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Abstract: The chemical binder is one of the critical factors affecting ore agglomeration behavior and leaching efficiency. In this study, we in-
vestigated the effect of the type of binder and mass fraction of the H,SO, solution used on the curing, soaking, and leaching behavior of ag-
glomerations. The results revealed that Portland cement (3CaO-SiO,, 2Ca0-SiO,, and 3Ca0O-AlL,O;) was the optimal binder for obtaining a
well-shaped, stable agglomeration structure. A higher extraction rate was achieved when using Portland cement than that obtained using sodi-
um silicate, gypsum, or acid-proof cement. An excessive geometric mean size is not conducive to obtaining well-shaped agglomerations and
desirable porosity. Using computed tomography (CT) and MATLAB, the porosity of two-dimensional CT images in sample concentrations
L1-L3 was observed to increase at least 4.5vol% after acid leaching. Ore agglomerations began to be heavily destroyed and even to disinteg-
rate when the sulfuric acid solution concentration was higher than 30 g/L, which was caused by the excessive accumulation of reaction

products and residuals.

Keywords: agglomeration; binder; acid leaching; copper oxide; sulfuric acid solution

1. Introduction

Compared with traditional pyrometallurgy practices, heap
leaching is a more environmentally friendly, lower-cost, and
effective method in the hydrometallurgical operations in-
volving copper, gold, and uranium [1-3] in the United States,
Australia, South Africa, China, India, and Chile [4-5].

However, an undesirable particle-size distribution (PSD)
of the ore and a highly concentrated clay content can lead to
segregation/stratification [6-8] and preferential flow [9] in
non-agglomerated heaps [10—11]. This is mainly because ad-
jacent wet and fine particles rapidly adsorb onto each other to
form liquid bridges, which eventually lead to compaction of
the heap by microscopically driven forces, e.g., van der
Waals forces [12—13]. These undesirable absorptions and
compactions result in poor pore structures, especially in non-
agglomerated heaps. Thus, the leaching solution flows and
diffuses non-uniformly in segregated heaps, resulting in li-
quid holdup such that valuable minerals cannot be efficiently
extracted [14—15]. To better control the fluid flow behavior
and copper recovery, ore agglomeration was proposed and
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gradually became utilized in the leaching of laterite-nickel
and copper oxide minerals [16—19]. In this process, the qual-
ity of ore agglomeration is controlled by key operational
parameters, including the feed PSD, ore mineralogy, chemic-
al binders, curing time, and drum setup [20]. According to
Lewandowski and Kawatra, the agglomeration compressive
strength, Cu extraction, and hydraulic conductivity of the
heap obviously increase if suitable chemical binders are ad-
ded during the ore agglomeration preparation [21-22]. In
general, the chemical binders added during the agglomera-
tion process can be divided into inorganic and organic chem-
ical reagents, e.g., sodium silicate, gypsum, polyacrylamide,
stucco, and ionic liquid [23-24]. Of these, the curing process
of agglomeration assisted by sulfuric acid binders is com-
monly used in industrial operations. Polyacrylamide can in-
crease the Cu extraction rate but is toxic and threatens the
health of environments around mining operation areas [25].
Current studies indicate that the agglomeration efficiency and
optimum additive concentrations of binders obviously differ
among actual heap operations. The effect of different binders
on the agglomeration molding and leaching efficiency re-
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main uncertain pending further study. With the development
of high-resolution X-ray computed tomography (X-ray CT)
scanning, the effect of the agglomeration condition on the
pore structure becomes observable at the microscale [26-28],
which enables investigation of the effect of the binder para-
meters on the porosity evolution.

In this paper, to gain a deeper understanding of the poten-
tial effect of different binders on the shape stability, leaching
behavior, and porosity evolution of agglomerations, we con-
ducted comparative soaking experiments of agglomerations
bonded by chemical binders. Five chemical binders were
carefully considered, including sodium silicate (Na,SiO;),
gypsum (CaSO,-2H,0), Portland cement, acid-proof cement,
and sulfuric acid solution (H,SO4). We determined the op-
timal binder and its mass fraction in the sulfuric acid solution
via CT and MATLAB.

