International Journal of Minerals, Metallurgy and Materials Volume 26, Number 9, September 2019, Page 1177 https://doi.org/10.1007/s12613-019-1829-2

Novelty phase synthesis mechanism and morphology in resin-bonded Al-Al₂O₃-TiO₂ composites at high temperatures under flowing N₂

Yang Sun¹⁾, Yong Li¹⁾, Li-xin Zhang²⁾, Shi-ming Li³⁾, Ming-wei Yan¹⁾, and Jia-lin Sun¹⁾

- 1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- 2) Sinosteel Refractory Co. Ltd., Henan 471039, China
- 3) Beijing Cisri-nmt Environmental Science and Technology Co. Ltd., Beijing 100083, China

(Received: 15 December 2018; revised: 12 March 2019; accepted: 17 March 2019)

Abstract: An Al–AlN core–shell structure is beneficial to the performance of Al–Al₂O₃ composites. In this paper, the phase evolution and microstructure of Al–Al₂O₃–TiO₂ composites at high temperatures in flowing N₂ were investigated after the Al–AlN core–shell structure was created at 853 K for 8 h. The results show that TiO₂ can convert Al into Al₃Ti (~1685 K), which reduces the content of metal Al and rearranges the structure of the composite. Under N₂ conditions, Al₃Ti is further transformed into a novelty non-oxide phase, TiCN. The transformation process can be expressed as follows: Al₃Ti reacts with C and other carbides (Al₄C₃ and Al₄O₄C) to form TiC_x (x < 1). As the firing temperature increases, Al₃Ti transforms into a liquid phase and produces Ti(g) and TiO(g). Finally, Ti(g) and TiO(g) are nitrided and solid-dissolved into the TiC_x crystals to form a TiCN solid solution.

Keywords: aluminum; titanium oxide; alloys; titanium carbonitride

1. Introduction

In the 1970 s, Japanese researchers introduced graphite into magnesia and prepared magnesia-carbon refractories, which prolonged the service life of refractories for EAF (electric arc furnace) and BOF (basic oxygen furnace) tenfold compared with the original oxide refractories [1]. Carbon-containing refractories can generate a series of non-oxide-reinforced phases during the firing process via carbothermal reduction and nitridation processes [2], and carbon itself has good thermal conductivity and is not easily wettable by molten Fe. Thus, carbon composite refractories exhibit good thermal shock stability, excellent resistance to slag erosion, and a low coefficient of thermal expansion. However, carbon easily dissolves into molten steel, resulting in carburization of the steel, which is inconsistent with the carbon content standards for molten Fe during steelmaking [3]. Compared with carbon composite refractories, oxide-non-oxide composites have superior oxidation resistance and high-temperature strength and can be used without firing (prepared by direct nitridation with the use of metal-oxide composites [4]). Obviously, the use of non-oxides can reduce the carbon content in the refractory, making the refractory environmentally friendly.

When resin-bound Al–Al₂O₃ is fired under a N₂ atmosphere, non-oxide bonding phases such as Al₄C₃, Al₄O₄C, and Al₂OC_{ss} [5–7] are formed in the material as the temperature increases. Al₄C₃ is easily hydrated [8]. Al₄O₄C and Al₂OC_{ss} are incongruent-melting compounds in the Al₄C₃–Al₂O₃ binary system, with decomposition temperatures of approximately 2143 K and 2263 K, respectively; they also exhibit high thermal conductivity, good thermal shock resistance, a low wetting angle to liquid steel, better hydration resistance than Al₄C₃, and much better oxidation resistance than graphite and carbon black [9–16]. However, Al₂OC_{ss} can be stable at high temperatures (>1988 K [11,15]) and in the coexistence of AlN [17]. Although Al₄O₄C has a low formation temperature (approximately 1473 K [5]), it is unstable under ultralow oxygen partial pressures [8,18–20].

TiO₂ cannot exist stably when coexisting with C or metallic Al and is further reduced to Al–Ti alloy or TiC [21–24]. Compared with Al, Al–Ti alloys have higher melting points,

and TiC is characterized by a high melting point, high hardness, and good oxidation resistance [25–26]. In the present study, Al powder, rutile TiO₂ powder, and brown fused corundum were used as raw materials, thermosetting phenolic resin was used as a binder, the phase evolution and microstructure of Al–Al₂O₃ and Al–Al₂O₃–TiO₂ composites at high temperatures under flowing N₂ were studied, and the effect of TiO₂ on Al–Al₂O₃ materials was explored.

