given by the sum of the particular
probabilities because (Ptot,I,J=100). Instead, the probabilities
are compared with a randomly generated number (Z); if the
value of (Z) is in the range between PT−1 and PT (PT−1<Z<PT),
the probability of the temperature is assigned to the node.
This process is shown in the shaded area of the flowchart in
Fig. 2.

tot , ,
1

100
nT

T I J
T

P P
=

= =∑ (2)

The process for generating a random probability for nu-
cleation is also nested in a pair of loops to create regions

702 Int. J. Miner. Metall. Mater., Vol.19, No.8, Aug 2012

Fig. 2. Flowchart to generate the initial temperature and so-
lidification speed distributions.

with less or greater probabilities for nucleation and growth
in the same sample.

These loops rule the process and can be used for becom-
ing an only simple routine in a computational tool to de-
velop a more sophisticated parcel model. In the same way as
the previous calculation, the boundary conditions of each
parcel are defined independently to calculate the nodal
probabilities.

The algorithm for creating the distribution is shown in
Fig. 2. Here, the variables nI and nJ are used to know the
number of defined regions in the sample. These are used as
boundary conditions to command the loops for generating

the distributions on each parcel. These go from II=2 to II≤nI
and from JJ=2 to JJ≤nJ for horizontal and vertical axes. Here,
a 3D array is used to store the values. The computational
array was declared as Madpro[o][T][A]. Here, o represents a
number code used to identify the region on the axes; o can
take values from II or JJ according to the executing loop.
The value of T is used for declaring the probability for nu-
cleation of the corresponding class. Finally, the third value A
corresponds to a numerical code used to identify the axis:
“1” is for the horizontal and “2” is for the vertical.

The new process includes the assignation to the boundary
conditions for each parcel to the variables I1, I2, J1, and J2 as
shown in Eqs. (3) to (6). Here, the second and third terms
correspond to the mathematical and computational notations,
respectively.

I1=MdII−1,T,I=Madpro[II−1][T][1] (3)

I2=MdII,T,I=Madpro[II][T][1] (4)

J1=MdJJ−1,T,J=Madpro[JJ−1][T][2] (5)

J2=MdJJ,T,J=Madpro[JJ][T][2] (6)

Then, the probabilities for horizontal and vertical axes are
obtained using Eqs. (7) and (8), respectively. The second
and third terms are used for the same notations as Eqs. (3) to
(6).

II 1, ,1
1 2 1

II, ,1 II 1, ,1

1 2 1

Md
prx ()

Md Md

()

Madpro[II 1][][1]
Madpro[II][][1] Madpro[II 1][][1]

T

T T

I
I I I

I I I

I T
T T

−

−

⎛ ⎞−
= + − =⎜ ⎟⎜ ⎟−⎝ ⎠

+ −

⎛ ⎞− −
⎜ ⎟− −⎝ ⎠

 (7)

JJ 1, ,2
1 2 1

JJ, ,2 JJ 1, ,2

1 2 1

Md
pry ()

Md Md

()

Madpro[JJ 1][][2]
Madpro[JJ][][2] Madpro[JJ 1][][2]

T

T T

J
J J J

 J J J

J T
T T

−

−

⎛ ⎞−
= + − =⎜ ⎟⎜ ⎟−⎝ ⎠

+ −

⎛ ⎞− −
⎜ ⎟− −⎝ ⎠

 (8)

The cumulative nodal probability is obtained by solving
Eq. (9) and saved in a one-dimensional array called poa[T].
Finally, a random number is generated, and when the sen-
tence “if” in the flowchart is true, the corresponded prob-
ability for nucleation is assigned to the node.

[] prx prypoa[] poa 1
2

T T +
= − + (9)

3. Grain growth algorithm

The solidification speeds are used to assign a nodal pro-

A. Ramírez-López et al., A cellular automata model for simulating grain structures with straight and hyperbolic interfaces 703

bability for nucleation, resulting in a grain structure formed
in a cellular automata image. Here, integer data type is used
as a code number to identify each grain, and the final values
are taken from the final assignation to be stored in a new 2D
array. Nodal positions for the nucleated nodes are also
stored in this 2D array declared as MaPuNu[m][data]. Here,
m is the nucleated node number and “data” uses a numerical
code to save different values in the storage; in this case, the

first location (1) is used to store the horizontal position, the
second location (2) is for the vertical, and the third (3) is for
the color assignation.

