a2 SMEER (EEUR)

International Journal of
IJ P’A PJA P’A Minerals, Metallurgy and Materials

A review on the critical challenges and progress of SiO_-based anodes for lithium-ion
batteries

Nana Yao, Yu Zhang, Xianhui Rao, Zhao Yang, Kun Zheng, Konrad wierczek, and Hailei Zhao
Cite this article as:
Nana Yao, Yu Zhang, Xianhui Rao, Zhao Yang, Kun Zheng, Konrad wierczek, and Hailei Zhao, A review on the critical

challenges and progress of SiO, -based anodes for lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 876-
895. https://doi.org/10.1007/s12613-022-2422-7

View the article online at SpringerLink or IMMM Webpage.

Articles you may be interested in

Zhi-yuan Feng, Wen-jie Peng, Zhi-xing Wang, Hua-jun Guo, Xin-hai Li, Guo-chun Yan, and Jie-xi Wang, Review of silicon-
based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1549-1564.
https://doi.org/10.1007/s12613-021-2335-x

Qi Wang, Yue-yong Du, Yan-qing Lai, Fang-yang Liu, Liang-xing Jiang, and Ming Jia, Three-dimensional antimony sulfide
anode with carbon nanotube interphase modified for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp.
1629-1635. https://doi.org/10.1007/s12613-021-2249-7

Qiao-kun Du, Qing-xia Wu, Hong-xun Wang, Xiang-juan Meng, Ze-kai Ji, Shu Zhao, Wei-wei Zhu, Chuang Liu, Min Ling, and
Cheng-du Liang, Carbon dot-modified silicon nanoparticles for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No.
10, pp. 1603-1610. https://doi.org/10.1007/s12613-020-2247-1

Kai-lin Cheng, Dao-bin Mu, Bo-rong Wu, Lei Wang, Ying Jiang, and Rui Wang, Electrochemical performance of a nickel-rich
LiNi0 6Co0 2Mn0 2O2 cathode material for lithium-ion batteries under different cut-off voltages, Int. J. Miner. Metall. Mater.,
24(2017), No. 3, pp. 342-351. https://doi.org/10.1007/s12613-017-1413-6

Dan Wang, Qun Ma, Kang-hui Tian, Chan-Qin Duan, Zhi-yuan Wang, and Yan-guo Liu, Ultrafine nano-scale CuZSb alloy
confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries, Int. J. Miner. Metall.
Mater., 28(2021), No. 10, pp. 1666-1674. https://doi.org/10.1007/s12613-021-2286-2

Zao-hong Zhang, Tao Wei, Jia-hao Lu, Qi-ming Xiong, Yue-han Ji, Zong-yuan Zhu, and Liu-ting Zhang, Practical development
and challenges of garnet-structured Li,La;Zr,0,, electrolytes for all-solid-state lithium-ion batteries: A review, Int. J. Miner.
Metall. Mater., 28(2021), No. 10, pp. 1565-1583. https://doi.org/10.1007/s12613-020-2239-1

B3]

1 WIBVIIVA ey

IJMMM WeChat QQ author group



International Journal of Minerals, Metallurgy and Materials
Volume 29, Number 4, April 2022, Page 876
https://doi.org/10.1007/s12613-022-2422-7

Invited Review
A review on the critical challenges and progress of SiO.-based anodes for

lithium-ion batteries

Nana Yao"", Yu Zhang"", Xianhui Rao"", Zhao Yang", Kun Zheng”, Konrad Swierczek®,
and Hailei Zhao'*"™

1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

2) Faculty of Energy and Fuels, AGH University of Science and Technology, al. A. Mickiewicza 30, Krakow, 30-059, Poland
3) Beijing Key Lab of New Energy Materials and Technology, Beijing 100083, China

(Received: 9 October 2021; revised: 8 January 2022; accepted: 17 January 2022)

Abstract: With the advantages of abundant resources, high specific capacity, and relatively stable cycling performance, silicon suboxides
(SiO,, x <2) have been recently suggested as promising anodes for next-generation lithium-ion batteries (LIBs). SiO, exhibits superior storage
capability because of the presence of silicon and smaller volume change upon charge/discharge than Si owing to the buffering effect of the ini-
tial lithiation products of inert lithium oxide and lithium silicates, enabling a stable cycle life of electrodes. However, significant improvements,
such as overcoming issues related to volume changes in cycling and initial irreversible capacity loss and enhancing the ionic and electronic
charge transport in poorly conducting SiO;, electrodes, are still needed to achieve the satisfactory performance required for commercial applica-
tions. This review summarizes recent progress on the cycling performance and initial coulombic efficiency of SiO,. Advances in the design of
particle morphology and composite composition, prelithiation and prereduction methods, and usage of electrolyte additives and optimized elec-
trode binders are discussed. Perspectives on the promising research directions that might lead to further improvement of the electrochemical

properties of SiO,-based anodes are noted. This paper can serve as a basis for the research and development of high-energy-density LIBs.