2. Theoretical analysis

The melting point of Al is 933 K, and its liquid viscosity (0.104 Pa·s) is close to that of water at 293 K (0.10 Pa·s). Liquid Al, with a low viscosity, can hinder both the nitridation reaction and the carbothermal reaction, further contributing to the inhomogeneity of the reaction product and weakening the properties of the end product at high temperatures. A layer of AlN shell can be formed on the surface of metallic Al particles when the material is maintained at 853 K under N₂ conditions [27]. The construction of the Al–AlN core–shell structure can increase the temperature of metal Al participating in the reaction. However, the formation reaction of AlN is kinetically difficult at 853 K, and the metallic Al fluid still exists in the material.

When Al and TiO₂ are simultaneously present in the system, TiO₂ cannot be stably present. The following reaction will occur:

$$(3x+4) Al(1)+3 TiO_2(s)=2 Al_2O_3(s)+3 Al_r Ti(s)$$
 (1)

The Al–Ti binary phase diagram (Fig. 1) shows that the Al_xTi generated in Eq. (1) includes $AlTi_3$, Al_2Ti , AlTi, and Al_3Ti . The expressions for the Gibbs free energy of these substances as a function of temperature are shown in Table 1 [28], and the corresponding relationship between the Gibbs free energy and temperature is shown in Fig. 2. As evident in Fig. 2, the Gibbs free energies of the four Al–Ti binary compounds are negative. Although the Gibbs free energy of Al_2Ti is lower than that of Al_3Ti , studies have shown that Al_3Ti is the main product of the Al–Ti binary system [29]. Al_3Ti is the main product because it is a type-I compound that can be formed by direct reaction, whereas Al_2Ti is a type-II compound whose formation requires an AlTi phase and a series of solid–solid or solid–liquid reactions [30]. Thus, the reaction that can occur between Al and TiO₂ is

$$13AI(1)+3TiO_{2}(s)=2AI_{2}O_{3}(s)+3AI_{3}Ti(s)$$
 (2)

The metal Al in Al–Al₂O₃–C systems has been reported to change according to the process Al \rightarrow Al₄C₃ \rightarrow Al₄O₄C \rightarrow (Al₂OC)_x(AlN)_{1-x} under N₂ conditions [6–7]. When Al₃Ti is introduced to form an Al–Al₃Ti–C system, the following reactions will occur in the material [31]:

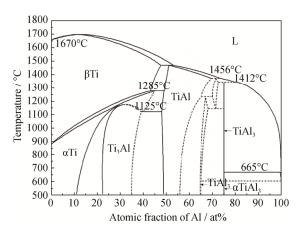


Fig. 1. Al-Ti binary phase diagram.

Table 1. Expression of the Gibbs free energy of Ti–Al-based intermetallic compounds with temperature [28]

Compound	$\Delta G / (\text{J-mol}^{-1})$
Ti_3Al	-29633.6 + 6.708T
TiAl	-37445.1 + 16.974T
Al_2Ti	-43858.4 + 11.021T
Al ₃ Ti	-40349.6 + 10.365T

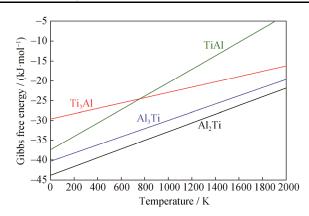


Fig. 2. Relationship between the Gibbs free energy and the temperature of Ti–Al intermetallic compounds.

$$4 \text{ Al}(1) + 3 \text{ C}(s) = \text{Al}_4 \text{C}_3(s)$$
 (3)

$$3 \text{ Al}_3 \text{Ti}(s) + \text{Al}_4 \text{C}_3(s) = 3 \text{TiC}(s) + 13 \text{ Al}(1)$$
 (4)

 $(Al_2OC)_x(AlN)_{1-x}$ is a high-temperature phase that can exist stably only at temperatures above 1988 K [11,15] and is therefore not considered. The reaction between Al_3Ti and Al_4O_4C can be expressed as

$$3 \text{ Al}_3 \text{Ti}(s, l) + 3 \text{ Al}_4 \text{O}_4 \text{C}(s) = 3 \text{TiC}(s) + 13 \text{ Al}(l) + 4 \text{ Al}_2 \text{O}_3(s)$$
(5)

Eqs. (4) and (5) can spontaneously occur when the temperature is greater than 994 K and 1132 K, respectively (thermodynamic data from the NIST-JANAF thermochemical tables [32] and the Ref. [12]). (Unless otherwise stated, the thermodynamic data herein are derived from the NIST-JANAF thermochemical tables [32].) Therefore, the most thermodynamically stable carbon-containing compound in the

Al–Ti–O–C system is TiC. Al₄C₃, Al₄O₄C, etc., as intermediates, are eventually consumed by the reaction to form TiC.