The flowchart of the mathematical algorithm developed
for nucleation and growth is shown in Fig. 3. The column of
the middle is the main function for simulation. The subrou-
tines required are placed beside in shaded zones.

Fig. 3. Flowchart of the computational algorithm to simulate nucleation and grain growth procedures.

The computational source code was written in the pro-
gramming language C++. Nevertheless, the mathematical
and logical procedures can be programmed using any other

programming language. This algorithm is applied after the
random temperature distribution has been executed.

Instead, the new algorithm was developed to include dif-

704 Int. J. Miner. Metall. Mater., Vol.19, No.8, Aug 2012

ferent nucleation sequences. With a defined number of
simulation steps for execution, a different number of nodes
for nucleation and with different growth ratios (rx/ry) are
used in order to obtain grain morphologies with straight and
hyperbolic interfaces. This information is stored in a 2D
computational array to be used to command the execution of
the nucleation and growth routines.

This procedure was also programmed to develop a more
efficient algorithm for the simulation. In this algorithm, the
nucleated nodes and their characteristics (position on the ar-
ray and the latest growth radius) are stored in a new 2D
computational array to avoid the need for searching them in
the sample. Here, the growth radius is stored and updated
after each step during simulation.

Initially, a routine cleans all the values previously stored
in the memory before the main function is executed in order
to avoid returns of false values, which can generate errors or
conflict with the actual simulation (all the variables are re-
turned to its initialized values).

The initial assumptions for the simulations of the nuclea-
tion and growth procedures are the following. (1) The simu-
lation begins at the step zero. (2) There are no nucleated
nodes at the simulation beginning. (3) The nucleated node
counter is returned to zero after each nucleation sequence. (4)
The step counter is increased after the growth algorithm has
been executed. (5) The first nucleation sequence is executed
at the first step.

The main function begins executing the reading data
subroutine shown at the left upper column of Fig. 3. Here,
the user defines the number of sequences for nucleation
(SNu), which is defined as an integer data type. (SNu) is the
upper limit that rules the reading data loop, and n is the
variable used to count the nucleation sequences during
simulation.

The steps between nucleation sequences and the number
of nucleation nodes are defined by the user for each se-
quence. These values are stored in a 2D computational array
called nppa[n][1 and 2] in the locations indicated, respec-
tively. After the user confirmation, the cumulative values of
these variables are calculated and stored in the next avail-
able locations of the same array (nppa[n][3 and 4]) in an or-
dered format. This process is repeated until the sentence “if
(n≤SNu)” shown remains being true.

The same loop is used in order for the algorithm to be-
come more efficient and to avoid unnecessary instructions.
Here, steps between sequences mean the number of itera-

tions required to execute the next sequence for nucleation.
The number of nucleation nodes is the number of new nu-
cleated nodes that appear when the nucleation sequence is
executed. Both values are also integers. These values are
required for commanding the simulation loops. Logical
warnings have been included to avoid error during reading
data, e.g., many of these variables cannot be less or equal
than zero in order to avoid declaring mistakes.

Immediately, the main function makes ii=1. The variable
ii is also an integer data type used for counting the number
of sequences (ns) for nucleation during simulation. The as-
sumption ii=1 is taken because ii must be initialized with the
first sequence. ii can not be initialized as ii=0 because this
sentence does not have a logical sense. ii is used to execute
the routine for nucleation nodes illustrated in the right col-
umn but only if the sentence “nppa[ii][4]=jj” is true. In the
same way, ii is only increased after the execution of the nu-
cleation subroutine. The lower and upper limits are 1 and ns,
respectively, for the main calculation loop, and the variable
used to count the steps here is jj. This loop is repeated until
the condition of available nodes is greater or equal than (1).
If there is no one available node for growing or nucleating, a
break warning is applied and the simulation is finished. This
means that the solidification has been completed and each
node forms a part of a grain. The result is an image formed
with color pixels on the computer screen in which a nu-
merical correspondence is used as the code to store the cor-
responding values.

