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Abstract: This paper presents an experimental investigation of the mechanical and tribological properties of Cu–graphene nanosheets (GN)
nanocomposites. We employed the electroless coating process to coat GNs with Ag particles to avoid its reaction with Cu and the formation of
intermetallic phases. We analyzed the effect of GN content on the structural, mechanical, and tribological properties of the produced nanocom-
posites. Results showed that the electroless coating process is an efficient technique to avoid the reaction between Cu and C and the formation
of  intermetallic  phases.  The  addition  of  GNs  significantly  improves  the  mechanical  and  tribological  properties  of  Cu  nanocomposites.
However, the addition of GNs needs to be done carefully because, after a certain threshold value, the mechanical and tribological properties are
negatively affected. The optimum GN content is determined to be 0.5vol%, at which hardness, wear rate, and coefficient of friction are im-
proved by 13%, 81.9%, and 49.8%, respectively, compared with Cu nanocomposites. These improved properties are due to the reduced crys-
tallite size, presence of GNs, and homogenous distribution of the composite constituents.
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1. Introduction

The applications of nanocomposite materials significantly
increased  in  the  past  two  decades  because  of  the  improve-
ment  of  their  properties  [1–4].  For  example,  we  achieved
nanocomposite  materials  with  excellent  mechanical  proper-
ties and good electrical and thermal properties, which make
them a good choice for electrodes working at elevated tem-
peratures [3]. Another important advantage is that the com-
bination of these properties can be tailored by adjusting the
manufacturing  parameters,  such  as  reinforcement  weight
fraction [5], and the properties of the constituents [6–7]. Des-
pite the progress achieved in the field of metal matrix nano-
composites,  knowledge  of  the  optimized  weight  fraction  of
the reinforcement phases that achieve a combination of good
mechanical and tribological properties is still lacking.

One of the most interesting natural metals is copper (Cu)
because  of  its  excellent  electrical  and  thermal  properties
combined  with  good  mechanical  properties  [8–10],  which
make it and its alloys excellent candidates for many structur-
al applications. Several manufacturing processes to produce
Cu-based nanocomposites have been presented in the literat-
ure.  Among  these  techniques,  mechanical  alloying  is  the
most efficient technique that achieves the homogenous distri-
bution  of  the  reinforcement  particles  in  the  Cu  matrix

[11–13]. During this process, the repeated fracture and weld-
ing  actions  during  milling  initiate  the  formation  of  a  meta-
stable phase, which is beneficial to the alloying process [13].
The alloying of Cu, which has a body centered cubic (bcc)
crystal structure, with metals that have a face centered cubic
(fcc) crystal structure has been presented in the literature for
many  years  because  of  the  difficulties  encountered  in  dis-
solving  these  metals,  resulting  in  an  alloy  with  improved
properties [14]. The alloying of Cu with different metals, in-
cluding Nb, Ag, Ta, Cr, and Fe, which results in better mech-
anical  properties  of  the  produced  composite,  has  been
presented in the literature [15]. Cu–Fe has superior mechan-
ical  and  magnetic  properties  with  relatively  low  cost  com-
pared with  other  alloying elements  [16–17].  Wu et  al. [18]
and Qu et al. [19] manufactured Cu–Fe alloy using the vacu-
um induction melting process at different processing temper-
atures. They concluded that the strength of the alloy is higher
than  that  of  the  plain  Cu  metal  and  dependent  on  the  pro-
cessing temperature.  The high-pressure  torsion process  was
applied to produce Cu–Fe alloy with a fiber-like shape [20].
The mechanical alloying process was also applied to produce
Cu–20wt%Fe alloy with improved strength [21].

To further improve the mechanical and wear properties of
Cu-based  matrix  composites,  reinforcements  have  been  ad-
ded to manufacture Cu-based nanocomposites. Among sev- 
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eral  available  reinforcements,  graphene  nanosheets  (GNs)
have  superior  mechanical  and  electrical  properties  [22–24].
Several studies reported the production of several nanocom-
posites reinforced with GNs with improved mechanical and
wear properties [25–28].

The  objective  of  this  study  is  to  manufacture  Cu–GN
nanocomposites using the mechanical alloying technique and
characterize their mechanical and tribological properties. We
coated  GNs  with  Ag  particles  using  the  electroless  coating
process to avoid the reaction between GNs and Cu. We ana-
lyzed the effect of GN content on the structural, mechanical,
and wear properties of Cu–GN nanocomposites. We invest-
igated the different strengthening mechanisms of this nano-
composite  and  highlighted  the  optimum  GN  content  to
achieve improved mechanical and tribological properties. 