The nitridation reaction of the metal Al can release a large amount of heat ($\Delta H_{\rm Al(g)+0.5\,N_2(g)=AlN(s)}=-655.64448$ +0.01244T, kJ·mol⁻¹). Under a high-purity N₂ atmosphere (N₂ content 99.999vol%), Eqs. (4) and (5) become Eqs. (6) and (7), where Al is converted into AlN. The Gibbs free energies of Eqs. (6) and (7) at 1773 K can reach -1760 kJ and -1727 kJ, whereas those of Eqs. (4) and (5) are only -187 kJ and -153 kJ, respectively.

$$3Al_{3}Ti(s) + Al_{4}C_{3}(s) + 6.5 N_{2}(g) = 3TiC(s) + 13AlN(s) (6)$$

$$3Al_{3}Ti(s,l) + 3Al_{4}O_{4}C(s) + 6.5 N_{2}(g) =$$

$$3TiC(s) + 13AlN(s) + 4Al_{2}O_{3}(s)$$
(7)

Therefore, when TiO_2 is added to the resin-bonded Al–Al₂O₃ material and sintered under flowing N₂, molten metal Al can be converted into a high-melting-point alloy phase, Al₃Ti, thereby reducing the amount of liquid in the material. Furthermore, Al₃Ti can fix the resin residual carbon in the material and convert it into a non-oxide reinforcing phase: TiC. According to Eq. (2), the ratio of the raw materials was determined to be Al: TiO₂: C = 13:3:3 (mol%).

3. Experimental process

Raw materials were meticulously weighed and mixed in the proportions specified in Table 2. Brown fused corundum $(w(Al_2O_3) \ge 95\%)$, rutile powder $(w(TiO_2) \ge 99.4\%)$, and metal Al powder ($w(Al) \ge 99.3\%$) were used as the raw materials, with resin as the binding agent. After being mixed for 30 min, the aforementioned raw materials were uniaxially pressed under a pressure of 300 MPa to obtain a specimen with dimensions of 40 mm \times 40 mm \times 120 mm. The specimen was dried at 473 K for 24 h. Afterwards, the specimen was placed in a graphite crucible and heated according to the following temperature program: the temperature was increased from room temperature to 853 K at a rate of 10 K/min; maintained at 853 K for 8 h; increased from 853 K to 1273 K at a rate of 10 K/min; increased from 1273 K to 1573 K/1773 K at a rate of 5 K/min; and maintained at 1573 K/1773 K for 3 h. The entire experiment was performed under a flow of high-purity N₂ gas (0.101 MPa, N₂ content 99.999vol%). The samples calcined at 1573 K and 1773 K were labeled as T0-1573, T1-1573, T0-1773, and T1-1773, respectively.

Table 2. Proportions of raw materials used in this work

wt%

Specimen number		Brown fuse	ed corundun	n	D (1) 1 (T'O <44)	Aluminum powder (≤75 μm)	
	5–3 mm	3–1 mm	≤1 mm	≤75 μm	Rutile powder (110 ₂ , \leq 44 µm)		
Т0	10	40	15	20	_	15	
T1	10	40	15	10	10	15	

Note: Extra 3wt% thermosetting phenolic resin was added as the bonding agent.

4. Results and discussion

4.1. Analysis of the phase and microstructure of the specimen heated at $1573~\mathrm{K}$

Fig. 3 shows the XRD patterns of T0-1573 and T1-1573. As evident from the figure, TiC, Al₃Ti, AlN, Al₄O₄C, and Al₄C₃ were generated in T1-1573. In comparison, the diffraction peaks of Al₄O₄C and Al₄C₃ are more intense in the pattern of T0-1573.

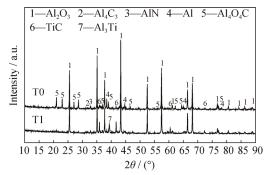


Fig. 3. XRD patterns of the specimens after sintering at 1573 K for $3\ h.$

Fig. 4 shows SEM images of T0-1573. The structure of T0-1573 is loose, and the pores are interpenetrating. Fine particles such as Al_4C_3 , Al_4O_4C , and AlN are formed because of the flow mass transfer of metallic Al. The flow of metal Al leaves a number of regular circular holes in the matrix.

Fig. 5 shows SEM images of T1-1573. The material matrix in the images is compact. Table 3 shows the results of the EDS analysis conducted at different selected areas in Fig. 5(b), where the Al₃Ti alloy is labeled location 1, in which a small amount of solid solution of Si originates from the impurities in brown corundum. The bright-white particles in the alloy are TiC, and the dark-gray particles are Al₂O₃. These results demonstrate that TiO₂ is capable of absorbing metal Al (~933 K) and converting it into a high-melting-point Al₃Ti (~1685 K) at high temperatures. The reaction process causes the rearrangement of the structure of the material, and the presence of rigid particles such as TiC and Al₂O₃ in the alloy phase can further increase its viscosity and avoid component inhomogeneity of the material at high temperatures.

