Effect of CeH_{2.29} on the microstructures and hydrogen properties of LiBH₄–Mg₂NiH₄ composites

Xin Zhao^{1,2)}, *Shu-min Han*^{1,2)}, *Yuan Li*¹⁾, *Xiao-cui Chen*¹⁾, *and Dan-dan Ke*¹⁾

 Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China (Received: 22 July 2014; revised: 11 October 2014; accepted: 13 October 2014)

Abstract: A composite of LiBH₄–Mg₂NiH₄ doped with 10wt% CeH_{2.29} was prepared by ball milling followed by dynamic interspace vacuum treatment at 573 K. The introduction of CeH_{2.29} caused a transformation in the morphology of Mg from complex spongy and lamellar to uniformly spongy, resulting in refined particle size and abundant H diffusion pathways. This LiBH₄–Mg₂NiH₄ + 10wt% CeH_{2.29} composite exhibited excellent hydrogen storage properties. The starting temperature of rapid H absorption decreased to 375 K in the doped composite from 452 K for the unmodified material, and the onset decomposition temperature of its hydride was reduced from 536 K to 517 K. In addition, the time required for a hydrogen release of 1.5wt% (at 598 K) was 87 s less than that of the un-doped composite.

Keywords: hydrogen storage materials; cerium hydride; mechanical alloying; microstructure

1. Introduction

The challenges of global warming and finite fossil fuel resources have made hydrogen a promising alternative energy source. Hence novel approaches have been focused on metal/intermetallic hydride storage materials. Magnesium is considered as a promising hydrogen storage material for onboard hydrogen storage, especially for vehicular application due to its high hydrogen storage capacity (up to 7.6wt%), light weight and low cost [1]. Nevertheless, its relatively slow hydrogen absorption-desorption kinetic properties and high thermodynamic stability are still key obstacles preventing its practical application [2]. To move this technology forward, researchers have developed several preparation methods such as high-energy ball milling [3], hydriding combustion synthesis (HCS) [4], and arc plasma methods [5]. The grain sizes of MgH₂ ball milled for up to several hours are known to be reduced to nanometer dimensions ranging from 10 to 30 nm [6-8]. As a result, the H-sorption kinetics is substantially accelerated, and the hydrogen desorption temperature is decreased by about 100 K [9]. Since HCS was first developed for the synthesis of Mg₂Ni hydride, it has been also applied to prepare some other Mg-based hydrogen storage materials such as Mg–Ni–Cu alloys [10], Mg–Ni–Fe [11] alloys, and Mg–30wt%LaNi₅ composites [12], which presented significantly improved hydrogenation kinetic properties compared to pure MgH₂ powder. Moreover, rare earth elements have also been shown to have positive effects on the hydrogen storage properties of Mg [13]. Long *et al.* [14] reported that an Mg–Ce nanocomposite prepared by arc plasma could absorb 4.07wt% hydrogen at 323 K. The above improvements in hydrogen storage properties generally result from the refined grain size and increased interface between the Mg matrix and additives caused by different preparation methods.

Recently, a new reversible solid-phase reaction involving $LiBH_4$ -Mg₂NiH₄ composite was reported [15]. The decomposition products from the original reactants were identified as LiH, MgH₂, MgNi_{2.5}B₂, and H₂. Moreover, the dehydrogenation reaction began at 523 K, which was lower than that of the single LiBH₄ or Mg₂NiH₄. This improvement makes the composite a potential candidate as a hydro-

Corresponding author: Shu-min Han E-mail: hanshm@ysu.edu.cn

[©] University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2015

gen storage material. In order to further improve the hydrogen storage properties of the $LiBH_4-Mg_2NiH_4$ composite, Ce hydride was chosen as an additive to accelerate the hydrogen storage kinetics of the composite. The phase transformations and microstructures have been investigated in detail as well as the hydrogen absorption/desorption properties.

