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Abstract: Lead halide perovskites have received increasing attention recently as a candidate material in various optoelectronic areas because of
their high performance as light absorbers. Herein, we report the growth of CsPbI3 nanobelts via a solution process. A single-crystalline CsPbI3

nanobelt with uniform morphology can be achieved by controlling the amount of PbI2. A single-crystalline CsPbI3 nanobelt possesses a mean
width, length, and thickness of 100 nm, 5 µm, and 20 nm, respectively. In this work, photodetectors (PDs) based on individual CsPbI3 nano-
belts are constructed and found to perform well with an external quantum efficiency and responsivity of 2.39 × 105% and 770 A/W, respect-
ively. The PDs also show a high detectivity of up to 3.12 × 1012 Jones, which is at par with that of Si PDs. The PDs developed in this work ex-
hibit great promise in various optoelectronic nanodevices.
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1. Introduction

Lead halide perovskites have received increasing attention
recently because of their high performance as light absorbers.
For  example,  their  photoconversion  efficiency  can  reach
22.1%, which suggests their great potential to be applied to
the  optoelectronic  field  [1–2].  However,  hybrid  perovskites
have poor long-term stability due to the decomposition and
volatilization of the organic components within them [3–4].
All-inorganic perovskites are more stable than organic–inor-
ganic  hybrid  perovskites,  and  they  exhibit  broad  chemical/
physical tunability and excellent charge transport. Therefore,
all-inorganic perovskites have been widely applied in the op-
toelectronic field in various forms, such as lasers [5], photo-
detectors  (PDs)  [6–7],  light-emitting diodes  [8],  and photo-
voltaic solar cells [9–10], PDs are particularly regarded as a
hot topic because of their wide applications. For instance, Li
et al. [11] reported CsPbBr3 microparticles with a detectivity
of 6.1 × 1010 Jones. Saidaminov et al. [12] reported CsPbBr3

bulk  single  crystals  with  a  detectivity  of  1.7  ×  1011 Jones.
Waleed et al. [13] reported CsPbI3 nanoarray PDs with a high
detectivity of up to 1.57 × 1012 Jones. However, three-dimen-
sional perovskite bulks and polycrystalline films possess low
photoconversion efficiencies because of the undesired charge
recombination at grain boundaries and the low carrier mobil-
ity (<10 cm2·V−1·s−1) [14–15]. Improving perovskite PDs re-

mains a great challenge today.
Compared  with  three-dimensional  perovskite  bulks  and

polycrystalline films, one-dimensional single-crystalline per-
ovskite nanobelts with well structures possess longer carrier
diffusion lengths, larger carrier mobility, and higher photolu-
minescence quantum yields [16–18]. Moreover, one-dimen-
sional  perovskite  nanobelts  can  provide  relatively  direct
charge transport  pathways,  which can benefit  the collection
of  carriers.  In  this  work,  we  report  the  exploration  of  PDs
based  on  a  single  CsPbI3 nanobelt.  First,  the  high-purity
single-crystalline  CsPbI3 nanobelts  were  synthesized  via  a
solution process using different amounts of PbI2. Second, in-
dividual  CsPbI3 nanobelt  PDs  were  constructed  via  photo-
lithography, magnetron sputtering, and lift-off process. Third,
response repeatability, switching ratio, response time, extern-
al  quantum efficiency,  spectral  responsivity,  and detectivity
of  PDs  were  measured.  At  last,  the  mechanism of  the  out-
standing performance of the nanobelt PDs was discussed. 

2. Experimental 

2.1. Materials

All chemicals were used without any further purification.
Hexane (anhydrous, 95%), oleylamine (OlAm, 70%), 1-octa-
decene  (ODE,  90%),  toluene  (anhydrous,  95%),  hexanoic
acid  (≥99%),  octanoic  acid  (99%),  octylamine  (OctAm, 
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99%), and oleic acid (OA, 90%) were purchased from Sino-
pharm Chemical  Reagent  Beijing  Co.,  Ltd.,  China.  Cesium
carbonate  (Cs2CO3,  99%)  and  lead(II)  iodide  (PbI2,  99%)
were purchased from Aladdin Reagent Co., Ltd., China. 

2.2. Preparation of cesium-oleate solution

Briefly,  1.2  mL of  OA,  0.4  g  of  Cs2CO3,  and  15  mL of
ODE were added into a three-neck flask, degassed, and dried
under  vacuum at  120°C for  60  min.  The  mixture  was  then
heated under N2 to 150°C until all Cs2CO3 dissolved into OA. 