The nucleation and the growth processes are nested in-
side the main loop. The nucleation routine is executed at the
beginning, and growth process is only executed for the nu-
cleated nodes. In this subroutine, nn is the variable used for
counting the number of nodes nucleated. nn is initialized as
nn=0 for the first sequence. Then, nn will be initialized with
the number of the cumulative nucleated points until the last
nucleation sequence. The random functions are used to gen-
erate random coordinates for placing the new nucleated
nodes and a random number is also generated for the color
identification (ID-color). Then, these values are stored in the
2D array called MaPuNu[nn][1 to 3] using the number posi-
tions in the array indicated in the flowchart for recognition.
The only restrictions for the coordinates of the nucleated
nodes are given in order to guarantee these will be in the
range of the nodes used for discretization.

The values stored in the position MaPuNu[nn][4] corre-
spond to the growth ratio rxy=rx/ry initially declared. Finally,
nn is increased and the nucleation process is repeated while

A. Ramírez-López et al., A cellular automata model for simulating grain structures with straight and hyperbolic interfaces 705

the sentence nn≤nppa[ii][3] is valid. The ratio rxy=rx/ry that
involves the growth radius ratio is included in the same
process adding the variable rxy, and all the information about
the new nucleated node is updated and stored.

A very important parameter is the radius growth ratio
rxy=rx/xy. If this value is to equal to one (rxy=1), all the nucle-
ated nodes grow at the same rate. If the ratio rx/ry=1, the
growth directions form a circumference simulating an isot-
ropical growth. When the growth process is nested in a loop,
the new incremented radius (rx++) is updated at each step of
the simulation. Here, a grain structure randomly oriented
results as illustrated in Fig. 1(a). The variation of the ratio
(rx/ry≠1) results in columnar grains with different longitudes
and preferential growth directions. However, the interfaces
between grains remain straight. If the ratio rx/ry<1, the
growth direction forms an ellipse with its largest radius
along vertical axis. A representation of this condition is
shown in Fig. 1(b). If the ratio rx/ry>1, the growth direction
forms an ellipse with its largest radius along horizontal axis.
The morphology of this condition will be similar to that
shown in Fig. 1(b) but with an orientation rotated 90°.

The availability of the node is validated using a basic
routine to verify if the node can be a new nucleated node.
The following four sentences must be true in order to verify
if the node is in the sample: for coordinates on the horizontal
axis I≥1 and I≤nx and for coordinates on the vertical axis
J≥1 and J≤ny. Then, the numeric value of the pixel on the
coordinate is taken to be compared with the numeric code in
order to know if the node is a part of a node. If this condi-
tion is false, a new nucleated grain is established. However,
if this condition is true, a new pair of coordinates is gener-
ated randomly and the process is repeated until a new
un-solidified node has been found. The availability routine
is also employed to verify if a node can be a part of a nucle-
ated grain during grain growth. This routine works verifying
the numerical status of the cellular automaton taking the
values directly from the screen and comparing with those of
the nearest neighbors.

The main function now works using a nested loop that
reloads and includes the new nucleated nodes during the
growth process. m is the variable used to identify all the nu-
cleated nodes. The lower and upper limits are 1 and
nppa[i−1][3], respectively, to rule the loop. The number of
nucleated nodes is increased after a new execution of the
nucleation subroutine due to the updating of ii.

The algorithm can assume an isotropic growth or a pre-
defined growth ratio rxy for the nucleated nodes. The first

step to simulate the grain growth process is to increment the
radius of each nucleated node (MaPuNu[m][4]++). The new
coordinates of the points for the circumference generated
with the new radius are calculated nesting the θ loop within.
The coordinates x1 and y1 are obtained trigonometrically us-
ing sine and cosine functions as shown in the equations of
the flowchart. The inclusion of mathematical libraries is re-
quired for the calculation of trigonometric functions and θ is
declared as a floating point data type. The coordinates rep-
resent the position of the pixel as a function of the
corresponding radius and angular position using integer data
types. The coordinates x1 and y1 are also floating point data
types. Nevertheless, the final coordinates of the node (x1+I,
y1+J) are integers in order to be placed in a nodal position,
and the floating part is eliminated. The result of the growth
process is a new circumference surrounding the original nu-
cleated node.

Finally, a new pixel according to the node analyzed is
placed on the screen if the new grain position is valid. The
condition for the validation is that the new pixel position has
not been assigned previously as a part of any other grain.
This condition is checked by executing the neighboring
availability routine.

