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Abstract: Nanoparticles of potassium ferrite (KFeO2) in this work were synthesized by a simple egg white solution method upon calcination in
air at 773, 873, and 973 K for 2 h. The effects of calcination temperature on the structural and magnetic properties of the synthesized KFeO2

nanoparticles were investigated. By varying the calcination temperature, X-ray diffraction and transmission electron microscopy results indic-
ated the changes in crystallinity and morphology including particle size, respectively. Notably, the reduction in particle size of the synthesized
KFeO2 was found to have a remarkable influence on the magnetic properties. At room temperature, the synthesized KFeO2 nanoparticles pre-
pared at 873 K exhibited the highest saturation magnetization (MS) of 2.07 × 104 A·m−1. In addition, the coercivity (HC) increased from 3.51 to
16.89 kA·m−1 as the calcination temperature increased to 973 K. The zero-field cooled (ZFC) results showed that the blocking temperatures
(TB) of about 125 and 85 K were observed in the samples calcined at 773 and 873 K, respectively. Therefore, this work showed that the egg
white solution method is simple, cost effective, and environmentally friendly for the preparation of KFeO2 nanoparticles.
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1. Introduction

Over the past few decades, magnetic materials have been
explored in  various  fields  of  applications  [1–4].  Depending
on the synthetic methods, different types of magnetic materi-
als  such as Fe-based nanoparticles show interesting proper-
ties  [5–8].  Alkaline  metal  ferrites  with  the  general  formula
AFeO2 (where A = Li, Na, K) have been extensively studied
because  they  offer  many  applications,  especially  in  re-
chargeable  lithium  batteries  [9–11].  Potassium  ferrite
(KFeO2)  is  an  interesting  alkaline  metal  ferrite,  which  has
been widely used as a catalyst for dehydrogenation [12] and
cathode material  for  potassium-ion batteries  [13].  Recently,
KFeO2 nanoparticles showed potential application as photo-
anode in dye-sensitized solar cells due to their narrow band
gap  [14].  The  combination  of  potassium  with  iron-based
compounds has resulted in biocompatible materials because
of their inherent non-toxicity [15]. For metal removal applic-
ations, KFeO2 shows potential as a magnetic sorbent for Cu2+

removal [16]. Therefore, various methods have been applied
to synthesize KFeO2 nanoparticles including solid-state [13],
sol–gel [17–18], combustion [19], conventional ceramic [20],

and  ball-milling  [21].  Among  these  methods,  the  solution
method  is  promising  for  the  preparation  of  KFeO2 nano-
particles due to its low temperature, short reaction time, and
homogeneous mixing [22].  In a typical sol–gel method, the
stable solution or sol forms after materials undergo hydrolys-
is, and the gel resulting from a polycondensation reaction oc-
curs after gelation [23–24].

Egg  white  is  one  of  the  main  components  in  hen  egg,
which mainly contains about 92% of proteins [25]. Ovalbu-
min is known as the major protein in egg white; it has four
free sulfhydryl (SH) groups and one disulfide (SS) bond [26].
Upon heating,  these  SH groups  rapidly  initiate  polymeriza-
tion  through  SH–SS  exchange  reactions,  thereby  intercon-
necting different egg white proteins [27]. As a result, a con-
tinuous network is formed. In the preparation of nanocrystal-
line  materials,  egg  white  protein  (ovalbumin)  is  attracting
considerable attention because of its  excellent characteristic
such as gelling, forming, and emulsifying [28]. As a result of
its water solubility and its ability to associate with metal ions
in  solution,  egg  white  proteins  have  been  used  as  a  binder
cum gel for shaping bulk and porous ceramic materials [29].
Moreover,  egg  white  has  been  used  as  a  capping  agent  for 
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template growth and organization of nanoparticles [30]. The
synthesis  of  KFeO2 nanoparticles using the egg white solu-
tion  method  and  the  dependence  of  magnetic  properties  on
the calcination temperature have not been reported yet.