2. Experimental
2.1. Ore samples

The ore samples for this study were collected from the
Yangla Copper Mine from a shallow stratum of earth with a
high clay content caused by intense weathering. In the
sample, the mass fraction of copper was 1.473% (44.98%
free copper oxides, 18.85% combined copper oxides) and the
other metal mineral was iron (11.28wt%). The gangues con-
sisted of SiO, (33.75wt%) and CaO (10.68wt%). As shown
in Table 1, the major copper minerals were malachite and li-
monite.

2.2. Binders

We considered five types of chemical binders, including
sodium silicate (Na,SiOs;, purity 99%), gypsum (CaSO,
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2H,0, purity 98%), Portland cement (3CaO-SiO,,
2Ca0-Si0,, 3Ca0-ALOs, purity 99.5%), acid-proof cement
(Na,0-nSi0,, Na,SiF, purity 95%), and sulfuric acid (H,SO,,
3 mol/L), which were all provided by the Alibaba Group. The
oxide ores (—0.075+0 mm) were uniformly mixed with the
binders. To promote bonding reactions and agglomeration
strength, the agglomerates were placed in a stable environ-
ment (moisturizing 35% relative humidity, natural aeration,
27 £ 2°C) and cured for 48 h. The ore agglomerations com-
prising different binders were soaked in sulfuric acid solu-
tion for 5 d to determine the optimal binder.

2.3. Experimental scheme and setup

The experiments conducted in this study involved ore ag-
glomeration preparation, selection of the optimal bonding
conditions, and acidic soaking and leaching with different
sulfuric acid solutions. Fig. 1 shows a schematic of the exper-
imental procedure.

Details of the experimental procedure are as follows: (1) A
5-d soaking test was conducted to identify the optimal bind-
ers and analyze the agglomeration features. (2) As shown in
Table 2, ten sets of experiments were conducted with differ-
ent PSDs to confirm the optimal proportion and leaching be-
havior of the agglomerations. (3) Five tests were conducted
on the acidic leaching (L1-L5) of agglomerations using sul-
furic acid solutions of different concentrations (10, 15, 20,
30, and 40 g/L). The effects of the sulfuric acid concentration
on the Cu extraction rate and porosity evolution were then
evaluated. The initial volume of the sulfuric acid solution was
150 mL in samples L1-L5. The ambient temperature was 27
+ 2°C. The acidity of the leaching media was adjusted using a
3 mol/L sulfuric acid solution.

Table 1. Mineral composition of experimental copper oxides wt%
Natural Cu Chalcopyrite Malachite Silicated-malachite Limonite Magnetite

0.001 0.160 1.282 0.425 41.307 1.044

Quartz Garnet Chlorite Kaolin Calcite Others

13.650 5.362 3.656 24.706 7.807 0.006
Porosity
analysis

w @Soaking test
Portland Sulfurlc

C ement

Added

into

acid

Sodium
silicate

(DPreparation of agglomeration

Key leaching
parameters

Fig. 1. Schematic of experimental agglomeration and acidic leaching.
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Table 2. Particle-size distributions of the ore after agglomeration preparation in acid leaching experiment

1129

Experimental group

Particle size distribution / wt%

. . . . )
Geometric mean size / mm Size variance (0™)

=5+t3 mm —-3+1 mm —1+0.45 mm —0.45+0.2 mm -0.2+0 mm
S1 30.0 30.0 25.0 10.0 5.0 2.705 2.744
S2 25.0 30.0 30.0 10.0 5.0 2.505 2.519
S3 20.0 30.0 30.0 12.5 7.5 2.271 2.397
S4 20.0 28.0 36.0 8.0 8.0 2.252 2.234
S5 20.0 36.0 28.0 8.0 8.0 2.412 2.162
S6 20.0 34.0 30.0 8.0 6.0 2.404 2.16
S7 20.0 34.0 34.0 8.0 4.0 2.404 2.158
S8 19.0 27.0 27.0 8.0 19.0 2.104 2.113
S9 35.0 35.0 20.0 5.0 5.0 3.033 2.108
S10 27.5 42.5 20.0 5.0 5.0 2.883 2.072

Using an X-ray CT scanner (Siemens Ag X, Germany),
we obtained two-dimensional (2D) CT images of the ag-
glomerations after 0 and 20 d of acid leaching. Then, to de-
termine the porosity evolution during acid leaching, we used
an algorithm in MATLAB 2016 to binarize and process the
2D CT images to obtain the sectional porosities.