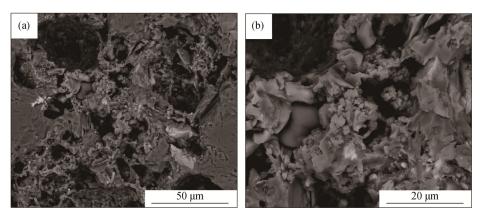


Fig. 4. SEM images of T0-1573: (a) macro image; (b) partially magnified image.

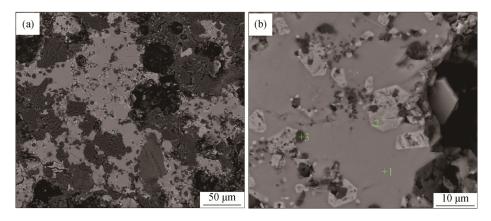


Fig. 5. SEM images of T1-1573: (a) macro image; (b) partially magnified image. The EDS analysis results corresponding to points 1, 2, and 3 are presented in Table 3.

Table 3. EDS analysis results for the different selected areas in Fig. 5(b) at%

	III 1 1g. 5(b)	,				u t / 0
,	Points	Ti	С	Al	О	Si
	1	25.88	_	67.89	_	6.23
	2	64.11	35.89	_	_	_
	3	_	_	50.59	49.41	

4.2. Analysis of the phase and microstructure of the specimen heated at 1773 K

Fig. 6 shows the XRD patterns of T0-1773 and T1-1773. No Al₄O₄C or Al₄C₃ was detected in T1-1773, and the diffraction peak intensities of the TiC alloy and Al₃Ti are substantially larger and smaller, respectively, than those of T1-1573. Meanwhile, with an increase in the firing temperature from 1573 to 1773 K, the diffraction peak position of the TiC crystal was shifted to a large angle, demonstrating that the TiC crystal was converted into a TiCN crystal [33] (Fig. 7). A new phase, (Al₂OC)_x(AlN)_{1-x}, was formed in T0-1773.

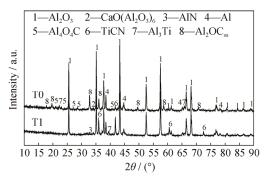


Fig. 6. XRD patterns of the specimens T0 and T1 after being sintered at 1773 K for 3 h.

SEM images of T0-1773 and T1-1773 are presented in Figs. 8 and 9, respectively. Fig. 8 shows that the structure of T0-1773 is still loose, fine particles and that regular circular holes left by metal Al still exist. By contrast, Fig. 9(a) shows that the T1-1573 exhibited good sintering properties; TiCN and Al_2O_3 particles in the matrix were tightly bonded together. The results of the EDS analysis (Table 4) of bright-white particles in Fig. 9(b) show that the TiCN particle indeed contains N.

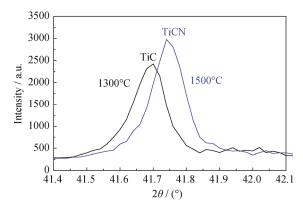


Fig. 7. Diffraction peak corresponding to the TiC crystal in the XRD patterns of T1 heated at 1573 and 1773 K.

4.3. Phase evolution process analysis

Under the conditions of low oxygen partial pressure, TiO_2 itself will deoxidize to form suboxides. The reaction

equations are as follows:

$$6 \text{TiO}_2(s) = 2 \text{Ti}_3 O_5(s) + O_2(g)$$
 (8)

$$4 \operatorname{Ti}_{3} O_{5}(s) = 6 \operatorname{Ti}_{2} O_{3}(s) + O_{2}(g)$$
 (9)

$$2 \operatorname{Ti}_{2} O_{3}(s) = 4 \operatorname{Ti}O(s) + O_{2}(g)$$
 (10)

$$2 \text{ TiO}(s) = 2 \text{ Ti}(s) + O_2(g)$$
 (11)

The stability of titanium oxides in the temperature range 1000–2000 K is shown in the plot of $\lg(\frac{P_{O_2}}{P^{\ominus}})$ vs. T in Fig. 10. Under the condition of a low oxygen partial pressure caused by the reaction $2C(s) + O_2(g) = 2CO(g)$ (oxygen partial pressure is given by $\lg(\frac{P_{O_2}}{P^{\ominus}}) = -14.55 - \frac{11672.19}{T}$),

 TiO_2 will gradually decompose according to the process $TiO_2 \rightarrow Ti_3O_5 \rightarrow Ti_2O_3$ as the firing temperature increases. Under this condition, the formation process of Al_3Ti in the material can be expressed as

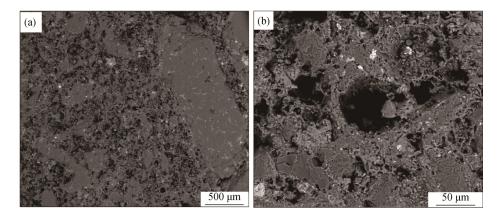


Fig. 8. SEM image of sample T0-1773: (a) macro image; (b) partially magnified image.