In  this  work,  we  report  a  simple,  low  cost,  and  eco-
friendly synthesis of KFeO2 nanoparticles via the egg white
solution method. The crystal structure, morphology, chemic-
al compositions, and valence state of the synthesized KFeO2

were characterized by X-ray diffraction (XRD), transmission
electron  microscopy  (TEM),  X-ray  photoelectron  spectro-
scopy (XPS),  and X-ray absorption near  edge spectroscopy
(XANES),  respectively.  Vibrating  sample  magnetometer
(VSM)  measurements  were  performed  on  the  synthesized
KFeO2 nanoparticles to determine their magnetic properties.
The dependence of magnetic properties on calcination tem-
perature was also investigated and discussed. 

2. Experimental 

2.1. Synthesis of KFeO2 nanoparticles

In this work, KFeO2 nanoparticles were synthesized by a
simple egg white solution method. The starting materials of
KNO3 (Prolabo,  99.9%),  Fe(NO3)3·9H2O  (Sigma-Aldrich,
99.99%),  and  freshly  extracted  chicken  egg  white  (ovalbu-
min) were used without further purification. First, freshly ex-
tracted egg white (60 mL) was mixed with deionized water
(40 mL) under vigorous stirring to obtain a binder cum gel.
Second,  KNO3 and  Fe(NO3)3·9H2O  in  a  molar  ratio  of  1:2
were slowly added to the egg white solution until the homo-
genous solution was obtained.  The mixture  was evaporated
by heating on a  hotplate  at  353 K until  the  dried  precursor
was obtained. To obtain KFeO2 powder, the dried precursor
was crushed and calcined in a box furnace with a heating rate
of 5 K·min−1 at 773, 873, and 973 K for 2 h. The schematic
preparation of  KFeO2 nanoparticles  by using the  egg white
solution method is presented in Fig. 1.
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Fig. 1.    (a) Components of chicken egg, (b) possible formation
of egg white protein surrounding KFeO2 nanoparticles, and (c)
schematic  preparation  of  KFeO2  nanoparticles  using  the  egg
white solution method. 

2.2. Characterization

The crystal structure and phase purity of the synthesized
KFeO2 nanoparticles  were  characterized  by  XRD  (Bruker
D8) with Cu Kα radiation (λ = 0.15406 nm) at scanning rate
of 0.02°·min−1 in the 2θ range between 10° and 70°. Rietveld
refinements were carried out with JANA2006 software [31]
by using pseudo-Voigt or the combination of Lorentzian and
Gaussian profile functions. The standard crystallographic in-
formation  file  (CIF)  of  orthorhombic  KFeO2 structure  with
space group of Pbca was taken from the literature [32] and
used for refinement. The morphology including particle size
was  revealed  by  TEM  (JEOL  EM-902).  To  examine  the
chemical  compositions  of  the  synthesized  KFeO2 nano-
particles, XPS was carried out with the PHI Versa Probe II
XPS system (ULVAC-PHI) with Al Kα radiation at the SUT-
NANOTEC-SLRI joint  research facility,  Synchrotron Light
Research Institute, Thailand. The C 1s peak at 284.5 eV was
used as a reference to calibrate the binding energy (BE) for
XPS measurements. The valence states of K and Fe atoms in
all the synthesized samples were investigated by XANES in
transmission  mode  at  BL5.2:  SUT-NANOTEC-SLRI,  Syn-
chrotron  Light  Research  Institute,  Thailand.  In  addition,
magnetic properties of the synthesized KFeO2 nanoparticles
at  different  calcination temperatures  were  studied via  VSM
(Lake Shore 7403) measurements. 