2. Experimental

The original Mg₂Ni alloy was prepared by induction melting under the protection of pure argon atmosphere using Mg and Ni ingots (99.9% pure) [16]. The Mg₂Ni alloys were then hydrogenated under a hydrogen pressure of 5 MPa at 673 K for 3 h to ensure complete transformation with respect to Mg₂NiH₄. LiBH₄ powder was purchased from Alfa Aesar, and the CeH_{2.29} powder was prepared by hydrogenating Ce metal under a hydrogen pressure of 10 MPa at 773 K. A hydride mixture was prepared by mixing the as-received LiBH₄ and Mg₂NiH₄ powders in a mole ratio of 4:5. The mixture was mechanically ball-milled in a stainless steel vial with a ball-to-powder weight ratio of 10:1 using an SPEX 8000 ball milling machine at a speed of 1000 r/min for 2 h. The composite was then heated to 573 K for 2 h under a dynamic interspace vacuum environment to generate Mg. For comparison, a LiBH₄-Mg₂NiH₄ + 10wt% CeH_{2.29} composite was prepared by the same ball milling process. In the CeH_{2.29}-doped composite, the molar ratio of LiBH₄ and Mg₂NiH₄ remained unchanged, and the percentage of CeH2.29 was 10wt%. All handing procedures in this work were performed in a glove box filled with purified nitrogen (the concentrations of both oxygen and water were less than 1×10^{-6}) in order to minimize sample contamination.

The hydrogen absorption/desorption properties were measured on a pressure–composition–isotherm (PCI) automatically controlled device (manufactured by Suzuki Shokan in Japan). The temperature programmed desorption (TPD) properties were measured by the PCI device, which was equipped with a homemade programmed heater at a heating rate of 2°/min. In the TPD test, samples were first vacuumed for 10 min to avoid effects of physically absorbed H. Before measurements were performed, each sample was dehydrogenated for 2 h at 623 K and then went through one hydrogen absorption/desorption cycle to be activated. The microstructure was determined via X-ray diffraction (XRD) with Cu K_{α} radiation and scanning electron microscopy (SEM; HITACHI S3400N). In addition, a high-resolution scanning transmission electron microscope (Cs-corrected STEM; Hitachi H–800) equipped with scanning electron (SE)/bright field (BF)/dark field (DF) was used with an accelerating voltage of 200 kV. The hydrogenated samples were processed in a 3-MPa hydrogen atmosphere at 573 K. The dehydrogenated samples were decomposed in a 0.001-MPa hydrogen atmosphere at 573 K. All the hydrogenated/dehydrogenated samples were collected after hydrogenation characteristic tests.

3. Results and discussion

The XRD patterns in Fig. 1 show the phase transition of the LiBH₄-Mg₂NiH₄ composite under different hydrogenation conditions. The XRD pattern of the ball-milled composite shows the obvious broad peaks of Mg₂NiH₄. It is worth mentioning that the Mg₂NiH₄ and LiBH₄ mixture was only ground and smashed without chemical reaction during the mechanical ball-milling process. This causes the absence of the LiBH₄ diffraction peaks due to their significant grain refinement and amorphous tendency. After the thermal treatment process at 598 K in a dynamic interspace vacuum environment, the Mg₂NiH₄ phase disappears accompanied by the appearance of Mg and MgNi₂₅B₂ phases (Fig. 1(c)). This transformation is attributed to the reaction between Mg₂NiH₄ and LiBH₄, consistent with the results reported by Vajo et al. [15]. In the present study, the reaction can be described by reaction (1):

$$4\text{LiBH}_{4} + 5\text{Mg}_{2}\text{NiH}_{4} \xrightarrow{573 \text{ K}}$$
$$2\text{MgNi}_{2.5}\text{B}_{2} + 4\text{LiH} + 8\text{Mg} + 16\text{H}_{2}$$
(1)

Fig. 1. XRD patterns of the LiBH₄-Mg₂NiH₄ composite: (a) after ball milling; (b) hydrogenated; (c) dehydrogenated.