2. Experimental

We employed several kinds of chemicals to in situ manu-
facture Cu particles, including silver nitrate (AgNO3), copper
sulfate  (CuSO4),  potassium  sodium  tartrate  (KNaC4H4O6·
4H2O),  formaldehyde  (CH2O),  sodium  hydroxide  (NaOH),
and ammonia (NH3). Some of these chemicals were also used
for coating purposes.  With the aid of the electroless depos-
ition  process,  we  produced  Cu  powders  with  99.9%  purity
and  90  nm  average  size  as  the  main  matrix.  We  used  iron
powder  with  99.9%  purity  and  15 µm  average  size  as  the
second matrix to prepare the Cu matrix with a weight  con-
centration of 90:10. We used GNs with 99.99% purity and 90
nm average size as the reinforcement.

We employed four steps to manufacture Cu nanocompos-
ite  reinforced  with  GNs.  First,  we in  situ manufactured
nanosized Cu powder using the electroless plating process. A
bath  of  170  g/L  KNaC4H4O6·4H2O,  35  g/L  CuSO4,  50  g/L
NaOH, and 140 mL/L CH2O was used to precipitate Cu nan-
oparticles. After the reaction was completed, we washed the
precipitated Cu nanoparticles using distilled water and dried
them  at  110°C  for  1  h.  Second,  we  applied  the  electroless
plating process again to coat GNs with Ag particles (approx-
imately  5  nm  thickness)  to  avoid  its  reaction  with  Cu.  We
used Ag particles to coat GNs because it adheres to GNs bet-
ter than other particles, as reported in our previous study and
others in the literature [15,23–24]. To do so, we prepared a
solution of 10vol% NaOH, mixed it with GNs, and stirred it
for 1 h.  Then, we removed the GNs from the bath and im-
mersed it in acetone to eliminate contaminants on the surface
of GNs that might hinder the precipitation of Ag. We dried
GNs at  110°C for 1 h.  Afterward,  we submerged GNs in a
new bath of 3 g/L AgNO3 and 300 mL/L CH2O and adjusted
the pH value to 12 using ammonia. Once CH2O was added to
the chemical bath, the reaction was initiated and the Ag nan-
oparticles  were  precipitated  over  GNs.  The  GNs  were  im-
mersed  in  the  bath  for  10  min,  and  a  magnetic  stirrer  was
used to keep the GNs moving in the bath at room temperat-
ure. The GNs were again filtrated, washed using acetone, and
dried at 110°C for 1 h. Third, we employed the high-energy
ball milling process to mix Cu and GNs after coating to pre-

pare the nanocomposite with the predefined weight percent.
Stainless steel vial and balls with a diameter of 10 mm were
used to mix the materials with a fixed ball-to-powder volume
ratio of 15:1 and milling speed of 200 r/min. The mixture was
milled for 20 h under the same condition with 10 min stop in-
tervals every 5 h to avoid heat generation during milling, as
proposed  by  Wagih et  al. [29].  Finally,  we  compacted  the
mixed powders in a die preheated up to 850°C under an ar-
gon atmosphere at 700 MPa. We maintained the heat of the
die during the compacting process and after compaction for
20  min.  Then,  the  die  was  cooled  down  in  an  open  atmo-
sphere.

We  employed  the  X-ray  diffraction  (XRD)  technique  to
evaluate the structural changes in the prepared powder using
the  Bruker  advanced  X-ray  diffractometer  within  the  scan-
ning  range  of  10°  to  80°.  We  employed  the  William–Hall
equation [30] to calculate the crystallite size and the equation
proposed by Danilchenko et  al. [31]  to  calculate  the  lattice
strain from the recorded XRD data. We used a scanning elec-
tron  microscope  equipped  with  energy-dispersive  X-ray
spectrometers to evaluate the morphological  changes of the
prepared powders and the compacted samples.

We used Archimedes’ immersion principle to evaluate the
densification  process  of  the  produced  nanocomposites.  We
used the rule of mixtures to calculate the theoretical density
that was used to compute the relative density of the produced
samples. We used the Vickers microhardness test to evaluate
the mechanical properties of the produced samples following
the  ASTM  E92  standard.  Before  the  hardness  test,  the
samples  were  polished  using  sandpapers  with  different  grit
sizes, followed by cloth and diamond paste polishing. The in-
dentation  load  of  50  N  was  applied  to  the  surface  of  the
samples with 15 s dual time. At least seven indentations were
performed  for  each  sample,  and  the  average  value  was  de-
termined.

