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Abstract: Based on the characteristics of nonlinearity, multi-case, and multi-disturbance, it is difficult to establish an accurate parameter mod-
el on the hydraulic turbine system which is limited by the degree of fitting between parametric model and actual model, and the design of con-
trol algorithm has a certain degree of limitation. Aiming at the modeling and control problems of hydraulic turbine system, this paper proposes
hydraulic turbine system identification and predictive control based on genetic algorithm-simulate anneal and back propagation neural network
(GASA–BPNN), and the output value predicted by GASA–BPNN model is fed back to the nonlinear optimizer to output the control quantity.
The results show that the output speed of the traditional control system increases greatly and the speed of regulation is slow, while the speed of
GASA–BPNN predictive control system increases little and the regulation speed is obviously faster than that of the traditional control system.
Compared with the output response of the traditional control of the hydraulic turbine governing system, the neural network predictive control-
ler used in this paper has better effect and stronger robustness, solves the problem of poor generalization ability and identification accuracy of
the turbine system under variable conditions, and achieves better control effect.

Keywords: hydraulic turbine system; system identification; genetic algorithm; simulated annealing algorithm; predictive control

  

1. Introduction

The hydraulic turbine regulating system is the core part of
the  control  components  of  the  hydropower  station.  It  is  a
time-varying system that is a complex non-linear system, and
the system is interlocked with mechanical, electrical, and hy-
draulic power. The parameters of the turbine will change due
to  changes  in  the  water  head,  load,  speed,  etc.,  that  is,  the
parameters of different operating conditions will also change.

In  the  field  of  non-linear  modeling  of  hydraulic  turbine
systems, the IEEE Association considered factors such as ri-
gid water hammer in the early stage, and used simple models
to compare the guide vane opening and water head [1]. Ac-
cording to  the characteristic  curve of  the unit,  the literature
[2] approximated the function expression of the torque char-
acteristic and the flow characteristic, and established a model
by  directly  calculating  the  characteristic  parameters  of  the
turbine, which better solved the non-linear problem of the hy-
draulic turbine. Due to the variable working conditions of hy-
draulic  turbine  during  operation,  Chang  and  Ren  [3]  pro-
posed an analysis model of hydraulic turbine based on intern-
al characteristics according to the generalized basic equation

of blade type hydraulic machinery, which is used to approx-
imate  the  comprehensive  characteristic  curve  and  actual
characteristic curve. The system identification method based
on the system input and output data can approach any nonlin-
ear model in theory, and combine with the system mechan-
ism  model  to  get  a  better  turbine  system  model  [4–8].  In
terms of control algorithm design, PID (Proportional Integral
Derivative)  control  and  its  corresponding  optimization  al-
gorithm have  always  been the  mainstream algorithm in  the
field of steam turbine control [9–11] according to the time-
varying nonlinear characteristics of each link of turbine gov-
erning  system.  Intelligent  control,  neural  network  control,
and predictive control have been extensively studied and ap-
plied in recent years [12–14], but most of them are based on
the nonlinear characteristics of hydraulic turbines and cannot
solve problems such as multiple operating conditions. All of
the above problems are one of the solutions to the three prob-
lems  of  multi  working  conditions,  nonlinearity,  and  time-
varying in the operation process of hydraulic turbine, but they
are not solved together.

According to the simulation and actual operation data of
hydraulic turbine, this paper uses GASA–BPNN (genetic al- 
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gorithm-simulate  anneal  and  back  propagation  neural  net-
work)  to  optimize  and  realize  high-precision  identification,
and  designs  the  model  predictive  controller.  At  the  same
time,  combined  with  the  three  problems  of  multi  working
conditions,  nonlinearity,  and  time-varying,  the  control  per-
formance of hydraulic turbine system is optimized to a great
extent. 

2. System  identification  of  hydraulic  turbine
model 

2.1. Working principle of system identification

The schematic diagram of hydraulic turbine system identi-
fication based on Nonlinear Auto-Regressive Moving Aver-
age Model (NARMA) [15] is shown in Fig. 1.

z−nu

z−ny

In Fig.1, ym(k) is the predicted output value, y(k) is the ac-
tual  output  value, e(k)  is  the  error  between  predicted  value
and actual value, mg(k) is the external disturbance,  is the
discrete guide vane opening signal, and  is rotation speed
output signal.