The existence of undecomposed LiH is mainly due to its high thermal stability; its decomposition temperature is over 973 K [17]. The amount of LiH generated by reaction (1) is close to the detection limit of the XRD technique, therefore, it cannot be observed in Fig. 1(b). In the following hydrogenation process, the Mg in the composite transforms to MgH₂, while the MgNi_{2.5}B₂ remains stable (Fig. 1(b)). This indicates that in the following hydrogen absorption/desorption cycles, the hydrogen storage substance in the composite transforms from Mg₂NiH₄ and LiBH₄ to MgH₂. For the LiBH₄–Mg₂NiH₄ + 10wt% CeH_{2.29} composite (Fig. 2), the LiBH₄–Mg₂NiH₄ matrix appears to participate in the above reaction (1), while the stable existing CeH_{2.29} additive does not participate during the hydrogen absorption/desorption processes.

In order to observe the morphology of the $CeH_{2.29}$ additives within the $LiBH_4-Mg_2NiH_4$ composite, SEM images were obtained (Fig. 3). The ball-milled particles of the samples with and without $CeH_{2.29}$ additives exhibit a lamellar structure. However, after hydrogen absorption/desorption cycles, some floccules attached to the smooth surface of the $LiBH_4-Mg_2NiH_4$ composite particles are observed. According to the EDS results in Table 1, the atomic ratio of Mg to Ni in the blocks (marked by "A" in Fig. 4(b)) corresponds to MgNi_{2.5}B₂, while the floccules (indicated by "B" in Fig. 4(b)) correspond to Mg enrichment. This indicates that the floccules belong to the Mg generated in reaction (1). Furthermore, the LiBH₄–Mg₂NiH₄ + 10wt% CeH_{2.29} composite particles are well covered by flocculent Mg after reaction (1), indicating that the addition of CeH_{2.29} is beneficial to the homogeneous generation of flocculent Mg on the MgNi_{2.5}B₂ blocks.

Fig. 2. XRD patterns of the $LiBH_4-Mg_2NiH_4 + 10wt\%$ CeH_{2.29} composite: (a) after ball milling; (b) hydrogenated; (c) dehydrogenated.

Fig. 3. SEM micrographs: (a) ball-milled and (b) hydrogenated LiBH₄-Mg₂NiH₄ composite; (c) ball-milled and (d) hydrogenated LiBH₄-Mg₂NiH₄ + 10wt% CeH_{2.29} composite.

Fig. 4 presents the TEM images of the $LiBH_4-Mg_2NiH_4$ and $LiBH_4-Mg_2NiH_4 + 10wt\%$ CeH_{2.29} composites. After dehydrogenation, the flocculent Mg in the LiBH₄-Mg₂Ni composite (Fig. 4(a)) grows along the MgNi_{2.5}B₂ particles and shows complex spongy and lamellar structures. However, in the $LiBH_4$ - Mg_2NiH_4 + 10wt% CeH_{2.29} composite (Fig. 4(b)), only the spongy morphology is observed, suggesting that the sponge grows outside introversion from the

426

Int. J. Miner. Metall. Mater., Vol. 22, No. 4, Apr. 2015

36.91

34.06

9.24

10.06

 $CeH_{2.29}$ center. This implies that the reaction of LiBH₄ and Mg₂NiH₄ is modified by CeH_{2.29}, and that the generated Mg readily forms cellular structures. Meanwhile, the abundant holes in the spongy Mg dramatically decrease the thickness of Mg on the particles and provide abundant interfaces for the contact of Mg and H.

Table 1.EDS results of selected points in Fig. 3at%Selected pointMgNiCeA32.2967.71--B61.2638.74--

53.85

55.64

С

D

Fig. 4. TEM images of the composites: (a) LiBH₄–Mg₂NiH₄; (b)LiBH₄–Mg₂NiH₄ + 10wt% CeH_{2.29}.