We applied the sliding wear and pin-on-disk tests follow-
ing the ASTM G77–98 standard to evaluate the wear resist-
ance of the prepared samples. A steel disk with a diameter of
73 mm and surface roughness of 60 µm was used to wear the
pins  prepared  from  the  manufactured  materials  with  a  dia-
meter of 12 mm. We applied four different loads, i.e., 5, 10,
15, and 20 N, at a constant sliding distance of 200 m and con-
stant  speed  of  1  m/s.  The  wear  rates  were  calculated  by
weighting  the  resulting  debris  after  sliding  for  200  m.  The
coefficient of friction was evaluated using the measured fric-
tion torque during sliding. 

3. Results and discussion

The XRD patterns of the Cu matrix reinforced with differ-
ent GN contents are shown in Fig. 1. The Bragg peaks of Cu,
Ag, and C appear clearly for all of the samples without any
other peak. Typically, milling of Cu and GNs without coat-
ing results in the formation of intermetallic phases because of
the reaction between Cu and C [32]. In this study, using the
electroless  coating  process,  we  demonstrated  that  no  inter-
metallic phases are formed during the milling process.
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Fig. 1.    XRD patterns of the composite powder reinforced with
different GN contents.
 

Table  1 shows  the  evolution  of  the  crystallite  size  of
Cu–GN  nanocomposites  with  different  GN  contents.  The
crystallite size decreases with the increase in GN content by
up  to  0.5vol%,  reaching  625.69  nm compared  with  771.58
nm for the Cu matrix, i.e., a decrease of 19%. Crystallite size
reduction is due to the presence of GNs in the microstructure,
which creates crystal defects and dislocations [33–35]. Crys-
tallite size reduction indicates that grain refinement occurred
in the samples [35]. Crystallite size reduction leads to a de-
crease  in  particle  size,  as  shown  in Fig.  2.  The  average
particle size of the samples containing 0.3vol% and 0.5vol%
GNs is 2.32 and 0.915 µm, respectively. The lattice strain in-
creases with the increase in GN content because of the high
stored internal strain in Cu particles activated by the penetra-
tion of GNs into the lattice structure of Cu, resulting in the
formation of distortions.
 
Table  1.      Crystallite  size  and  lattice  strain  of  the  nanocom-
posite powder

GN content / vol% Crystallite size / nm Lattice strain / %
0 771.58 0.3648
0.1 707.49 0.3242
0.3 667.64 0.3055
0.5 625.69 0.2841

 

  

20 µm 20 µm

(a) (b)

Fig.  2.      Scanning electron microscopy (SEM) micrographs of
the nanocomposite  powder:  (a)  0.3vol% GNs and (b)  0.5vol%
GNs.
 

Fig. 3 shows the microstructure of the samples containing
0.1vol%, 0.3vol%, and 0.5vol% GNs, highlighting the pres-
ence of micropores and the distribution of GNs. Fig. 3(a) and
(b) show the good distribution of GNs in the samples without
any  agglomeration.  However,  in  the  sample  with  0.5vol%
GNs, agglomeration of GNs is observed in several regions of
the  sample.  Micropores  are  observed  in  all  of  the  samples.
The presence of  micropores is  due to the entrapment of  air

between particles during consolidation, which is observed in
nearly all  metal matrix nanocomposites [36–38]. Moreover,
the  irregular  shape  of  GNs  (i.e.,  plate  shape)  increases  the
tendency to entrap air during consolidation. Furthermore, the
large  difference  between  surface  energies  of  GNs  and  Cu
contributes to the formation of voids. Notably, the amount of
voids in the sample increases with the increase in GN con-
tent. The increase in the amount of voids with the increase in
GN content is attributed to the agglomeration of GNs with ir-
regular shapes that induce the entrapment of air bubbles, as
shown in Fig. 3(c).
  

20 µm 20 µm

20 µm

(a) (b)

(c)

Fig. 3.     SEM micrographs of the nanocomposite after consol-
idation:  (a)  0.1vol%  GNs,  (b)  0.3vol%  GNs,  and  (c)  0.5vol%
GNs.
 