2.3. Synthesis of CsPbI3 nanobelt

Exactly  8  mL  of  ODE,  0.069  g  of  PbI2,  and  proper
amounts  of  OlAm  and  OctAm  were  added  into  a  25  mL
three-neck flask. The mixture was dried at 100°C for 45 min
under vacuum to form a cloudy solution. Thereafter, the mix-
ture was heated under N2 to 120°C and held for 10 min. Ex-
actly  0.6  mL of  Cs-oleate  solution  was  injected  in  a  three-
neck  flask.  The  nanobelt  was  then  allowed  to  grow  for  50
min at 120°C. Immediately following the synthesis, the reac-
tion  was  quenched  by  an  ice  water  bath  and  centrifuged  at
10000  r/min  for  5  min.  The  nanobelt  was  isolated  through
centrifugation at  7000 r/min for  3 min.  The obtained nano-
belt was redispersed in hexane/toluene for later use. All pro-
cedures were conducted under ambient conditions. 

2.4. Photodetector (PD) device fabrication and measure-
ments

Individual CsPbI3 nanobelt PDs were fabricated. Through
photolithography, magnetron sputtering, and lift-off process,
interdigitated Au electrodes (100 nm) with 4 µm separation
were patterned on top of a Si substrate with a 300 nm SiO2

layer.  Then,  the  CsPbI3 nanobelt  in  hexane  was  deposited
dropwise on the electrodes. 

2.5. Photoelectric  property  measurement  and  structural
characterization

All  experiments  were  conducted  under  ambient  condi-
tions at room temperature. X-ray diffraction (XRD, D8 Ad-
vance, Bruker, Germany) with Cu Kα radiation (λ = 0.15406
nm),  transmission  electron  microscopy  (TEM,  JEM-2010,
JEOL,  Japan),  and  field-emission  scanning  electron  micro-
scopy (S-4800, Hitachi, Japan) together with energy-dispers-
ive X-ray spectroscopy were used to characterize the nano-
belt. A UV–vis scanning spectrophotometer (U-3900, HITA-
CHI, Japan) was used to obtain the UV–vis spectrum of the
nanobelt. A four-probe station with a semiconductor charac-
terization  system  (Keithley  4200-CSC)  was  used  to  obtain
the electrical  and optoelectronic  data  of  the PDs.  A 500 W
Xenon  arc  lamp  coupled  to  an  Acton  Research  monochro-
mator with order-sorting filters was used as the light source.
Light intensity was measured with an OAI-306 power meter.
The laser had a wavelength of 405 nm, maximum power of
200 mW, and a spot size measuring 4 mm in diameter. 

3. Results and discussion 

3.1. Tunable fabrication and characterization

In our  recent  work,  we reported that  the amount  of  PbI2

plays a fundamental role in the preparation of defect-free and
high-quality  one-dimensional  CsPbI3 nanobelts  [7].  Herein,
the microstructure of the as-prepared CsPbI3 was revealed by
the scanning electron microscope (SEM) techniques.  When
96 mg of PbI2 was introduced (Figs. 1(a) and 1(b)), nanorods
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Fig. 1.    SEM images of the obtained CsPbI3 nanocrystal with varying amounts of introduced PbI2: (a, b) 96 mg; (c, d) 87 mg; (e, f)
105 mg. Inset of (d) is the typical thickness and width measurement result of nanobelts from an atomic force microscope.
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with a uniform diameter of 150 nm and an average length of
2 µm  were  obtained.  When  87  mg  of  PbI2 was  introduced
(Figs. 1(c) and 1(d)), the resultant products were pure nano-
belts with a mean width, length, and thickness of 100 nm, 5
µm, and 20 nm, respectively. The typical thickness and width
measured  by  an  atomic  force  microscope  were  approxim-
ately 20 nm and 100 nm, respectively (inset of Fig. 1(d)). The
thickness/width  (t/w)  ratio  was  above  0.2.  However,  when
the amount of introduced PbI2 was increased to 105 mg (Figs.
1(e) and 1(f)), the as-synthesized nanorods began to aggreg-
ate and conglutinate.

As  shown in Fig.  2,  strong  diffraction  peaks  ascribed  to
the  orthorhombic  phase  of  CsPbI3 (JCPDS  Card  No.  18-
0376)  were  observed  in  the  XRD  patterns  of  the  obtained
samples. Generally, CsPbI3 undergoes a one-phase transition
under  a  reduced temperature  [19],  that  is,  its  color  changes
from  dark  to  yellow,  and  it  exhibits  a  cubic-orthorhombic

structure (328°C) [20]. As shown in Fig. 2, the CsPbI3 nano-
belt  was confirmed to  be in  the orthorhombic phase on the
basis of the XRD pattern of the crystal and the yellow color.