Fig. 5 presents the temperature programmed absorption (TPA) curves of LiBH₄-Mg₂NiH₄ with and without CeH_{2.29} additives for comparison. With increasing temperature, the hydrogen storage capacities of the LiBH₄-Mg₂NiH₄ and LiBH₄-Mg₂NiH₄ + 10wt% CeH_{2.29} composites increase to 2.72wt% and 3.07wt%, respectively. As a hydrogen storage substance, the starting temperature of rapid hydrogen absorption by Mg in the LiBH₄-Mg₂NiH₄ + 10wt% CeH_{2.29} composite is 375 K, while that in the LiBH₄-Mg₂NiH₄ composite is 452 K. The difference in onset absorption temperature results mainly from the different Mg particle sizes, which affects hydrogen absorption properties. Fig. 6 presents the Fourier transform infrared spectroscopy (FT-IR) spectra of the hydrogenated LiBH₄-Mg₂NiH₄ + 10wt% CeH_{2.29} and LiBH₄-Mg₂NiH₄ composites. The B-H bond is observed in the spectrum of the hydrogenated LiBH₄-Mg₂NiH₄ + 10wt% CeH_{2.29} composite, while it is absent in the spectrum of the LiBH₄-Mg₂NiH₄ composite. This indicates that the addition of CeH2.29 is beneficial to the regeneration of LiBH₄ in the composite, leading to an improvement in its maximum hydrogen storage capacity.

To investigate the dehydrogenation properties of the composites, Fig. 7 shows the hydrogen desorption curves of the LiBH₄–Mg₂NiH₄ composites with and without CeH_{2.29}. At 548 K, the LiBH₄–Mg₂NiH₄ composite releases 0.60wt% hydrogen in 2000 s. With increasing temperature, the hydrogen desorption kinetics of the LiBH₄–Mg₂NiH₄ composite improves, with a release of 1.5wt% hydrogen in 532 s at 598 K. The improvement in the samples doped with 10wt%

Fig. 5. TPA curves of the LiBH₄-Mg₂NiH₄ composites with and without CeH_{2.29}.

Fig. 6. FT–IR patterns of hydrogenated LiBH₄–Mg₂NiH₄ + 10wt% CeH_{2.29} and LiBH₄–Mg₂NiH₄ composites.

Fig. 7. Hydrogen desorption curves of the composites at different temperatures: (a) LiBH₄-Mg₂NiH₄; (b) LiBH₄-Mg₂NiH₄ + 10wt% CeH_{2.29}.

CeH_{2.29} is obvious, and the hydrogen desorption capacity reaches 0.84wt% within 2000 s at 548 K. Furthermore, the hydrogen desorption capacity at 2000 s reaches 0.84wt%. At 598 K, the hydrogen desorption kinetic properties are significantly improved with a release of 1.5wt% hydrogen in 445 s, 87 s faster compared to the un-doped composite. It is worth mentioning that the finer spongy Mg originating from the LiBH₄–Mg₂NiH₄ composite with CeH_{2.29} addition provides more hydrogen diffusion pathways and exhibits better dehydrogenation properties in the tested samples.

To clarify the thermodynamic stabilities of the composites, the TPD curves of the composites are presented in Fig. 8. The generated Mg hydride in the LiBH₄–Mg₂NiH₄ + 10wt% CeH_{2.29} composite results in a dramatic decrease in the onset decomposition temperature compared to the LiBH₄–Mg₂NiH₄ composite. The onset decomposition temperature of LiBH₄–Mg₂NiH₄ + 10wt% CeH_{2.29} composite decreases to 517 K, which is 19 K lower than that of the LiBH₄–Mg₂NiH₄ composite and 119 K lower than that of the as-milled MgH₂ powder [18]. Based on reports that decreased Mg particle size can noticeably destabilize its

Fig. 8. TPD curves of the LiBH₄--Mg₂NiH₄ and LiBH₄--Mg₂NiH₄ + 10wt% CeH_{2.29} composites.