Fig.1 shows that hydraulic turbine regulation system is the
approximate object of neural network. Those input signals of
the whole identification system are discrete guide vane open-
ing signal  and rotation speed output signal.  The output sig-
nals  identified  by  the  neural  network  are  predicted  value
ym(k). Then take a sufficient number of training samples for
training,  and  the  weights  and  thresholds  of  the  neural  net-
work  are  optimized  by  continuously  reducing  the  value  of
e(k).
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Fig. 1.    Schematic diagram of hydraulic turbine system identification.
 
 

2.2. Improved GASA hybrid optimization algorithm

The  traditional  BP (back  propagation)  neural  network  is
optimized  by  gradient  descent  method  of  continuous  back-
ward  propagation.  Although  the  approach  of  hydropower
units  can  be  achieved  as  a  complex  system,  the  working
mode  of  hydropower  units  changes  frequently  with  factors
such as working conditions and disturbances. This arbitrary
transformation reduces the generalization ability of network
and the convergence speed is correspondingly slowed down.
In view of shortcomings of BP neural network model in the
process  of  approaching  hydropower  units,  this  paper  pro-
poses to improve on two aspects.

(1)  BP neural  network  aims  to  optimize  all  weights  and
thresholds, and the model has poor stability and unsatisfact-
ory  convergence  speed  in  the  process  of  hydraulic  turbine
regulation  system  identification.  Therefore,  genetic  al-
gorithm  is  proposed  to  optimize  and  obtain  the  optimal
weights  and  thresholds  of  neural  network.  The  optimal
weights and thresholds are assigned to neural network as ini-
tial weights and thresholds, which improves learning rate of
BP neural  network and improves  stability  of  the  identifica-

tion process.
(2)  Although  using  genetic  algorithm to  optimize  neural

network can improve convergence speed and stability, genet-
ic  algorithm itself  has a phenomenon of “prematurity” and
BP neural network is prone to fall into local optimal solution
[16−17]. Therefore, the simulated annealing algorithm based
on the Boltzmann probability  distribution mechanism is  in-
troduced to optimize the neural network and obtain the glob-
al optimal solution to a higher probability so as to achieve a
better approximation to the nonlinear system of hydropower
units and achieve an ideal identification effect. 

2.3. GASA−BPNN algorithm analysis

According  to  the  specific  situation  of  hydraulic  turbine
system identification, we selected three-layer neural network.
Input nodes number is 6,  hidden layer nodes number is 13,
and output layer node number is 1. The objective function of
neural network are the minimum mean square error function,
convergence value is set as 1 × 10−5 and iteration number is
set as 1000 times. Each individual of GASA algorithm popu-
lation is a group of solutions of neural network weights and
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thresholds.  In  order  to  improve  the  competitiveness  among
individuals, the following fitness function is used:

fi =
exp

(
ζi
T

)
M∑

i=1
exp

(
ζi
T

) (1)

ζi = 1/E(k)where , E(k) is the error function between the pre-
dicted value and the actual value, T is the current temperat-
ure, M is the individual number of contemporary population,
and fi is the fitness function of individual i.

The improved selection probability (p) function based on
sampling  probability  of  simulated  annealing  algorithm  is
[18]:

p = exp
(

( fi− f j)
Ta

)
(2)

where Ta is the annealing temperature, fi and fj are the fitness
functions of individual i and individual j.

The improved adaptive crossover probability (pc) function
based  on  sampling  probability  of  simulated  annealing  al-
gorithm is:

pc =

 k1−
k2( favg− f )
favg− fmin

, f < favg

k1, f ⩾ favg

(3)

where fmin is the fitness of the optimal individual in this gen-
eration, favg is the average fitness in each population genera-
tion, f is the smaller fitness value of two crossed individuals,

k1= 0.9, k2= 0.3.
The improved adaptive variation probability (pm) function

based  on  sampling  probability  of  simulated  annealing  al-
gorithm is:

pm =

 k1−
k2( favg− fmi)

favg− fmin
, fmi ⩽ favg

k1, fmi > favg

(4)

where fmi is fitness value of the mutant individual, k1= 0.9, k2=
0.099.