The single-crystalline nature and chemical composition of
the nanobelt were confirmed using TEM and energy dispers-
ive X-Ray (EDX). As shown in Figs. 3(a)–3(c), the morpho-
logy of the nanobelt indicated a typical width of 100 nm. A d
spacing of ~0.479 nm, which corresponded to (100) planes,
was observed in the high resolution transmission electron mi-
croscope (HRTEM) result (Fig. 3(d)). The selected area elec-
tron diffraction (SAED) pattern (Fig. 3(e)) can be indexed to
an orthorhombic structure, which indicated its single-crystal-
line nature. The EDX pattern of the single nanobelt revealed
Cs, Pb, and I elements with a quantified molar ratio of 1:1:3,
which further  confirmed that  the  nanobelt  was CsPbI3.  The
single-crystalline  nature  and  suitable  one-dimensional  mor-
phology  of  the  nanobelt  provide  PDs  with  capabilities  for
high-quality  charge  carrier  transmission  and  complete  light
absorption.

The optoelectronic properties of the CsPbI3 nanobelt were
investigated on the basis of the UV–vis absorption spectrum.
As  shown  in Fig.  4(a),  the  absorbance  peak  of  the  CsPbI3

nanobelt was located at 405 nm. Fig. 4(b) shows the (αhν)2

versus Eg plot (α is absorption coefficient, h is Planck’s con-
stant, v is frequency of light, Eg is band gap) for the CsPbI3

nanobelt. A direct bandgap of about 2.60 eV was observed.
The CsPbI3 nanobelt can thus be used as a violet PD due to
the location of the absorbance at 405 nm. 

3.2. Photodetector characterization

Utilizing the as-grown CsPbI3 nanobelt, we fabricated PDs
with a low-dimensional structure. Figs. 4(c) and 4(d) present
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Fig. 2.    XRD pattern of nanobelt. The inset is a photograph of
the CsPbI3 nanobelt dispersed in hexane.
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the  schematic  of  the  individual  CsPbI3 nanobelt  PD and its
SEM image. Fig. 5(a) shows the comparative current–voltage
(I–V)  characteristics  of  the  CsPbI3 nanobelt  PD under  dark
conditions and a light of 405 nm with an average power of 10
mW/cm2. The dark current of the PD was lower than 0.19 nA
at  2.0  V.  When  the  device  was  illuminated  under  a  light
above  the  bandgap Eg of  3.06  eV,  the  photocurrent  mag-
nitude of the CsPbI3 nanobelt PD was two orders higher than
that  of  the  dark  current.  The  photocurrent  approached  7.90
nA  at  a  bias  of  2.0  V.  The  asymmetric  and  nonlinear I–V
curves  (Fig.  5(b))  indicated  that  Schottky  contact  occurred
between the electrodes and the CsPbI3 nanobelt.

Response  repeatability  is  a  key  parameter  for  PDs.  The
time–response of the CsPbI3 nanobelt PD was measured by
periodically turning on and off the 405 nm light at a voltage
of  2.0  V.  As  shown in Fig.  4(c),  when the  light  irradiation
was  on  and  off,  the  current  exhibited  two  distinct  states,
namely, dark current of 0.19 nA and increased photocurrent
of  7.90  nA,  respectively.  In  switching  the  light  on/off  for
more than 200 cycles, the CsPbI3 nanobelt PDs exhibited ex-
cellent stability and reproducibility. The switching ratio (δSR)
was calculated as:

δSR =
Iph

Idark
=

Ion− Ioff

Ioff
(1)

where Idark is the dark current, Ioff is the current of turning off
the  light, Iph is  the  photocurrent  under  405  nm  light  (10

mW/cm2) and Ion is the current of turning on the light. The δSR

of the nanobelt PD reached 41. The huge gap in δSR was re-
lated to light absorptivity, which is influenced by the types of
materials.

Response time is another key parameter for PDs. Herein,
the response time was measured by using 405 nm continuous
laser triggers with a pulse width of 0.05 Hz. The sharp cur-
rent from one state to another indicated an extremely fast re-
sponse time. The recovery time (τoff) and response time (τon)
were  defined  as  the  time for  the  maximum photocurrent  to
reach 10% of the dark current or vice versa (90%). As shown
in Fig. 5(d), the recovery time and response time of the nano-
belt PD were measured as ~0.5 s and 0.5 s, respectively. The
single-crystalline nature and one-dimensional morphology of
the  nanobelt  that  favor  carrier  transport  led  to  the  fast  re-
sponse time.