The use of integer data types for the variables that com-
mand the loops and count the nucleated nodes and the steps
is because all these values are increased and updated one by
one, step by step. These do not need to be declared as float-
ing data type. In the same way, the inclusion of completed
subroutines for reading data, nucleation nodes, and loading
data reduces the source code becoming the algorithm more
efficient and making an easy management.

4. Simulated grain structures

Two temperature distributions shown in Figs. 4(a) and
4(b) were assumed as initial states for simulations in the
present work. The first of them is a section of material with
a heterogeneous distribution. In the second, there are regions
with different probabilities for nucleation as a function of
the distribution on the horizontal axis. In consequence, the
grain size and morphology will be different. Here, the sam-
ple is one single parcel. Only two populations of tempera-
ture were assumed for the distribution. The lowest tempera-
tures are in the first population. In consequence, the highest
probabilities for nucleation also are presented in this popula-
tion.

The samples simulated are 1200×800 nodes. The bound-
ary conditions to create the initial temperature distribution

706 Int. J. Miner. Metall. Mater., Vol.19, No.8, Aug 2012

Fig. 4. Original temperature distributions for the simulations:
(a) heterogeneous; (b) preferential solidification on the left in
comparison with the right due to higher and lower tempera-
ture values distributed.

are shown in Table 1; and the number sequences, nucleated
nodes, and growth conditions are indicated in Table 2. Also,

the results of the initial boundary conditions used for gener-
ating the distributions are shown in Figs. 4(a) and 4(b). In
Table 2, NNP is the number of nucleated nodes on each nu-
cleation sequence.

Table 1. Boundary conditions to generate the initial tem-
perature distribution

Sample Population I=1 I=nx J=1 J=ny

1 50 50 50 50

2 50 50 50 50

1 100 0 50 50

2 0 100 50 50

Figs. 5(a) to 5(c) correspond to the cases (a) to (c) de-
scribed in Table 2, respectively. Here, a heterogeneous dis-
tribution of the grain size and morphology can be appreci-
ated. The nucleated nodes randomly appeared as a function
of the original solidification speed distribution. Each grain
had an average space to growth according to its appearing
moment during the simulation. Nevertheless, the grain size
was also influenced by the coarsening of some grains that
were defined with the same ID-color during their original
nucleation; then, these grains grow until joined and form a
bigger complex grain.

Table 2. Solidification speed distributions and nucleation sequences for the samples simulated

Number of nucleated nodes (NNP)
on each sequence Solidification speed probability

1 2 3
I=1 I=nx J=1 J=ny

Case

A B A B A B A B

Nucleation Sequences
SNu

Steps NNP Steps NNP Steps NNP

a 50 50 50 50 50 50 50 50 2 0 200 5 200 0 0
b 50 50 50 50 50 50 50 50 2 0 300 5 100 0 0
c 50 50 50 50 50 50 50 10 2 0 200 10 200 0 0
d 100 0 0 100 50 50 50 20 2 0 300 20 150 0 0
e 100 0 0 100 50 50 50 10 2 0 200 10 200 0 0
f 100 0 0 100 50 50 50 20 3 0 100 20 100 10 100

Fig. 5(c) shows a close-up of the grain structures where

the straight and hyperbolic interfaces between the grains can
be appreciated.

Figs. 6(a) and 6(b) show grain structures obtained for the
simulation of the cases (d) and (e) described in Table 2.
Here, populations of small grain size are shown in the left
side of the sample, and populations of bigger grain sizes are
shown in the right side. The grain sizes and the curvature of
the interfaces are different due to the steps between se-

quences and the number of nucleated nodes. Finally, Fig.
6(c) shows the simulation of the case (f). Here, three differ-
ent sequences for nucleation were applied during simulation;
in consequence, the presence of different grain sizes is ab-
solutely evident because the growing nodes for the latest
nucleated nodes are reduced.

Figs. 7(a) and 7(b) show the formation of straight and
hyperbolic interfaces. The same three nucleated grains are
shown, but the nucleation event occurs on different solidifi-

1

2

A. Ramírez-López et al., A cellular automata model for simulating grain structures with straight and hyperbolic interfaces 707

Fig. 5. Simulation of grain structures with hyperbolic interfaces using 2 nucleation sequences according to the nucleation sequences
described in cases a to c in Table 2 and considering an heterogeneous original temperature distribution according with sample 1 de-
scribed in Table 1 (values in Table 1 are used to create an original temperature distribution and information in Table 2 is used to
rule the nucleation sequences and the grain growth process).