After the crossover operation of selection and mutation on
population, SA (Simulate Anneal) operation is carried out on
the population. The state disturbance mechanism of the new
population generated in this paper is:
S′ = S +β (5)

S′

β

where S is  the initial  solution of SA algorithm,  is  a new
solution  of  SA  algorithm  flow,  is  a  random  number  for
(−0.1,0.1). 

3. System  identification  simulation  based  on
GASA−BPNN

A  simulation  model  of  hydraulic  turbine  regulation  sys-
tem is adopted in this chapter. As shown in Fig. 2, training
samples  and  test  samples  of  two  different  working  condi-
tions are  obtained through simulation experiments  with no-
load and load conditions.
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Fig. 2.    Simulation model of hydraulic turbine regulation system.
 

In Fig.  2,  S1  and  S2  are  step  modules,  K1  and  K2  are
manual  switch  modules,  C1  and  C2  are  constant  modules.
Gy, Gt, and Gg are S-function modules. 

3.1. No-load disturbance

Fig. 3 shows the GASA–BPNN identification effect curve
of hydraulic turbine regulation system under no-load condi-
tions. It can be seen that actual output curve of the speed and
network identification output curve is basically overlapping,
and identification effect of whole identification process is rel-
atively stable. By reading identification error curve, it can be

seen that identified error level at this time is 1 × 10−3, maxim-
um error is −5.859 × 10−3, steady-state error is −7.867 × 10−4,
actual steady state value is 0.9998, and calculated accuracy at
this  time  is  99.92%.  Therefore,  the  GASA  algorithm  im-
proves approximation accuracy of BP neural network and en-
ables  it  to  identify  the  hydraulic  turbine  regulation  simula-
tion  system  better,  which  reflects  the  feasibility  of  the  al-
gorithm. 

3.2. Load disturbance

As shown in Fig. 4, the identification output of improved
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BP neural  network  model  that  based  on  GASA under  load
conditions  roughly  coincides  with  the  actual  speed  output
curve. It is consistent with the conclusions of the fitting graph
given above and indicates that the identification accuracy is
relatively high. The initial error of identification fluctuates to
some extent. The maximum error is 5.535 × 10−4, and corres-
ponding actual value is 0.1096. When the system tends to a
steady state, the steady-state error is 1.779 × 10−4, and corres-
ponding  actual  value  is  0.0992.  By  calculation,  the  steady-
state identification accuracy under this condition is 99.82%.
Therefore,  the  identification  error  of  improved  neural  net-
work model under load conditions is also small, and the mod-
ified model preliminarily overcomes disadvantages of worse
identification effect of neural network model when working
conditions change. 

3.3. Start-up process

Fig. 5 shows real time data curve of real start-up process
of  a  hydropower  station.  It  is  mainly  about  turbine  speed,
vane opening degree, throw and other data within 64 s of the
hydraulic  turbine  operation  process.  The  data  reading  fre-

quency is  100 Hz.  By serializing rotational  speed and vane
opening  data  in  the  figure,  the  training  samples  for  neural
network training and the predictive samples of identification
system can be obtained. The processed sample data is shown
in Table 1. uc(k) is the guide vane openning, yc(k) is rotating
speed.

Based on trained neural network, Fig. 6 shows the identi-
fication effect diagram and identification error curve of hy-
draulic turbine regulating system’s real start-up process. As
shown in the figure, identification output curve of improved
BP neural network modelled based on GASA roughly coin-
cides with actual rotation speed output curve, and the identi-
fication accuracy is relatively high. During identification pro-
cess, the error fluctuates from 15 to 20 s, maximum error is
0.830,  corresponding  point  is  the  1796th  point,  and  corres-
ponding actual speed is 17.782. By calculation, the identific-
ation accuracy at this time is 95.32%. When the system tends
to be in steady state, the steady-state error is 0.0502, and the
corresponding actual value is 199.8. The steady-state identi-
fication  accuracy  under  this  condition  can  be  obtained
through calculation. Therefore, the identification error of im-
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proved neural network model in real start-up process of tur-
bine regulation system is also very small, which verifies that
the improved neural network not only has a good identifica-
tion effect  on the simulation system under ideal conditions,
but also has a good effect on the real start-up process of tur-
bine regulation system.
 