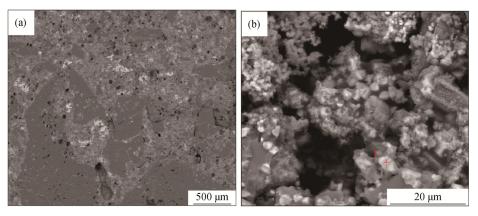


Fig. 9. SEM images of sample T1-1773: (a) macro image; (b) partially magnified image.

Table 4. EDS analysis results for the bright-white particles in Fig. 9(b) at%

_	Ti	Al	С	N	О
	49.39	1.8	31.62	10.93	6.26

$$4 \text{ Al(l)} + 3 \text{TiO}_2(s) = 3 \text{Ti}(s) + 2 \text{ Al}_2 \text{O}_3(s)$$
 (12)

$$10 \text{ Al(l)} + 3 \text{Ti}_3 O_5(s) = 9 \text{Ti}(s) + 5 \text{ Al}_2 O_3(s)$$
 (13)

$$2 \text{ Al(l)} + \text{Ti}_2 O_3(s) = 2 \text{ Ti}(s) + \text{Al}_2 O_3(s)$$
 (14)

$$3 \text{ Al(1)} + \text{Ti(s)} = \text{Al}_3 \text{Ti(s)}$$
 (15)

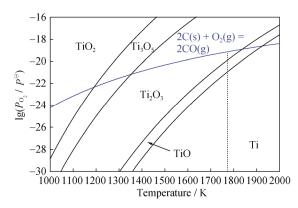


Fig. 10. Stability of titanium oxide in the temperature range of 1000–2000 K, as shown in a plot of $\lg(\frac{P_{O_2}}{p^{\ominus}})$ as a function of T.

The Al–Ti binary phase diagram (Fig. 1) shows that, when the firing temperature is raised to 1773 K, Al_3Ti is

converted into liquid Al–Ti alloy. The activity of Ti in Al–Ti alloy was calculated by Kostov *et al.* [34]; their results are shown in Table 5. The data in Table 5 were fitted using the Origin software; the relationship between the activity of Ti (a_{Ti}) and the composition of Al–Ti alloy is shown in Eq. (16):

$$a_{\text{Ti}} = 3.515 \times 10^{-4} + 0.3052 X_{\text{Ti}} - 2.052 X_{\text{Ti}}^{2} + 6.963 X_{\text{Ti}}^{3} - 4.222 X_{\text{Ti}}^{4}$$
(16)

The partial pressure of Ti(g) in the Al–Ti alloy is given by $P_{\text{Ti}} = P_{\text{Ti}}^* \times a_{\text{Ti}}$, where P_{Ti}^* is the saturated vapor pressure of pure titanium $\left(\lg\left(\frac{P_{\text{Ti}}^*}{P^{\ominus}}\right)\right) = \frac{-23472.08}{T} + 5.53\right)$. Under the

condition of a low oxygen partial pressure caused by the reaction of C(s) and $O_2(g)$, the relationship between the partial pressure of Ti(g) and the composition of Al–Ti alloy is expressed as

Table 5. Activity of Ti in Al-Ti alloy at 1773 K [34]

X_{Ti}	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
a_{Ti}	0	0.015141	0.032151	0.064489	0.12757	0.23813	0.40118	0.59423	0.77232	0.90274	1

$$\lg\left(\frac{P_{\text{Ti}}}{P^{\Theta}}\right) = -7.7 + 0.434 \ln(3.515 \times 10^{-4} + 0.3052 X_{\text{Ti}} - 2.052 X_{\text{Ti}}^2 + 6.963 X_{\text{Ti}}^3 - 4.222 X_{\text{Ti}}^4)$$
(17)

When $O_2(g)$ is present in the system, Ti(g) can be converted into TiO(g) and $TiO_2(g)$:

$$Ti(g) + 0.5O_2(g) = TiO(g)$$
 (18)

$$Ti(g) + O_2(g) = TiO_2(g)$$
(19)

The relationship between the gas partial pressures of Ti(g), TiO(g), and $TiO_2(g)$ and the Al–Ti alloy composition was plotted; the results are shown in Fig. 11. The gas-phase mass transfer of elemental Ti in the material is mainly carried out in the form of Ti(g) and TiO(g). The formation of fibers on the surface of TiCN particles in sample T1-1773 indicated the gas-phase mass transfer of Ti(Fig. 12).