3. Results and discussion 

3.1. Structural analysis

Fig. 2(a) shows the powder XRD patterns of the as-syn-
thesized KFeO2 and the synthesized KFeO2 samples calcined
at 773, 873, and 973 K. The XRD results of the as-synthes-
ized sample show the phase formation of KNO3, which ori-
ginated from the starting material.  The XRD patterns of all
the calcined samples are well matched with an orthorhombic
KFeO2 structure (file No. 83-2152). Additionally, XRD pat-
terns  show  that  peak  shape  and  intensity  are  strongly  af-
fected by the calcination temperature. The reduction of peak
intensity  is  related  to  the  decrease  in  crystallinity  in  the
sample  calcined  at  high  temperatures  [33].  The  secondary
phase  of  KNO2 is  also  found  in  all  the  calcined  samples,
which possibly originated from the thermal decomposition of
KNO3 [34].  Moreover,  the  structural  information of  KFeO2

samples  calcined  at  different  temperatures  was  investigated
by using Rietveld refinement. As a result, the quality of the
structural  refinement  is  indicated  by  residual  functions  of
profile factor (Rp), weighted profile residual (Rwp), expected
R-value (Rexp), and goodness of fit (GoF) [35]. Rp is related to
the  residual  error,  which  was  directly  calculated  from  the
structural  model  of  the  XRD patterns  and  the  experimental
data. Rwp is the weight of the particular location based on Rp

[36]. GoF or the “chi square” (χ2) is defined as the minimiza-
tion function, which is determined from the square of the ra-
tio between Rwp and Rexp. Fig. 2(b) shows the refinement plot
of KFeO2 sample calcined at 773 K. It is clearly observed in
Fig. 2(b) that the values of Rp and Rwp were under 15%, indic-
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ating that the Rietveld refinement results are reliable [37]. 

3.2. Morphological analysis

TEM bright-field images of the as-synthesized KFeO2 and
the synthesized KFeO2 samples calcined at different temper-
atures are shown in Fig. 3. The TEM bright-field images re-
veals the difference in morphology between the as-synthes-
ized  and  KFeO2 samples  calcined  at  773,  873,  and  973  K.
Fig. 3(a) shows a typical TEM image of the as-synthesized
KFeO2 sample, which reveals the formation of an egg white
network. This formation could be caused by the evaporation
of water molecules at the drying gel process. The network is
partially destroyed, leaving a cube-like shape of KFeO2 nan-
oparticles after calcination as clearly seen in Fig. 3(b) and (c).
Besides, the particle size of the synthesized KFeO2 strongly

depends  on  the  calcination  temperature.  As  the  calcination
temperature increases, the size of nanoparticles decreases and
converts into an agglomerated form after calcination at 973 K
(Fig.  3(d)).  The  increase  in  surface  energy results  in  an  in-
crease in surface interactions of the samples calcined at 973
K [17]. The average particle sizes of the samples calcined at
773 and 873 K were estimated to be 57 and 38 nm, respect-
ively. Therefore, the TEM results clearly indicate the role of
egg white solution as binder cum gel for shaping materials. 

3.3. XPS analysis

Fig.  4(a)  shows  the  survey  XPS  spectra  of  the  calcined
KFeO2 samples. Carbon (C), potassium (K), oxygen (O), and
iron (Fe) are presented on the sample surface. The intensity of
Fe peaks decreases with increasing calcination temperature.
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Fig.  2.      (a)  XRD patterns  of  as-synthesized KFeO2 and KFeO2  calcined at  different  temperatures  and (b)  sample  Rietveld refine-
ment plot of KFeO2 calcined at 773 K with Rp, Rwp, and GoF.
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Fig. 3.    TEM bright-field images of (a) the as-synthesized and (b–d) KFeO2 samples calcined at (b) 773 K, (c) 873 K, and (d) 973 K
for 2 h.
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This trend implies that the atomic concentration of Fe on the
sample surfaces decreases when the calcination temperature
increases. The relative atomic concentrations of the synthes-
ized  KFeO2 samples  calcined  at  different  temperatures  are
given in Table 1. The high-resolution XPS spectra in the Fe
2p regions are also shown in Fig. 4(b). Peaks at all the spec-
tra are intense peaks at the BE of 711.2 and 724.5 eV, as well
as satellite at 720.0 eV. These findings are consistent with the
presence of Fe3+ in the calcined samples [38].
 