4. Model predictive control (MPC) method
 

4.1. Predictive control principle

Fig. 7 is the schematic diagram of hydraulic turbine sys-
tem predictive control based on GASA-optimized BP neural
network prediction model. As shown in the figure, r(k) is a

Table 1.    Training sample data

Series Sample 1 Sample 2 Sample 3 … Sample 6398 Sample 6399 Sample 6400
yc (k−3) 17.7206 17.7206 17.7206 … 199.9169 199.9169 199.9169
yc (k −2) 17.7206 17.7206 17.7206 … 199.9169 199.9169 199.9169
yc (k −1) 17.7206 17.7206 17.7206 … 199.9169 199.9169 199.9169
uc (k −3) 0.2573 0.1966 0.1880 … 16.5128 16.4957 16.4697
uc (k −2) 0.1966 0.1880 0.2400 … 16.4957 16.4697 16.4871
uc (k −1) 0.1880 0.2400 0.2066 … 16.4697 16.4871 16.5391
ym(k) 17.7206 17.7206 17.7206 … 199.9169 199.9169 199.9169
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given  reference  value  of  rotating  speed, u(k)  is  the  output
value of predictive controller[19].

As shown in Fig. 7, the first step of predictive control pro-
cess is the system identification of hydropower unit. The in-
telligent GASA algorithm is used to optimize BPNN model
that  approximated  by  the  turbine  regulation  system  of  the
controlled object under any working mode, until  the identi-
fication value ym(k), which can approximately replace the dy-
namic  response  of  the  controlled  object,  is  obtained.  In  the
schematic  diagram,  the  error  function  value e(k)  calculated
by  current  time  identification  output  value ym(k)  and  actual
output value y(k) of hydropower unit is as small as possible.

The predictive control model is obtained after identifica-
tion of turbine regulation system. The model is used to pre-
dict guided vane opening control signal and speed output sig-
nal of the system in a short time domain in the future. Optim-
al guide vane opening control signal output values u are ob-
tained  by  using  nonlinear  optimization  controller.  Control

signal of guide vane opening output by the controller at each
time is calculated online according to the reference value of
given  speeds  signal  and  the  predicted  value  of  the  GASA
neural  network  speed  signal.  The  performance  index  func-
tion given by nonlinear control module in the figure is as fol-
lows [20] :

J =
N2∑
j=1

[yr(k+ j)− ym(k+ j)]2+

ρ

Nu∑
j=1

[u(k+ j−1)−u(k+ j−2)]2 (6)

ρ

where J is  used to obtain control  quantity u.  The optimiza-
tion method is selected according to the actual needs, such as
the gradient  optimization method. j is jth  moment, yr is  the
reference setting response value; ym is the predicted output re-
sponse;  is the weighted coefficient; N2 is the forecast dura-
tion; Nu is the control duration.
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Fig. 7.    Schematic diagram of hydraulic turbine system predictive control.
 

As shown in Fig. 7, there are many disturbances similar to
mg(k) in the turbine regulation system. Due to the influence of
unknown disturbances and mutative working conditions,  its
structural parameters will change, resulting in a poor predic-
tion  of  the  system-identification  neural  network  model.
Therefore,  through the feedback link,  the corresponding in-
telligent optimization algorithm is selected based on e(k) and
it constantly adjusts network model so as to correct predicted
value. Then the “sliding window” optimization is carried out
to obtain the control quantity which can make the system out-
put closer to the given reference output value. 

4.2. Model predictive control of hydraulic turbine

The trained neural network model optimized by GASA al-
gorithm is used for prediction. 30 groups of test samples are
selected in each working condition, and the acquisition meth-
od of test samples is given above. Figs. 8 and 9 are respect-

ively the prediction effect diagram of simulation system un-
der no-load disturbance and the prediction effect diagram un-
der load disturbance.