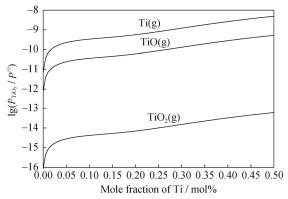


Fig. 11. Relationship of gas partial pressure of Ti(g), TiO(g), and TiO₂(g) with Ti content in Al-Ti alloy.

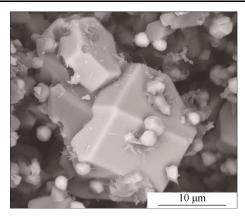


Fig. 12. Fibrous forms on the surface of TiCN particles in sample T1-1773.

The cubic TiC exhibits deviations in stoichiometry over a wide range of homogeneity, from $TiC_{0.47}$ to TiC_1 , as a result of vacancies in the carbon sublattice. As the vacancy concentration in the TiC_x crystal increases, the structure of TiC_x does not change [35] and the lattice constant becomes smaller [36]. The XRD results show that the lattice constant of TiC_x generated in T1-1573 is 0.4327 nm, which is less than that of stoichiometric TiC (0.4329 nm). The C vacancies in the TiC_x crystal structure provide a channel for the diffusion of N at high temperatures; the formation of TiCN in the material can be expressed as

$$Ti(g)/TiO(g) + N_2(g) + TiC_x(s) \rightarrow TiCN(s)$$
 (20)

On the basis of the aforementioned results and analyses,

the phase transformation process of the Al–TiO₂–Al₂O₃ composite at high temperatures under flowing N₂ is explained as follows: After the specimen is heated to 853 K and held for 8 h under flowing N₂, the thermosetting phenolic resin is converted into carbon and the Al metal reacts with N₂ to form an Al–AlN core–shell structure. As the firing temperature increases, the molten Al loses the protection of the AlN shell and flows through the pores of the material. Because of the strong reducibility of the metal Al, TiO₂ is reduced to Al₃Ti alloy and then Al₃Ti reacts with C and other carbides (Al₄C₃ and Al₄O₄C) to form TiC_x (x < 1); Ti(g) and TiO(g) are produced after Al₃Ti is converted into a liq-

uid phase. Under N_2 conditions, Ti(g) and TiO(g) are further nitrided and solid-dissolved into the TiC_x crystal to form a TiCN solid solution.

Both Al₂O₃ and TiCN are rigid compounds, and the formation of these rigid particles in the alloy phase reduces the flowability and prevents the composition of the material from becoming uneven at high temperatures. A special structure of plastic alloy that toughens the rigid composite and rigid particle-reinforced plastic alloy is formed in the material. The phase and microstructure evolution of Al–Al₂O₃ and Al–TiO₂–Al₂O₃ composites during the firing process are shown in Fig. 13.

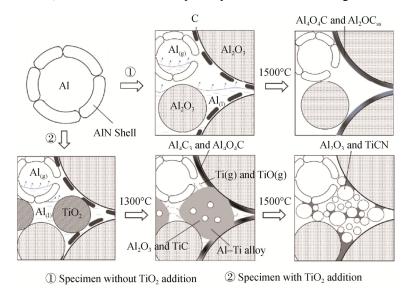


Fig. 13. Phase and microstructure evolution of Al-Al₂O₃ and Al-TiO₂-Al₂O₃ composites during the firing process.

5. Conclusions

The metal Al exhibits good fluidity at high temperatures, which is detrimental to the performance of Al-containing refractories. In this study, TiO_2 was used to consume the Al generated in the Al-Al₂O₃ composite under high-temperature and N₂ conditions. The phase and microstructure of the Al- TiO_2 -Al₂O₃ composites after sintering were studied. The results are summarized as follows:

- (1) During the firing of the Al–TiO₂–Al₂O₃ composite, TiO₂ can absorb the metal Al fluid and transform it into a high-temperature plastic phase, Al₃Ti, which causes the structure of the material to rearrange, enhancing the compactness of the material. The microstructure of the Al–TiO₂–Al₂O₃ composite after sintering at 1773 K for 3 h under N₂ is dense; by contrast, the Al–Al₂O₃ composite exhibits a loose structure.
- (2) A novelty phase, TiCN, is produced in the fired Al–TiO₂–Al₂O₃ composite at 1773 K under flowing N_2 . The

mechanism of formation of the TiCN is explained as follows: TiO_2 reacts with Al to form Al_3Ti alloy. The Al_3Ti then reacts with C and other carbides (Al_4C_3 and Al_4O_4C) to form TiC_x , whereas Ti(g) and TiO(g) are produced after Al_3Ti is converted into a liquid phase. Under N_2 conditions, Ti(g) and TiO(g) are further nitrided and solid-dissolved into the TiC_x crystals to form a TiCN solid solution.