2.4. Analysis methods and equipment

The raw ores were processed in turn by a jaw crusher
(PX/PEF60 x 100, China), a roll crusher (XPZ-200 x 125,
China), and a screener (GB/T 6003.1-1997, China). The pH
value was determined using a pH meter (pHS-3C, Leici,
China). The cupric concentration in the leaching solution was
determined using an atomic emission spectrometer (ICPE-
9810, Shimadzu, Japan), and the copper mineral phase was
analyzed using atomic absorption spectroscopy (AAS,
AA900 PerkinElmer, the United States). We analyzed the
data using Origin Pro 2016 software (OriginLab, United
States).

3. Results and discussion

3.1. Effect of different binders on agglomeration curing
and soaking features

After acid soaking, Table 3 shows the agglomeration cur-

ing results and an analysis of the structural stability obtained
when using different binders. To better evaluate the agglom-
eration behavior of fine ore particles, two conceptual para-
meters were defined: agglomeration evaluation (AE) and
structural stability evaluation (SSE). The AE indicates how
well the ore agglomerations are shaped and the SSE indic-
ates whether the agglomerations have sufficient strength. If
the fine particles have bonded to form well-shaped agglom-
erations, the AE is considered to have been successful (S),
otherwise it failed (F). Similarly, the SSE was marked with S
if the ore agglomerations had not disintegrated, otherwise it
was marked F.

Considering the results presented in Fig. 2 and Table 3, it
is clear that well-shaped agglomerations were obtained using
acid-proof cement, sulfuric acid, and Portland cement. The
SSE of the agglomerations was good, especially for the Port-
land and acid-proof cements. This indicates that the cement
composition was effective in obtaining a stable agglomera-
tion pore structure. Except for any van der Waals forces and
liquid bridges that formed, this structure occurs when sulfur-
ic acid reacts with the oxides to produce complexes such as
CaSQ,, which bond adjacent particles and improve the
strength of agglomeration [29-30]. No well-shaped agglom-
erations were obtained when using sodium silicate or gypsum

Table 3. Agglomeration and acid leaching experiments on ore samples with different binders

Sulfuric acid (3 mol/L) Sodium silicate Gypsum Portland cement Acid-proof cement
Content / wt% AE/SSE  Content/ wt% AE/SSE Content/wt% AE/SSE Content/wt% AE/SSE Content/wt% AE/SSE
10 F/F 5 F/F 4 F/F 5 F/F 6 S/F
15 S/F 6 F/F 5 F/F 6 F/F 7 S/F
17 S/F 8 F/F 6 F/F 11 S/S 11 S/F
18 S/F 9 F/F 8 F/F 14 S/S 14 S/F
18 S/F 11 F/F 11 F/F 16 S/S 18 S/S
— — — — — — 18 S/S 20 S/S
— — — — — — 20 S/S 22 S/S
— — — — — — 24 S/S 24 S/S

Note: “F” indicates that agglomeration failed and “S” that agglomeration succeeded.
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binders. Judging by the surface glossiness of the agglomera-
tions bonded by the Portland and acid-proof cement binders
[31], the moisture contents of the agglomerations were nearly
saturated. As shown in Fig. 2(a), the agglomerations bonded
by sulfuric acid were destroyed and crumbled into blocks
with the dissolution of the minerals. On the contrary, Port-
land and acid-proof cements both exhibited good bonding
performance in that the agglomerations maintained good
shape even after 5 d of soaking. The agglomeration bonded
by cement would not crumble if the mass fraction was higher
than 18% (Table 3). Fig. 2(b) shows the curve of the copper

Sulfuric acid Portland cement

—
R

Agglomerations
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extraction rate, in which we can see that the agglomeration
bonded by sulfuric acid cracked after 1 d, resulting in an in-
crease of the reaction interface and eventual copper recovery.
However, cracks are known to easily clog the flow paths in
actual heaps [32]. The agglomerations bonded by Portland
cement showed better leachable potential in that the peak Cu
extraction increased to 18.4% in 5 d, which is slightly lower
than 19.1% (bonded by sulfuric acid) and much higher than
12.2% (bonded by acid-proof cement). In short, based on the
results of this study, Portland cement was determined to be
the optimal chemical binder.