Fig.  4 shows  the  energy-dispersive  X-ray  spectroscopy
and mapping analysis of the Cu–0.5vol%GN nanocomposite
after consolidation to examine the composition of the sample
and  the  elemental  distribution  of  the  contents.  The  figure
shows that the sample contains only Cu, Ag, and C without
any contaminant, which proves the validity of the manufac-
turing method. Moreover, the figure shows the excellent dis-
tribution  of  the  constituent  elements  in  the  sample  without
any agglomeration.

Fig.  5 summarizes  the  relative  density  of  the  Cu–GN
nanocomposites  with  different  GN  contents.  The  relative
density is less than 100% for all of the considered samples,
even  for  the  Cu  matrix,  because  of  the  formation  of  voids
during the consolidation of Cu powders with different sizes.
The relative density decreases with the increase in GN con-
tent for all of the considered samples. However, the decrease
rate  at  low  GN  content  (i.e.,  less  than  0.5vol%)  is  smaller
than the decrease rate at high GN content. For example, the
relative  density  decreases  from 98.3% for  the  Cu matrix  to
98% for  the  Cu–0.1vol%GN nanocomposite.  However,  the
density  decreases  to  97.3%  for  the  Cu–0.5vol%GN  nano-
composite, i.e., a decrease rate of 1.017%. These results are
consistent with the microstructural observations (Fig. 3). The
increased  agglomeration  size  of  GNs  in  samples  with
0.5vol% GN content is the main reason for the decrease in re-
lative density because of the entrapment of a large amount of
air  between  GN  flakes  during  consolidation  and  the  diffi-
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culties encountered during compression of GN flakes, which
have  high  mechanical  properties  [39–41].  However,  for
samples  with  low  GN  content,  the  excellent  dispersion  of
GNs helps fill the voids between Cu grains, resulting in im-
proved relative density.

Fig. 6 presents the average value of the microhardness of
Cu–GN  nanocomposites  with  different  GN  contents.  The

hardness increases even with the addition of a small amount
of GNs. This improvement is due to the crystallite size reduc-
tion  (see Fig.  3)  and  the  superior  mechanical  properties  of
GNs. Increasing the GN content further improves the hard-
ness, reaching HV 516.5 for the sample with 0.5vol% GNs.
The homogeneous distribution of GNs (see Fig. 6) also helps
improve the hardness [42–43]. This finding indicates the de-
pendence  of  hardness  on  the  distribution  of  GNs  and  the
crystallite size of the matrix. Table 2 shows the variation of
the  hardness  of  Cu–GN composites  coated  with  Ag  in  this

Table 2.    Variation of the microhardness of the samples used in this study and those reported in the literature
Ref. Material Process Hardness

This study

Cu

Coating with Ag + milling + compaction

HV 459.0
Cu–0.1vol%GNs HV 468.1
Cu–0.3vol%GNs HV 479.1
Cu–0.5vol%GNs HV 516.5

[44]

Cu

Milling + hot pressing

HV 76
Cu–3wt%GNs HV 84
Cu–5wt%GNs HV 92
Cu–8wt%GNs HV 104
Cu–12wt%GNs HV 94

[45]

Cu

Molecular-level mixing + spark plasma sintering

1.0 GPa
Cu–0.2wt%GNs 1.50 GPa
Cu–0.4wt%GNs 1.70 GPa
Cu–0.6wt%GNs 1.75 GPa
Cu–0.8wt%GNs 1.70 GPa
Cu–2wt%GNs 1.50 GPa
Cu–4wt%GNs 1.25 GPa

[46]
Cu

Direct current electrodeposition
1.55 GPa

Cu–GNs 2.30 GPa
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study  and  Cu–GN  composites  without  coating  in  previous
studies. The table shows that the improvement rate of the res-
ults obtained in this study is higher than those reported in the
literature.

Fig.  7 shows  the  variation  of  the  wear  rates  of  Cu–GN
nanocomposites  with  different  applied  loads.  With  the  in-
crease  in  the  applied  load,  the  material  removal  rate  in-
creases because of the higher penetration of the indenter into
the sample during sliding [47]. The significance of the load is
reduced  by  the  addition  of  GNs  because  of  the  decreased
plasticity of the material. The wear test is analogous to the in-
dentation  test.  Therefore,  increasing  the  load  increases  the
material deformation under the indenter up to the plastic de-
formation  limit  at  which  more  material  is  removed;  hence,
the wear rate is increased. This phenomenon was previously
reported for different materials [48].
  