hydride, the generated Mg in the LiBH₄–Mg₂NiH₄ + 10wt% CeH_{2.29} composite, which has a remarkably small particle size, facilitates the destabilization of its hydride [19] and leads to a lower onset decomposition temperature. Moreover, as the temperature increases to 650 K, the LiBH₄–Mg₂NiH₄ + 10wt% CeH_{2.29} composite releases 2.29wt% H, which is 0.28wt% lower than that released by the LiBH₄–Mg₂NiH₄ composite. The significant observed improvements can be explained by the following reasons. First, the added CeH_{2.29} exists stably and does not participate in the hydrogen absorption/desorption reaction. Second, the physically-absorbed H in the cellular structure was released before the TPD measurement during vacuuming at room temperature [20].

4. Conclusions

The effects of CeH_{2.29} on the microstructure and hydrogen storage properties of the LiBH₄-Mg₂NiH₄ composite were investigated. The SEM results indicated that the addition of CeH_{2.29} was beneficial to the homogeneous generation of flocculent Mg on MgNi25B2 blocks. In the $LiBH_4-Mg_2NiH_4 + 10wt\%$ CeH_{2.29} composite, the generated Mg presented a uniformly spongy microstructure, while Mg in the LiBH₄-Mg₂NiH₄ composite showed a complex morphology with spongy and lamellar structures. The composite doped with CeH_{2.29} exhibited a significant decrease in the onset decomposition temperature; this temperature reached 517 K, which was 19 K lower than that of the LiBH₄-Mg₂NiH₄ composite. Meanwhile, the time to release 1.5wt% hydrogen (at 598 K) for the LiBH₄-Mg₂NiH₄ + 10wt% CeH_{2.29} composite hydride was 445 s, 87 s faster than that of the un-doped composite.

Acknowledgements

This research was financially supported by the National

Natural Science Foundation of China (No. 50971112), the Natural Science Foundation of Hebei Province (No. E2010001170), and the Scientific Research Projects in Colleges and Universities in Hebei Province, China (No. ZD2014004).

References

- P. Selvam, B. Viswanathan, C.S. Swamy, and V. Srinivasan, Magnesium and magnesium alloy hydrides, *Int. J. Hydrogen Energy*, 11(1986), No. 3, p. 169.
- [2] N.V. Mushnikov, A.E. Ermakov, M.A. Uimin, V.S. Gaviko, P.B. Terent'ev, A.V. Skripov, A.P. Tankeev, A.V. Soloninin, and A.L. Buzlukov, Kinetics of interaction of Mg-based mechanically activated alloys with hydrogen, *Phys. Met. Metallogr.*, 102(2006), No. 4, p. 421.
- [3] R.A. Varin, M. Jang, T. Czujko, and Z. Wronski, The effect of ball milling under hydrogen and argon on the desorption properties of MgH₂ covered with a layer of Mg(OH)₂, *J. Alloys Compd.*, 493(2010), No. 1-2, p. L29.
- [4] L.Q. Li, T. Akiyama, and J. Yagi, Activation behaviors of Mg₂NiH₄ at different hydrogen pressures in hydriding combustion synthesis, *Int. J. Hydrogen Energy*, 26(2001), No. 10, p. 1035.
- [5] J.X. Zou, X.Q. Zeng, Y.J. Ying, X. Chen, H. Gao, S. Zhou, and W.J. Ding, Study on the hydrogen storage properties of core-shell structured Mg-RE (RE = Nd, Gd, Er) nano-composites synthesized through arc plasma method, *Int. J. Hydrogen Energy*, 38(2013), No. 5, p. 2337.
- [6] M. Danaie and D. Mitlin, TEM analysis and sorption properties of high-energy milled MgH₂ powders, *J. Alloys Compd.*, 476(2009), No. 1-2, p. 590.
- [7] V. Fuster, G. Urretavizcaya, and F.J. Castro, Characterization of MgH₂ formation by low-energy ball-milling of Mg and Mg + C (graphite) mixtures under H₂ atmosphere, *J. Alloys Compd.*, 481(2009), No. 1-2, p. 673.
- [8] M. Porcu, A.K. Petford-Long, and J.M. Sykes, TEM studies of Nb₂O₅ catalyst in ball-milled MgH₂ for hydrogen storage, *J. Alloys Compd.*, 453(2008), No. 1-2, p. 341.
- [9] M. Polanski, J. Bystrzycki, and T. Plocinski, The effect of milling conditions on microstructure and hydrogen absorption/desorption properties of magnesium hydride (MgH₂)