Acid-proof cement

Leached

Disintegration

Shaped agglomeration

18

X161

214

]

el

§ 10|

Z st

2 of e

= —<— Sulfuric acid

S 47 —&— Portland cement
2t —O— Acid-proof cement

0 1 2 3 4 5
Time /d

Fig. 2. Ore agglomeration experiment using different binders and the resulting copper extraction characteristics: (a) disintegration
and shaped agglomerations and after acidic soaking; (b) copper extraction rate with acid soaking time.

3.2. Effect of PSD on the size of agglomeration

The PSD in agglomerations is an essential parameter that
strongly affects the bonding behavior and extraction effi-
ciency [33]. In this study, we used the variance of the particle
size to indicate the effect of the PSD. The disintegration peri-
od is indicated by the leaching date on which the agglomera-
tion cracks. Fig. 3 shows the relationship between the
particle-size variance and the disintegration time. Roughly, in
this saturated acidic leaching condition, the agglomeration

3.0
§ 281 o
N S1
[}
N26F
° ©32
5 24T °S3
b=
ézz_ OSS & OS4 s S6°S7
20t 89 S0
Q
S18¢
—
S 1.6} — Fitting curve

L4kl ©° Variance of particle size

1.2 : : . : ; ; -

10 12 14 16 18 20 22 24 26
Soaking time before disintegration / d
Fig. 3. Relationship between particle-size variance and soak-

ing time before disintegration.

disintegration period was negatively correlated to some ex-
tent with the variance of particle size. In other words, the ag-
glomerations bonded by fine particles (e.g., S5, S6, and S7)
tended to be more stable, whereas those bonded by coarse
particle (e.g., S1 and S2) could be easily disintegrated after
just a short leaching period. However, we note that an ex-
cessively high proportion of fine particles (i.e., S8) or an ex-
cessively high proportion of coarse particles (i.e., S9) both
easily led to the rapid disintegration of the agglomerations.
The proportion used in S5, i.e., =5+3 mm (20wt%), —3+1
mm (36wt%), —1+0.45 mm (28wt%), —0.45+0.2 mm
(8wt%), and —0.2+0 mm (8wt%), was regarded as the optim-
al proportion in the subsequent acid leaching.

3.3. Acid leaching of agglomerations with different mass
fractions of sulfuric acid

3.3.1. Copper extraction rate

Fig. 4 shows the relationship between the copper extrac-
tion rate and the acid leaching time. As shown in Fig. 3, the
optimal copper extraction rate of sample L5 (40 g/L. H,SO,)
reached 60.6% in 11 d, which was obviously higher than
those of the other four groups. This is because the agglomer-
ations disintegrated in the 40-g/L H,SO, media at 12 d, thus
exposing the potential reaction interface and increasing the
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Cu extraction rate. The formation of calcium sulfate and oth-
er passivation materials could be the potential reason that the
copper recovery of the 40-g/L H,SO, increased more slowly
after 14 d [34], much like the calcium sulfates and calcium
silicates. The L4 sample (30 g/L H,SO,) exhibited a good po-
tential after 15 d and its copper extraction rate reached 67.2%
at 20 d. As shown in Fig. 4(b), the excessively high mass

65 :(a)—l— 10 g/L ¥
60t —* 15 g/L
—a—20 g/L
—v-30g/L
301 —e-d0gL

0 2 4 6 8 10 12 14 16 18 20
Leaching time / d
Fig. 4.

fraction of the sulfuric acid solution not only led to a lower
peak extraction rate but also an earlier disintegration. In the
acidic leaching process, sulfuric acid reacts with copper ox-
ides (e.g., malachite, Cu,JOH],CO;) and collects targeted
cupric ions. At the same time, the reaction products accumu-
late in void spaces and can eventually cause the agglomera-
tions to disintegrate.