According to the scatter diagram of error variation, the ini-
tial  error  value  of  system  prediction  is  relatively  large  and
slightly fluctuates, but it tends to be stable with the network
learning.  According  to Fig.  9,  it  can  be  calculated  that  the
maximum error value is 5.456 × 10−3,  corresponding accur-
acy is 99.27%, stable error value is 1.754 × 10−3, and steady-
state  accuracy  is  99.30%.  The  simulation  results  show that
predicted value and true value of GASA–BPNN are almost
the  same  under  the  conditions  of  no-load  disturbance  and
load disturbance, and the prediction is relatively accurate.

In the two given working conditions,  the traditional  PID
strategy  and  the  GASA–BPNN  model-based  strategy  are
used to control the unit. The corresponding speed signals data
and  vane  opening  signal  data  under  two  different  working
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ρ

conditions of the turbine regulation system are obtained. The
identified  GASA–BPNN  is  used  to  predict  the  unit  speed
value, and fed back to the nonlinear optimization controller.
At the same time, combined with the given speed reference,
the optimal vane opening control amount of the correspond-
ing time is obtained so as to realize the tracking of unit out-
put value to reference value. Here, N2 = 7, Nu = 2,  = 0.05.

As shown in Fig. 10, the red dotted line is PID control ef-
fect  curve,  and the blue solid  line is  GASA–BPNN control
effect curve. From the simulation diagram, the no-load con-
dition  adds  20%  frequency  disturbance  at  the  third  second
moment,  and  PID-controlled  turbine  adjustment  system
shows  obvious  overshoot  phenomenon.  The  overshoot  is
19.8%, the rise time is 4.5 s, and there is a certain oscillation
phenomenon.  The  stability  of  control  effect  based  on
GASA–BPNN is better, the overshoot of output response is
1.9%, the rise time is longer than PID control, which is 5.8 s.
Adjustment time of the both is roughly the same.

As shown in the Fig. 11, the red dotted line is control ef-
fect graph under the load condition of PID controller, and the
blue solid line is the control effect curve of GASA−BPNN.
Simulation results show that,  under load condition, the out-
put  speed  of  turbine  regulation  system  controlled  by  tradi-
tional  PID  controller  increases  greatly,  and  the  adjustment
speed is slow. The predictive control of GASA−BPNN has a
small  increase  in  rotating  speed  when  the  load  is  dropped,
and  the  adjustment  time  is  obviously  less  than  adjustment
time of PID control, with better robustness. 
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Fig. 8.    Forecast effect diagram of no-load disturbance condition: (a) network output after training; (b) error scatter plot.
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Fig. 9.    Forecast effect diagram of load disturbance condition: (a) network output after training; (b) error scatter plot.
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Fig. 10.    GASA–BPNN control effect (no-load condition).
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5. Conclusion

Based on the research of domestic and foreign scholars in
the field of hydraulic turbine, this paper makes improvement
on the identification and control strategy of hydraulic turbine
system. The main work and conclusions are as follows.

Based on the general identification effect of traditional BP
neural network and the instability of identification system ef-
fect  when  the  working  condition  changes,  this  paper  pro-
poses an improved simulated annealing genetic hybrid intel-
ligent algorithm to optimize BP neural network. The execu-
tion efficiency of simulated annealing algorithm is increasd,
and the premature phenomenon of  genetic  algorithm is  im-
proved. At the same time, SA has the advantage of jumping
out  of  extreme  value,  which  will  make  BP  neural  network
have better global approximation ability, and to some extent,
it  can  overcome  the  phenomenon  of  unstable  identification
caused by mutative working conditions. The simulation res-
ults show that the identification accuracy and prediction ac-
curacy  of  neural  network  identification  model  of  hydraulic
turbine  regulating  system  are  improved.  By  training
GASA−BPNN, the predicted value of model is close to real
value,  and  the  corresponding  predictive  control  is  realized.
The simulation results verify that GASA−BPNN largely op-
timizes the control performance of hydraulic turbine system. 
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Fig. 11.    GASA–BPNN control effect (load condition).
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