Int. J. Miner. Metall. Mater., Vol. 22, No. 4, Apr. 2015

without and with Cr₂O₃ nanoparticles, *Int. J. Hydrogen Energy*, 33(2008), No. 7, p. 1859.

- [10] L.Q. Li, I. Saita, K. Saito, K. Saito, and T. Akiyama, Hydriding combustion synthesis of hydrogen storage alloys of Mg-Ni-Cu system, *Intermetallics*, 10(2002), No. 10, p. 927.
- [11] I. Saita, K. Saito, and T. Akiyama, Hydriding combustion synthesis of Mg₂Ni_{1-x}Fe_x hydride, *J. Alloys Compd.*, 390(2005), No. 1-2, p. 265.
- [12] H. Gu, Y.F. Zhu, and L.Q. Li, Hydrogen storage properties of Mg–30wt.% LaNi₅ composite prepared by hydriding combustion synthesis followed by mechanical milling (HCS + MM), *Int. J. Hydrogen Energy*, 34(2009), No. 3, p. 1405.
- [13] L.C. Pei, S.M. Han, J.S. Wang, L. Hu, X. Zhao, and B.Z. Liu, Hydrogen storage properties and phase structures of RMg₂Ni (R = La, Ce, Pr, Nd) alloys, *Mater. Sci. Eng. B*, 177(2012), No. 18. p. 1589.
- [14] S. Long, J.X. Zou, Y.N. Liu, X.Q. Zeng, and W.J. Ding, Hydrogen storage properties of a Mg–Ce oxide nano-composite prepared through arc plasma method, *J. Alloys Compd.*, 580(2013), No. Suppl., p. 167.
- [15] J.J. Vajo, W. Li, and P. Liu, Thermodynamic and kinetic destabilization in LiBH₄/Mg₂NiH₄: promise for borohydride-based hydrogen storage, *Chem. Commun.*, 46(2010), No. 36, p. 6687.
- [16] X. Zhao, S.M. Han, X.L. Zhu, B.Z. Liu, and Y.Q. Liu, Investigations on hydrogen storage properties of Mg₂Ni + x wt% LaMg₂Ni (x = 0, 10, 20, 30) composites, *J. Solid State Chem.*, 190(2012), p. 68.
- [17] A.H. Reshak, MgH₂ and LiH metal hydrides crystals as novel hydrogen storage material: electronic structure and optical properties, *Int. J. Hydrogen Energy*, 38(2013), No. 27, p. 11946.
- [18] Y.H. Jia, S.M. Han, W. Zhang, X. Zhao, P.F. Sun, Y.Q. Liu, H. Shi, and J.S. Wang, Hydrogen absorption and desorption kinetics of MgH₂ catalyzed by MoS₂ and MoO₂, *Int. J. Hydrogen Energy*, 38(2013), No. 5, p. 2352.
- [19] S. Cheung, W.Q. Deng, A.C. van Duin, and W.A. Goddard, ReaxFF_{MgH} reactive force field for magnesium hydride systems, *J. Phys. Chem. A*, 109(2005), No. 5, p. 851.
- [20] A.M. Rashidi, A. Nouralishahi, A.A. Khodadadi, Y. Mortazavi, A. Karimi, and K. Kashefi, Modification of single wall carbon nanotubes (SWNT) for hydrogen storage, *Int. J. Hydrogen Energy*, 35(2010), No. 17, p. 9489.