Table  1.      Relative  atomic  concentration  of  the  synthesized
KFeO2 samples calcined at different temperatures %

Calcined temperature / K C O K Fe
773 24.84 43.43 8.74 22.99
873 23.01 45.70 7.16 24.12
973 45.19 37.01 7.92   9.87

  

3.4. XANES analysis

The valence states of K and Fe in all the calcined samples
were determined by the XANES spectra, which were meas-
ured at the K K-edge and Fe K-edge, respectively. The peak
position, intensity, and shape of the XANES spectra depend
on the local electronic structure of the absorbing atom, which
provides information on the absorbing valence state [39]. Fig.
5(a) shows the normalized XANES spectra of the potassium
iodide  (KI)  standard  (std.)  sample  and  KFeO2 samples  cal-
cined at 773, 873, and 973 K. As shown in Fig. 5(a), the edge
energies at the K K-edge of all the calcined samples are sim-
ilar to the edge energy of the KI standard sample, indicating
that the valence state of K atom in these samples is 1+. These
results are also confirmed by their first derivative plots shown
in Fig. 5(b). At the Fe K-edge, the normalized XANES spec-
tra of all the calcined samples and the reference compounds
of  FeO,  Fe2O3,  and  Fe3O4 are  presented  in Fig.  5(c).  As
shown in Fig. 5(c), the XANES spectra can be divided into
the two following regions [40–41]: (i) the pre-edge region at
low  energy  is  attributed  to  the  1s  →  3d  transition;  (ii)  the

sharp rise of the absorption at the second region is related to
the 1s → 4s transition. In region I, the pre-edge peak of Fe at
a  certain  energy  has  been  widely  used  to  determine  its
valence  state  [42].  In  comparison  with  the  reference  com-
pounds, the energy positions of all the calcined samples are
quite similar with the energy position of the Fe2O3 standard
compound,  implying  that  the  valence  state  of  Fe  in  theses
samples is 3+. In region II, the absorption edge energies of all
the calcined samples are found to match very well with the
edge  energy  of  the  Fe2O3 standard  compound,  confirming
that the valence state of Fe is 3+. This result is consistent with
their  first  derivative plots  presented in Fig.  5(d).  Therefore,
the XANES results prove the absence of significant changes
in local electronic structure with increasing calcination tem-
peratures. 

3.5. Magnetic properties

Fig. 6(a) shows the magnetization as a function of the ap-
plied  magnetic  field  (±1600  kA·m−1)  of  all  the  calcined
KFeO2 samples  obtained  from  the  VSM  measurement  at
room temperature. As illustrated in Fig. 6(a), the magnetiza-
tion of all the calcined samples increases with increasing ap-
plied magnetic field. As the magnetic field further increases,
the saturation magnetization (MS) is reached. The highest MS

value is found to be 2.07 × 104 A·m−1 in the sample calcined
at 873 K, and this value is slightly higher than the value of
2.03 × 104 A·m−1 in the sample prepared by the sol–gel meth-
od  [15].  In  addition,  the MS value  of  the  calcined  KFeO2

sample increases with increasing calcination temperature and
decreased  thereafter.  High MS values  are  due  to  the  high
magnetic moment involved in small particle size as observed
by TEM [43]. Interestingly, the MS values found here correl-
ate well with the relative atomic concentrations of carbon (C)
and iron (Fe) as summarized in Table 1. Regarding the mag-
netic nanoparticles, the two main factors that dominate mag-
netic  properties  of  nanoparticles  are  finite  size  effects  and
surface  effect  [44].  Thus,  the  low MS value  of  the  synthes-
ized KFeO2 may be explained by the surface effect because
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of the high atomic concentration of C and low atomic con-
centration of Fe on the sample surface. Furthermore, the in-
set of Fig. 6(a) presents the hysteresis loops, suggesting weak
ferromagnetism in all the calcined KFeO2 samples. The data
obtained from the hysteresis loops including coercivity (HC),
remanent magnetization (MR), and squareness ratio (MR/MS)
are summarized in Table 2. As presented in Table 2, the coer-
civity  increases  from 3.51 to  16.89 kA·m−1 with  increasing
calcination temperature from 773 to 973 K. In magnetic re-
cording media application, a high HC range of 47–95 kA·m−1