70 ®)

N S wn W e N
W (=} W (==} W
T T T T T

(=]
T

Cu extraction rate / %

—g— Peak Valuq of
Cu extraction rate

W
W
T

w2
(=]

10 15 20 25 30 35 40
Sulfuric acid concentration / (g-L™)

Key parameters and acid consumptions during leaching process: (a) relationship between Cu extraction rate and leaching

time; (b) relationship between Cu extraction rate and H,SO, concentration.

3.3.2. Consumption of sulfuric acid

Fig. 5 shows the consumption of sulfuric acid in samples
L1-LS5. The results indicate that the sulfuric acid was con-
sumed quickly in the first 10 d and then gradually the con-
sumption rate became consistent after 16 d when the valu-
able metal attached to the oxide minerals had been rapidly
extracted. We can speculate that the leaching reaction was
controlled by liquid diffusion in the later leaching stage. With
dissolution of minerals, some insoluble substances such as
calcium sulfate, silicon dioxides, and magnesium sulfates and
complexes formed, the formulas for which are shown in Egs.
(1) and (2). The formula for the leaching reaction of the cop-
per oxides (Cu,[OH],COs) in sulfuric acid media is shown in
Eq. (3). The acid consumption in samples L4 and L5 tended
to become consistent after 10 d, whereas it leaped to a higher

—a— 10 g/L
—e— 15¢g/L
—A—20 g/L
—v— 30 g/L
——40¢g/L

w A L O 9 o0 O
T T T T T T T

—_ N
T T

Consumption of sulfuric acid solution / mL

(=)

10 12 14 16 18 20

2 4 6 8
Leaching time / d

(=3

Fig. 5. Relationship between sulfuric acid consumption and
leaching time.

rate after 12 d. This sudden increase in acid consumption was
closely related to the disintegrating agglomerations. This dis-
integration provided new reaction interfaces and promoted
further solute diffusion.

CaO- SIOZ + HzSO4 d CaSO4 + SIOZ + Hzo (1)
CaO- A1203 + 4H2$O4 e Alz(so4)3 + CaSO4 + 4H20 (2)
Cup(OH),CO; +2H,S0, — 2CuS0, +CO, +3H,0  (3)

Fig. 6 shows the relationship between mass fraction and
the total consumptions of sulfuric acid, in which we can see
that the acid consumption was proportional to the mass frac-
tion of the sulfuric acid. Moreover, the acid-consuming reac-
tion tended to be stronger at a higher mass fraction of sulfur-
ic acid (>30 g/L H,SO,). Alkaline gangue minerals and ox-
ide substances consume sulfuric acid [35], which explains

—_
(=]

@ | Total acid consumptions (mL)
—— Fitting line

Consumption of sulfuric acid solution / mL

S = N W A LN AN 0 O
T T T T T T T T T
]

10 15 20 25 30 35 40
Sulfuric acid concentration / (g-L™")

Fig. 6. Relationship between mass fraction and total con-
sumption of sulfuric acid.
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why a lower mass fraction would not be suitable for metal
extraction, i.e., due to the presence of excessive gangues.
Thus, the total acid consumption is mainly determined by the

initial mass fraction of sulfuric acid and by the disintegration
features.

3.4. Disintegration behavior of agglomerations with dif-
ferent mass fractions of sulfuric acid

Fig. 7(a) shows the agglomeration disintegration with dif-

4d 8d 12d 16 d
(2) p -

Int. J. Miner. Metall. Mater., Vol. 28, No. 7, Jul. 2021

ferent mass fractions of sulfuric acid. Based on visual obser-
vation, the color of the acid solution changed from white to
light green to blackish green as the concentrations of cupric
and ferric ions increased in the acidic media. Porous, loose
exfoliations, and reaction residues including unreacted sub-
stances, i.e., the calcium and magnesium compounds, were
observed on the agglomeration surfaces especially in samples
L4 and LS5 (>30 g/L H,SO,), which indicate structural de-
struction and disintegration. The leaching reaction not only