Fig. 6. Simulation of grain structures with different grain sizes at different solidification speeds and nucleation sequences with
straight and hyperbolic interfaces: but considering cases d (a), e (b), and f (c) described in Table 2.

708 Int. J. Miner. Metall. Mater., Vol.19, No.8, Aug 2012

Fig. 7. Formation of grain interfaces between grains: (a) straight interfaces; (b) hyperbolic interfaces.

cation times. If the three grains are nucleated at the same
sequence, the three interfaces between these will be straight
due to the points where the growing radii are intersected form
constant angles with the vertex. However, if the nodes are
nucleated in different sequences, this angle will not be con-

stant; in consequence, the interface will be hyperbolic. Fi-
nally, all the grain structures simulated in the present work
are stored in a 2D array to be characterized computationally.
The values of each node are ordered and stored using the nu-
merical code to identify the grain interfaces as shown in Fig. 8.

Fig. 8. Grain interfaces identified using the numerical code on the cellular automata.

The model developed in this work is a quasi-dynamic
model because nucleation and growth processes are simu-
lated and because the final grain structure is formed during
evolution of an original distribution. However, no physical
factors are included in the algorithms for simulation. Nev-
ertheless, this kind of models is better than original geomet-
rical models.

Geometrical models were the first approaches developed
by the beginners, who relate the chaos theory with applica-
tions in materials science. Here, a set of nodes was ran-
domly placed in a sample and these were assumed as ver-
texes and then were joined with each other according to

proximity. In other algorithms, some nodes near the
boundaries were taken as initial points and then a random
walk algorithm was employed to generate new nodes for
joining. Geometrical models are basic algorithms. These are
easily programmed and the files generated for saving the
information do not require much space on memory or disk.

The information required on geometrical models is the
following: the coordinates of each vertex, the ID number for
each vertex, the coordination number, and the ID number of
the neighbors.

Derivations of these algorithms are used in computer
software simulators to generate non-structured meshes in

A. Ramírez-López et al., A cellular automata model for simulating grain structures with straight and hyperbolic interfaces 709

order to discretize complex solids or surfaces. Although
these models can provide a remote approach for a grain
structure, these cannot be classified as dynamic models,
these cannot be nested or included in sub-routines to show
an evolution of an original system, and the interfaces on
grain structures simulated are always straight.

Dynamic models give a better approach because it is pos-
sible to obtain complex grain interfaces; thus, anisotropy
and complex geometry of grain structures will be fidelity
represented. In this way, cellular automaton models require
larger or huge file sizes because it is needed to save the final
status of the system. Here, each nodal value must be saved
and the size will be a function of the number of nodes used.

Dynamic models can be appreciated in Figs. 9(a) to 9(c).
Fig. 9(a) shows the original temperature distribution at the
beginning of the simulation (t=0). Fig. 9(b) shows the exe-
cution of the second nucleation sequence. Here, nodes nu-
cleated during the first sequence are with a consolidated ad-
vanced front, whereas nodes nucleated in the second se-
quence are just placed on the sample. In Fig. 9(c), there is a
greater population of nucleated nodes in the left side of the
sample due to the initial temperature and solidification
speed distributions. Moreover, the growth for all the nodes
is assumed as isotropic with a constant solidification front.
Here, it is also possible to observe the formation of some
interfaces due to the interruption on the grain growth (some
advanced fronts are blocked).

5. Conclusions and comments

The straight and hyperbolic interfaces between the grains
shown in Figs. 7(a) and 7b are formed during grain growth.
A grain interface is defined when the growing process be-
tween two grains is interrupted because the next nodal posi-
tion calculated has been occupied with pixel identified with
a numerical code as a part of any other grain. The geometri-
cal form of the interface is taken according to the following
conditions.

(1) If two grains nucleated at the same sequence are
joined, the interface formed between them will be straight.

(2) If two grains nucleated near each other are joined and
if these have the same “numeric code”, under this unique
condition, no interface forms. These grains are joined to
form a bigger coarsened single grain. This new grain will
frequently be bigger than the average grain size. Coarsening
rarely happens during a real solidification. This condition is
only during solidification if the fronts of two or more crys-

Fig. 9. Grains structure formation: (a) initial temperature
distribution; (b) executing the second nucleation sequence; (c)
final grain structure.

tals growing independently with the same growth direction
are joined.