Acknowledgements

Authors acknowledge the financial support from the National Natural Science Foundation of China (No. 51872023).

References

- [1] E.M.M. Ewais, Carbon based refractories, *J. Ceram. Soc. Jpn.*, 112(2004), No. 1310, p. 517.
- [2] T.B. Zhu, Y.W. Li, S.B. Sang, and Z.P. Xie, Improved thermal shock resistance of magnesia-graphite refractories by the

- addition of MgO-C pellets, Mater. Des., 124(2017), p. 16.
- [3] W. Yang, X.H Wang, L.F. Zhang, Q.L. Shan, and X.F. Liu, Cleanliness of low carbon aluminum-killed steels during secondary refining processes, *Steel Res. Int.*, 84(2013), No. 5, p. 473.
- [4] C.H. Ma, Y. Li, M.W. Yan, Y. Sun, and J.L. Sun, Investigation on a postmortem resin-bonded Al-Si-Al₂O₃, sliding gate with functional gradient feature, *Ceram. Int.*, 44(2018), No. 6, p. 6384.
- [5] C. Atzenhofer, S. Gschiel, and H. Harmuth, Phase formation in Al₂O₃–C refractories with Al addition, *J. Eur. Ceram. Soc.*, 37(2016), No. 4, p. 1805.
- [6] P. Jiang, J.L. Sun, W.D. Xue, J.H. Chen, R.V. Kumar, and Y. Li, New synthetic route to Al₄O₄C reinforced Al–Al₂O₃ composite materials, *Solid State Sci.*, 46(2015), p. 33.
- [7] M.W. Yan, Y. Li, H.Y. Li, and J.L. Sun, Theoretical analysis and synthesis of Al₄O₄C and Al₂CO phase in the resin bonded Al–Al₂O₃ refractory in N₂-flowing, *Ceram. Int.*, 44(2017), No. 2, p. 1493.
- [8] S. Zhang and A. Yamaguchi, Hydration resistances and reactions with CO of Al₄O₄C and Al₂OC formed in carbon-containing refractories with Al, *J. Ceram. Soc. Jpn.*, 104(1996), No. 1209, p. 393.
- [9] C.A. Qiu and R. Metselaar, Thermodynamic evaluation of the Al₂O₃–Al₄C₃ system and stability of Al-oxycarbides, *Z. Metallkd.*, 86(1995), No. 3, p. 198.
- [10] E.L. Amma and G.A. Jeffrey, Structure of aluminum oxycarbide Al₂OC: a short-range wurtzite super-structure, *J. Chem. Phys.*, 34(1961), No. 1, p. 252.
- [11] J.M. Lihrmann, J. Tirlocq, P. Descamps, and F. Cambier, Thermodynamics of the Al–C–O system and properties of SiC–AlN–Al₂OC composites, *J. Eur. Ceram. Soc.*, 19(1999), No. 16, p. 2781.
- [12] J.M. Lihrmann, Thermodynamics of the Al₂O₃–Al₄C₃ system: I. Thermochemical functions of Al oxide, carbide and oxycarbides between 298 and 2100 K, *J. Eur. Ceram. Soc.*, 28(2008), No. 3, p. 633.
- [13] J.M. Lihrmann, Thermodynamics of the Al₂O₃–Al₄C₃ system: II. Free energies of mixing, solid solubilities and activities, *J. Eur. Ceram. Soc.*, 28(2008), No. 3, p. 643.
- [14] J.M. Lihrmanm, Thermodynamics of the Al₂O₃-Al₄C₃ system: III. Equilibrium vapour pressures and activation energies for volatilization, *J. Eur. Ceram. Soc.*, 28(2008), No. 3, p. 649.
- [15] J.M. Lihrmann, T. Zambetakis, and M. Daire, High-temperature behavior of the aluminum oxycarbide Al₂OC in the system Al₂O₃–Al₄C₃ and with additions of aluminum nitride, *J. Am. Ceram. Soc.*, 72(1989), No. 9, p. 1704.
- [16] S.Y. Kuo and A.V. Virkar, Phase equilibria and phase transformation in the aluminum nitride–aluminum oxycarbide pseudobinary system, *J. Am. Ceram. Soc.*, 72(1989), No. 4, p. 540.
- [17] K. Motzfeldt, Comment on "Thermodynamics of the Al–C–O ternary system" [J. Electrochem. Soc. 153, E119 (2006)], J.