External  quantum efficiency (ηEQE)  and spectral  respons-
ivity (Rλ) are two important parameters for PDs [21–22], and
they are respectively calculated as

Rλ =
∆I

Llight
=

Ion− Ioff

PA
(2)

ηEQE =
hc
eλ

Rλ (3)

where A is  the  effective  area  of  the  detector, P is  the  light
power intensity, Llight is the incident light intensity, and ΔI is
the difference between the photocurrent and the dark current.

 

300 400 500 600 700 800
Wavelength / nm

1.5 2.0 2.5 3.0 3.5 4.0
Eg / eV

Eg of CsPbI3 = 2.6 eV
(a) (b)

A
b
so

rp
ti

o
n
 /

 a
.u

.

3 μm

(d)A semiconductor

characterization system

Au

Si

AuNanobelt
SiO2

(c)

(α
hv
)2

Fig. 4.    (a) UV–vis spectrum of CsPbI3 nanobelt; (b) (αhν)2 vs. Eg plot; (c) schematic of single CsPbI3 nanobelt PD; (d) SEM image of
individual nanobelt PD.

T. Yang et al., Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors 1033



λ is the exciting wavelength, e is the electron charge, c is the
velocity of light, and h is Planck’s constant. Under 405 nm
light with 10 mW/cm2 under an applied voltage of 2.0 V, the
calculated Rλ and ηEQE of the PD (Figs. 6(a) and 6(b)) were as
high as 770.65 A/W and 2.39 × 105%, respectively.

The  wavelength  selectivity  of  a  PD  determines  the  ap-
plied  wavelength  range  of  the  device. Fig.  6(a) shows  the
spectral response of the nanobelt PD to the wavelength chan-
ging from 250 to 600 nm at a bias of 2.0 V. The ratio between
Rλ (405 nm, 770.65 A/W) and Rλ (500 nm, 0.46 A/W) was
approximately 1675.32, which indicated the high spectral se-
lectivity and sensitivity of the PD. Hence, as shown in Fig.
6(b), the nanobelt PD developed herein can be used as a typ-
ical ultraviolet (UV) and blue light PD.

Detectivity (D*) is given by

D∗ =
(A f )

1
2

Rλ
In

(4)

where In is the noise current and f is the electrical bandwidth.
D* can be expressed as follows when the shot noise domin-
ates the dark current:

D∗ =
Rλ(

2e Ioff

A

) 1
2

(5)

Evidently, the smaller the dark current is, the better the de-
tection of weak optical signals will be. Avoiding any leakage

current  during  operation  is  extremely  important  to  obtain  a
small Ioff.  The  effective  ways  to  obtain  a  small Ioff include
maintaining  good  single-crystalline  quality,  low  thermal
emission (recombination) rates, and low trap density of semi-
conductors. For the nanobelt PD in this work, the specific de-
tectivity  was  calculated  to  be  3.12  ×  1012 Jones  (Jones  =
cm·Hz1/2·W−1) at 405 nm. The detectivity of the nanobelt PD
approached 1012 Jones from 250 to 450 nm at 2.0 V and is
thus at par with the detectivity of Si PDs [23–24].

In addition to the wavelength of light, light power intens-
ity is another key influencing factor for the photocurrent of
PDs. The time–response curves of the nanobelt PD are plot-
ted  with  light  power  intensity  in Fig.  6(c).  As  the  405  nm
light  power  intensity  increased  from  3  to  16  mW/cm2 at  a
voltage  of  2.0  V,  the  photocurrent  of  the  nanobelt  PD  in-
creased from 3.84 to 9.33 nA. This result agreed with the fact
that  the  absorbed  photon  flux  was  proportional  to  the  pho-
toinduced carrier efficiency. Even after being subjected to the
largest photocurrent for a long period, the photocurrent of the
PD remained stable and exhibited good repeatability. The de-
pendence of the photocurrent on light power intensity can be
expressed by a power law: Iph = BPθ [25], where θ is the ex-
ponent (0.5 < θ < 1), B is a constant for a given wavelength;
θ =  0.53  was  obtained  (Fig.  6(d))  by  fitting  the  curve  in
Fig. 6(c). The non-unity exponent suggested a complex pro-
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cess,  which  included  electron-hole  generation  and  trapping
and recombination within the CsPbI3 nanobelt [26–28].