0

2

4

6

8

5 10 15 20

0vol% GNs

S
li

d
in

g
 w

ea
r 

ra
te

 /
 (

1
0
−5

 g
·m

−1
)

0.1vol% GNs
0.3vol% GNs
0.5vol% GNs

Applied load / N

Fig. 7.    Wear rate of the Cu–GN nanocomposites with differ-
ent applied loads.
 

The addition of a small amount of GNs (i.e., 0.1vol%) to
the Cu matrix reduces the wear rate at 20 N from 7.215 × 10−5

to  4.821  ×  10−5 g/m,  i.e.,  a  reduction  in  the  wear  rate  by
33.2%. Because of the nature of the wear test that requires the
penetration of the indenter into the material surface, the hard-
ness of the material plays a critical role. Increasing the hard-
ness  increases  the  resistance  of  the  material  to  penetration,
which  improves  the  wear  rate.  Moreover,  the  presence  of
GNs under the indenter impedes the removal of more materi-
al  because  of  its  excellent  mechanical  properties.  Further-
more, the homogenous distribution of GNs inside the matrix
enables the uniform removal of the material without any pos-
sibility of excess removal in some regions [48–50]. Increas-
ing the GN content reduces the wear rate at 0.5vol% to 1.301
× 10−5 g/m, i.e., a reduction in the wear rate by 81.9%. This
significant improvement is due to the increased GN content,
reduced crystallite size, and homogenous distribution of GNs
in the matrix.

Fig. 8 shows the variation of the coefficient of friction of
the Cu–GN nanocomposites with different applied loads. The
coefficient of friction increases with the increase in applied
load, i.e., for Cu matrix, the coefficient of friction increases
from 0.428 at 5 N to 0.615 at 20 N. This increase is due to the
increased plastic deformation because of the higher penetra-
tion of the indenter, which increases the contact area during
sliding,  therefore  increasing  the  coefficient  of  friction.  The
same trend is observed for all of the tested samples with less
significance when the GN content increases. The coefficient

of friction is highly influenced by the addition of GNs. It de-
creases  from  0.615  for  the  Cu  matrix  to  0.482  for  the
Cu–0.1vol%GN nanocomposite  at  20  N,  i.e.,  a  decrease  of
21.9%. This trend is consistent with the wear rate curves (see
Fig. 8). The minimum coefficient of friction is achieved for
the sample with 0.5vol% GNs at all of the considered loads,
which make it the optimum nanocomposite. The coefficient
of friction is reduced to 0.309, i.e., a decrease of 49.8%.
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Fig.  8.      Coefficient  of  friction  of  the  Cu–GN nanocomposites
with different applied loads.
  

4. Conclusions

We successfully employed electroless coating and powder
metallurgy to manufacture Cu–GN nanocomposites with im-
proved  mechanical  and  tribological  properties.  We  coated
GNs with Ag particles to avoid its reaction with Cu and the
formation of intermetallic phases. We analyzed the effect of
GN content on the microstructural, mechanical, and tribolo-
gical properties of Cu–GN nanocomposites. On the basis of
the results, we can conclude that.

(1) The addition of GNs significantly improves the mech-
anical  and  tribological  properties  of  Cu  nanocomposites.
However, the addition of GNs needs to be done carefully be-
cause,  after  a certain threshold value (i.e.,  in this study, the
threshold value is 0.5vol% GNs), the mechanical and tribolo-
gical properties are negatively affected.

(2) We achieved a material with good density at 0.5vol%
GNs with reduced micropores. Because the GNs are coated
with Ag, which improves the morphology and wettability of
metals, the possibility of the formation of voids during con-
solidation is reduced.

(3) We achieved improved mechanical properties, with the
maximum hardness  of  HV 516.5 for  the sample containing
0.5vol%  GNs  compared  with  HV  459  for  the  Cu  sample
without GNs. This improvement is due to the reduced crys-
tallite size, presence of GNs, and homogeneous distribution
of the composite constituents.

(4) The wear rate is reduced by 81.9% and the coefficient
of friction is reduced by 49.8% for the sample with 0.5vol%
GN  content  compared  with  the  Cu  sample  without  GNs.
However, when the GN content exceeds this threshold value,
the tribological properties decrease. Finally, for the material
system  considered  in  this  study,  we  conclude  that
Cu–0.5%GNs has the best mechanical and tribological prop-
erties. 
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