- Electrochem. Soc., 154(2007), No. 3, p. S1.
- [18] K. Cheng, C. Yu, J. Ding, C.J. Deng, H.X. Zhu, and Z.L. Xue, Synthesis and characterization of AlN whiskers by nitridation of Al₄O₄C, *J. Alloys Compd.*, 719(2017), p. 308.
- [19] K. Cheng, C.J. Deng, J. Ding, C. Yu, and H.X. Zhu, Synthesis of Al₂O₃ nanowires by heat-treating Al₄O₄C in a carbon-containing environment, *Ceram. Int.*, 44(2017), No. 5, p. 4996.
- [20] Y.B. Li, Y. Bando, and D. Golberg, Single-crystalline α-Al₂O₃ nanotubes converted from Al₄O₄C nanowires, Adv. Mater., 17(2005), No. 11, p. 1401.
- [21] H.G. Zhu, Y.L. Jiang, Y.Q. Yao, J.Z. Song, J.L. Li, and Z.H. Xie, Reaction pathways, activation energies and mechanical properties of hybrid composites synthesized in-situ from Al–TiO₂–C powder mixtures, *Mater. Chem. Phys.*, 137(2012), No. 2, p. 532.
- [22] T.D. Xia, T.Z. Liu, W.J. Zhao, B.Y. Ma, and T.M. Wang, Self-propagating high-temperature synthesis of Al₂O₃-TiC-Al composites by aluminothermic reactions, *J. Mater. Sci.*, 36(2001), No. 23, p. 5581.
- [23] Y.M.Z. Ahmed, Z.I. Zaki, D.H.A. Besisa, A.M.M Amin, and R.K. Bordia, Effect of zirconia and iron on the mechanical properties of Al₂O₃/TiC composites processed using combined self-propagating synthesis and direct consolidation technique, *Mater. Sci. Eng. A*, 696(2017), p. 182.
- [24] A. Hajalilou, M. Hashim, M. Nahavandi, and I. Ismail, Mechanochemical carboaluminothermic reduction of rutile to produce TiC-Al₂O₃, nanocomposite, *Adv. Powder Technol.*, 25(2014), No. 1, p. 423.
- [25] R. Yamanoglu, N. Gulsoy, E.A. Olevsky, and H.O. Gulsoy, Production of porous Ti₅Al_{2.5}Fe alloy via pressureless spark plasma sintering, *J. Alloys Compd.*, 680(2016), p. 654.
- [26] A. Rajabi, M.J. Ghazali, and A.R. Daud, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet–A review, *Mater. Des.*, 67(2015), p. 95.
- [27] M.W. Yan, Y. Li, J.J. Wang, H.Y. Li, Y. Sun, and C.H. Ma. Phase evolution mechanism of non-oxide bonded Al-Al₂O₃-MgO-ZrO₂ composites at 1873K in flowing nitrogen, *J. Am. Ceram. Soc.*, 101(2017), No. 5, p. 2162.
- [28] U.R. Kattner, J.C. Lin, and Y.A Chang, Thermodynamic assessment and calculation of the Ti–Al system, *Metall. Trans. A*, 23(1992), No. 8, p. 2081.
- [29] M. Mirjalili, M. Soltanieh, K. Matsuura, and M. Ohno, On the kinetics of TiAl₃ intermetallic layer formation in the titanium and aluminum diffusion couple, *Intermetallics.*, 32(2013), p. 297.
- [30] M. Sujata, S. Bhargava, and S. Sangal. On the formation of TiAl₃ during reaction between solid Ti and liquid Al, *J. Mater. Sci. Lett.*, 16(1997), No. 13, p. 1175.
- [31] M.Z. Mehrizi, R. Beygi, and G. Eisaabadi, Synthesis of Al/TiC-Al₂O₃ nanocomposite by mechanical alloying and subsequent heat treatment, *Ceram. Int.*, 42(2016), No. 7, p. 8895.

- [32] M.W. Chase Jr, NIST-JANAF Thermochemical Tables, 4th ed., American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology, Washington DC, 1998.
- [33] Y.F. Qin, G.F. Zheng, L.Y. Zhu, J.N. He, F.Y. Zhang, Y.C. Dong, and F.C. Yin, Structure and wear characteristics of TiCN nanocomposite coatings fabricated by reactive plasma spraying, *Surf. Coat. Technol.*, 342(2018), p. 137.
- [34] A. Kostov, B. Friedrich, and D. Zivkovic, Predicting ther-

- modynamic properties in Ti–Al binary system by FactSage, *Comput. Mater. Sci.*, 37(2006), No. 3, p. 355.
- [35] N.J. Ashley, R.W. Grimes, and K.J. McClellan, Accommodation of non-stoichiometry in TiN_{1-x}, and ZrN_{1-x}, *J. Mater. Sci.*, 42(2007), No. 6, p. 1884.
- [36] Z. Dridi, B. Bouhafs, P. Ruterana, and H. Aourag, First-principles calculations of vacancy effects on structural and electronic properties of TiC_x and TiN_x, *J. Phys. Condens. Matter*, 14(2002), No. 43, p. 10237.