is required to keep the recording information for a long time
[45]. Therefore, the synthesis of KFeO2 nanoparticles is not
suitable  for  application in  recording media.  For  the  square-
ness  ratio,  the  value  is  between  0.06  and  0.11.  Hence,  the
present investigation suggests a multi-domain structure in the
materials because the value was below 0.5 [43].

Fig. 6(b)–(d) show the magnetization (M) measured as a
function of temperature (T)  between 50 and 350 K with an
external  magnetic  field  of  80  kA·m−1.  For  the  zero-field
cooled (ZFC) measurement, the sample was first cooled to 50
K in the absence of the magnetic field. A field of 80 kA·m−1

was then applied, and the magnetization was measured as the

sample was heated from 50 to 350 K. In contrast to the field
cooled (FC) measurement, the sample was cooled to 50 K in
the presence of the magnetic field of 80 kA·m−1. Magnetiza-
tion was then measured as the sample was cooled down. As
shown in Fig. 6(b)–(c), the ZFC magnetization (MZFC) of the
samples calcined at 773 and 873 K increases with increasing
temperature from 50 K and then decreases after reaching the
maximum value at the blocking temperature (TB). The TB val-
ues are estimated to be 125 and 85 K in the sample calcined
at 773 and 873 K, respectively, whereas TB could not observe
in  the  sample  calcined  at  973  K  as  seen  in Fig.  6(d).
Moreover, TB tends  to  decrease  with  increasing  calcination
temperature.  The  decrease  in MZFC with  the  increase  of  the
temperature  after  reaching  the  maximum TB may  be  ex-
plained  as  that  the  thermal  energy  became  large  enough  to
cause the magnetic moments to flip randomly, resulting in a
suppression of the magnetization of the particles [44]. For the
FC magnetization (MFC), the magnetization steadily decreases
as  temperature  increases  from  50  to  350  K.  The  overlap
between MZFC and MFC is  observed  at  the  temperature  over
the  corresponding TB and  no  overlapping  is  obviously  ob-
served in the sample calcined at 973 K. The existence of energy
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barriers  of  magnetic  anisotropy  results  in  the  difference
between MZFC and MFC to fall below TB [46]. On the basis of
the above results, there are two possible reasons that explain
the  reduction  of MS:  (i)  the  existence  of  the  non-magnetic
surface due to a high atomic concentration of carbon at the
particle surface [47]; (ii) the high surface-to-volume ratio in
the small particles caused spin canting at the surface [48]. 

4. Conclusion

In this research, we successfully synthesized KFeO2 nano-
particles  by using a  simple,  cost  effective,  and eco-friendly
egg white solution method. The use of egg white proteins in
gel form serves as capping agent for the synthesis of KFeO2

nanoparticles upon calcination at 773, 873, and 973 K. XRD
results confirmed the phase formation of KFeO2 at different
calcination temperatures. TEM revealed that the particle size

of  the  synthesized  KFeO2 strongly  depends  on  the  calcina-
tion temperature. XPS results confirmed the chemical com-
positions  on  the  KFeO2 sample  surface,  and  the  calculated
atomic  concentrations  correlated  well  with  their  magnetic
properties.  At  room  temperature,  all  of  the  synthesized
KFeO2 samples were ferromagnetic,  with the highest MS of
2.07  ×  104 A·m−1.  Therefore,  the  synthesized  KFeO2 nano-
particles  may be  considered as  a  potential  material  for  bio-
medical applications due to their high saturation magnetiza-
tion and weak ferromagnetic behavior at room temperature. 
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