Under 405 nm light illumination at a bias of 2.0 V, Rλ, D*,
and ηEQE reached  770  A/W,  3.12  ×  1012 Jones,  and  2.39  ×
105%, respectively. In the range of 300–450 nm, the detectiv-
ity of the PD exceeded 1012 Jones and is thus at par with the
detectivity of Si  PDs (i.e.,  1012 Jones) [23–24].  As listed in
Table 1, the detectivity is comparable to the best detectivities
of pristine perovskite PDs ever reported.

The outstanding performance of the nanobelt PD is mainly
attributed to the following reasons. First, the CsPbI3 nanobelt

has  a  low recombination  of  charge  carriers,  low  density  of
defects,  short  paths for carrier transfer,  and high absorption
coefficient;  these  properties  could  result  in  a  strong  photo-
electric  effect.  Second,  the  single-crystal  CsPbI3 nanobelt
possesses high single crystallinity. Therefore, the recombina-
tion of charge carriers is limited due to the low density of de-
fects  of  the  single-crystalline  structure  [35].  Third,  the  ab-
sorption coefficient of the perovskite reaches the order of 104

cm−1 because of  the direct  bandgap nature of  the electronic
transition. Therefore, almost all light can be absorbed by the
CsPbI3 nanobelt [23]. 

Table 1.    Typical perovskite PDs reported in the literature

Photodetector Bias / V Responsivity / (A·W−1) Detectivity / Jones Ref.
CH3NH3PbI3 film 3 3.49 — [29]
CH3NH3PbI3 network 10 0.1 1.02 × 1012 [30]
CsPbBr3 microparticles 10 0.18 6.1 × 1010 [11]
CsPbBr3 nanoparticles/Au nanocrystals 2 0.01 1.68 × 109 [31]
CsPbBr3 thin films 6 55 9 × 1012 [32]
CsPbI3 nanoarrays 1 0.0067 1.57 × 1012 [13]
CsPbBr3 nanosheets/carbon nanotubes 10 31.1 — [33]
CsPbBr3 nanoplatelets 1.5 34 7.5 × 1012 [34]
CsPbBr3 bulk single crystals 0 0.028 1.7 × 1011 [12]
CsPbI3 nanobelt 2 770.65 3.12 × 1012 This work

 

250 300 350 400 450 500 550 600

0

200

400

600

800

1000

Wavelength / nm

(a)

250 300 350 400 450 500 550 600
0

5.0 × 104

1.0 × 105

1.5 × 105

2.0 × 105

2.5 × 105

3.0 × 105

3.5 × 105

4.0 × 105

Wavelength / nm

η E
Q

E
 /

 %

(b)

1010

1011

1012

D
et

ec
ti

v
it

y
 /

 J
o
n
es

20 40 60 80 100

2

3

4

5

6

7

8

9

10 405 nm 

Time / s

16 mW·cm−2

13 mW·cm−2

10 mW·cm−2

8 mW·cm−2

6 mW·cm−2

4 mW·cm−2

3 mW·cm−2

(c)

2 4 6 8 10 12 14 16 18
2

3

4

5

6

7

8

9

10

11

12

Light power intensity / (mW·cm−2)

Experiment data

Power law fit Iph~P
0.53

(d)

R
es

p
o
n
si

v
it

y
 /

 (
A
⋅W

−1
)

C
u
rr

en
t 

/ 
n
A

C
u
rr

en
t 

/ 
n
A

Fig. 6.    (a) Spectral response of PD from 250 to 600 nm; (b) detectivity and ηEQE of PD at different wavelengths; (c) time–response
curves of nanobelt PD under different light power intensities; (d) relationship between light power intensity and photocurrents.
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4. Conclusion

In summary, we demonstrated the growth of an all-inor-
ganic CsPbI3 perovskite nanobelt via a solution process. And
the amount of introduced PbI2 played a fundamental role in
morphological  regulation  of  the  obtained  single-crystalline
nanobelt. When 87 mg of PbI2 was introduced, the resultant
products were pure nanobelts with a mean width, length, and
thickness of 100 nm, 5 µm, and 20 nm, respectively. The PDs
based  single  CsPbI3 nanobelt  showed  an  outstanding  per-
formance  with  an  external  quantum  efficiency  of  2.39  ×
105%, a responsivity of 770 A/W and a detectivity of 3.12 ×
1012 Jones. They are at par with the detectivity of Si PDs. The
excellent performance of the nanobelt PDs are mainly attrib-
uted  the  intrinsic  properties  of  CsPbI3,  high  crystallinity  of
CsPbI3, and special morphology of nanobelt.The overall ex-
cellent  performance of the CsPbI3 nanobelt  makes it  an ex-
cellent candidate material for various optoelectronic areas. 
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