(3) If two grains are nucleated at different nucleation se-
quences and their growing fronts are crashed, the interface
formed will be hyperbolic.

(4) Bigger coarsened grains can be found in the grain
structure if conditions (2) and (3) are present. According to

710 Int. J. Miner. Metall. Mater., Vol.19, No.8, Aug 2012

this, more than two grains nucleated separately can be
coarsened to form a bigger one. In the same way, grains nu-
cleated during different sequences can also be coarsened,
generating grains with straight and hyperbolic interfaces.

(5) If the advanced fronts of three different grains are
joined in a node, a vertex is formed.

The algorithm developed in the present work can give a
good approach for grain structure formation in materials
with straight and hyperbolic interfaces. It was programmed
with an efficient algorithm to allow reducing the computing
time and to avoid unnecessary codes.

Finally, the algorithms developed in this work can be
used as sub-routines and can also be nested in additional
loops if the user likes to build a more sophisticated model
for 3D grain structure.

Acknowledgements

The authors wish to thank Consejo Nacional de Ciencia y
Tecnología (CONACyT), Universidad Autónoma Metro-
politana (UAM-AZC), Instituto Tecnológico Autónomo de
México (ITAM), and Instituto Mexicano del Petróleo (IMP).

References
[1] O.M. Ivasishin, S.V. Shevchenko, and N.L. Vasiliev, 3D

Monte-Carlo simulation of texture-controlled grain growth,
Acta Mater., 51(2003), p.1019.

[2] M.C. Flemings, Solidification Processing, McGraw Hill
Book Company, New York, 1974.

[3] E.A. Holm, M.A. Miodownik, and A.D. Rollett, On abnormal
subgrain growth and the origin of recrystallization nuclei,
Acta Mater., 51(2003), p.2701.

[4] S. Mishra and T. DebRoy, Measurements and Monte Carlo
simulation of grain growth in the heat-affected zone of

 Ti-6Al-4V welds, Acta Mater., 52(2004), p.1183.
[5] Y.J. Lan, D.Z. li, and Y.Y. Li, Modeling austenite decompo-

sition into ferrite at different cooling rate in low-carbon steel
with cellular automaton method, Acta Mater., 52(2004),
p.1721.

[6] H. Yoshioka, Y. Tada, and Y. Hayashi, Crystal growth and its
morphology in the mushy zone, Acta Mater., 52(2004),
p.1515.

[7] M.M. Tong, D.Z. Li, and Y.Y. Li, Modeling the austen-
ite-ferrite diffusive transformation during continuous cooling
on a mesoscale using Monte Carlo method, Acta Mater.,
52(2004), p.1155.

[8] L. Zhang, C.B. Zhang, Y.M. Wang, S.Q. Wang, and H.Q. Ye,
A cellular automaton investigation of the transformation from
austenite to ferrite during continuous cooling, Acta Mater.,
51(2003), p.5519.

[9] R. McAfee and I. Nettleship, The simulation and selection of
shapes for the unfolding of grain size distributions, Acta Ma-
ter., 51(2003), p.4603.

[10] W. Wang, P.D. Lee, and M. McLean, A model of solidifica-
tion microstructures in nickel-based superalloys: predicting
primary dendrite spacing selection, Acta Mater., 51(2003),
p.2971.

[11] C.W. Lan, Y.C. Chang, and C.J. Shih, Adaptive phase field
simulation of non-isothermal free dendritic growth of a bi-
nary alloy, Acta Mater., 51(2003), p.1857.

[12] W. Feng, Q. Xu, and B. Liu, Microstructure simulation of
aluminum alloy using parallel computing technique, ISIJ Int.,
42(2002), p.702.

[13] K.Y. Lee and C.P. Hong, Stochastic modeling of solidifica-
tion grain of structures of Al-Cu crystalline ribbons in planar
flow casting, ISIJ Int., 37(1997), p.38.

[14] Y.H. Shin and C.P. Hong, Modeling of dendritic growth with
convection using a modified cellular automaton model with a
diffuse interface, ISIJ Int., 42(2002), p.359.

[15] A. Ramírez, F. Chávez, L. Demedices, A. Cruz, and M.
Macias, Randomly grain growth in metallic materials, Chaos
Solitons Fractals, 42 (2009), p.820.