20d 0d 20d

161
X
=
i 14 +
2
8
Szt
4 10
5
8 5 10 15 20
Leaching time / d

Fig. 7. Agglomeration disintegration and porosity evolution during acid leaching: (a) agglomeration dissolution with soaking time;
(b) agglomeration before/after soaking; (c) 2D image at 0 and 20 d. 1—Fine ores, 2—Coarse ores, 3—Neonatal pores, 4—Pore expan-
sion, 5—Surfacial bonding layer; (d) porosity changes with leaching time.
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occurs on the surface of the ore agglomerations, but also in-
side the agglomerations, controlled by solute diffusion [36].
Fig. 7(b) shows the substances precipitated on the agglomer-
ation surface, which are predicted to be either calcium sulfate
dehydrate (CaSO,2H,0) or aluminum sulfate octadecahy-
drate (Al[SO,]s-18H,0) based on the results of previous
studies [37]. For the agglomerations without ruptures, the re-
action intensity decreased from the surface to the core of the
agglomerations depending on the solute diffusion paths [38].
Even though a higher copper extraction rate could be ob-
tained, such extensive disintegrations were not beneficial to
the industrial heaps because the expansion of these crystal-
line hydrates are known to clog the connective pores and
voids [39] and accelerate further compactions and clogging
in industrial heaps. If we compare samples L3 (20 g/L), L4
(30 g/L), and L5 (40 g/L), it is also evident that excessive sul-
furic acid promotes agglomeration disintegration.

3.5. Pore evolution of agglomeration

Unlike non-agglomerated particles, the pore structure of
agglomerations is well-developed, which can lead to a better
liquid saturation and leaching condition [40—41]. To exam-
ine the agglomeration pore structure before and after acid
leaching, Figs. 7(c) and 7(d) show 2D CT images of the non-
disintegrated condition (L1, L2, and L3) and that with poros-
ity, respectively. By comparing their meso-morphological
differences, we can see that the original potential paths de-
veloped and the path “dead ends” were re-connected. This is
because after the dissolution and detachment of valuable
minerals and impurities, the intra-particle pores developed
inside the agglomerations, which is a key factor leading to
agglomeration disintegration and a higher Cu extraction rate.
As shown in Fig. 7(d), the porosity of samples L1-L3 in-
creased after 20 d of leaching. The net increase in porosity
was 6.0vol% (L1), 4.5vol% (L2), and 7.4vol% (L3). The op-
timal porosity of 18.1vol% was obtained in L3 (20 g/L
H,S0,), which positively corresponded to the highest Cu ex-
traction rate in the agglomeration (L1-L3). However, as
noted in the above discussion of the leaching behavior, the
development of intra-particle pores inside the agglomera-
tions is a remote cause of agglomeration disintegration. Thus,
in industrial heaps, the optimal binders and their mass frac-
tion must be carefully considered to obtain the desired leach-
ing efficiency and prevent unexpected disintegration of ore
agglomerations.

4. Conclusions

In this paper, we used soaking tests and X-ray CT scan-
ning to investigate the leaching behavior and pore evolution
of copper oxide agglomerations bonded with different chem-
ical binders. The results are as follows.

(1) A single ore agglomeration particle consists of an in-

ternal core and a porous shell. This porous shell promotes the
development of intra-particle porosity, which results in a sig-
nificant increase in the peak Cu extraction rate.

(2) After acidic soaking, ore agglomerations bonded by
Portland cement were found to have a better shape and struc-
tural strength than those bonded by acid-proof cement and
sulfuric acid media.

(3) With the dissolution of copper oxides and gangue min-
erals, agglomerations composed of excessively high contents
of fine or coarse particles easily cracked and were even com-
pletely destroyed during the early period of acidic leaching.

(4) Although highly concentrated sulfuric acid (40 g/L)
can obviously promote copper recovery and porosity, it can
also lead to the undesirable disintegration of agglomerations.

In short, parameters closely related to the leach ability and
structural stability of agglomerations should be carefully con-
sidered in industrial operations involving agglomerated
heaps.
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