Keywords: silicon suboxides; preparation; structural optimization; anode; lithium-ion batteries

1. Introduction

Non-renewable resources, such as coal, oil, and natural
gas, are still used and consumed worldwide in large quantit-
ies, causing a rapid drop in their reserves and leading to
greenhouse effect intensification, widespread water and air
pollution, and other negative phenomena. To alleviate these
issues, electric vehicles have been vigorously promoted
worldwide in recent years. Lithium-ion batteries (LIBs) have
dominated the power source market of electric vehicles be-
cause of their several advantages, such as high energy dens-
ity, high working voltage, long cycling life, and low self-dis-
charge [1]. However, the energy density of current LIBs can-
not meet the ever-increasing mileage need of electric trans-
portation, which limits their wide deployment [2]. Thus, ex-
ploring new electrode materials with high energy density has
become the top priority in the R&D of LIBs.

Anodes exert a decisive influence on the electrochemical
performance of LIBs. At present, graphite-based anodes are
widely utilized in commercial LIBs, and the specific capa-
city of such anodes has already reached 340-365 mAh-g ',
which is close to the theoretical value [3]. With the growing
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demand for high-energy-density LIBs, the development of
new anodes with high specific capacities is imperative. In-
stead of intercalation-class materials, either conversion reac-
tion or alloying-type compounds have been proposed and
widely studied [4-5]. Silicon is a promising anode because of
its high theoretical specific capacity (4200 mAh-g™), suit-
able operating voltage, abundant natural resources, and asso-
ciated low costs [6]. However, the mechanical instability of
Si-based electrodes due to large volume changes during lithi-
ation/delithiation, typical for the alloying-type reaction [7-§],
causes particle cracking and pulverization, resulting in poor
cycling performance of Si-based anodes [9—10]. Many ap-
proaches, including the design of nanostructure-scale
particles [11-12], formation of Si-containing composites
[13-15], and optimization of electrode film structure
[16-17], have been proposed to solve this problem. Despite
numerous reports on the improvement of the electrochemical
properties of Si anodes, less commercial breakthrough in
high-Si-content electrodes has been achieved. In modifying
silicon anodes, researchers found that SiO,-type (0 <x < 2)
nonstoichiometric oxides exhibit much better cycling stabil-
ity than pure Si because of the reduced volume expansion in
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reaction with lithium. Therefore, SiO, has become an excel-
lent candidate anode for high-energy-density LIBs in recent
years.

The fundamental difference regarding the charge/dis-
charge mechanism of SiO, with Si anodes stems from the ir-
reversible formation of inert components (Li,O, various lithi-
um silicates) during the first lithiation, whose presence can
dilute the volume changes of active particles and thus reduce
the mechanical stresses of electrodes, ensuring a relatively
stable cycling performance of SiO,-based electrodes [18-20].
Nevertheless, the cycling stability of SiO, electrodes is far
from the requirement in practical applications. Irreversibly
formed inert components contribute a large part of irrevers-
ible capacity, causing a much lower initial coulombic effi-
ciency (ICE). In addition, the poor ionic and electronic con-
ductivity of SiO, limit the electrode reaction kinetics and thus
the rate performance.

Facing the challenges of SiO, application, various
strategies, including particle morphology design [21-22],
combination with conductive second phase [23-24], usage of
proper binders [25— 26], and advanced additives [27], have
been proposed to address the issues mentioned above. In this
review, we first introduce the structural characteristics of Si-
O, and the electrochemical reaction mechanism with lithium.
Then, we summarize the progress in the fabrication of SiO,
materials in recent years. Finally, we discuss the improve-
ment and advancement of the electrochemical performance
of SiO, anodes, with an outlook given regarding the possible
further development of such electrodes.

2. Oxygen content and atomic-scale structure
of SiO,

Despite many reports, the structural model of SiO, re-
mains controversial. Initially, in the 1970s, two main struc-
tural models were reported for the amorphous SiO,, namely,
Random-bonding (RB) [28-29] and random-mixture (RM)
[30]. The RB model infers that the structure of SiO, consists
of a continuous random distribution formed by Si—Si and
Si—O bonds, which run through the entire structural network.
By contrast, the RM model proposes that SiO, is generally a
dual-phase material composed of regions comprising
amorphous Si and crystalline SiO,, with a particle size of
both fractions being less than 1 nm. This corresponds to the
composite-type material at nanoscale, but with respective re-
gions being extremely small, i.e., technically not forming
separate phases. Both models have been reported with sup-
porting results [31-32].

Based on the two models mentioned above, Hohl et al.
[33] proposed the interface cluster mixture (ICM) model
(Fig. 1(a)), which assumes that SiO, is composed of SiO,
clusters (light gray) and Si clusters (black), as well as the ul-
trathin suboxide (in terms of local oxygen content) interface
(gray), forming a matrix-like structure. Compared with pre-
vious models, the ICM model is more consistent with the re-
ported electrochemical performance of SiO, in elucidating

the electrochemical reaction mechanism with lithium [34].
Using angstrom-beam electron diffraction combined with
synchrotron X-ray scattering and computer simulations,
Hirata ef al. [35] studied the SiO, structure. Their experi-
mental results uncovered the non-uniform distribution of Si
and O at the atomic scale and verified the heterostructural
model of Si clusters mixing with amorphous SiO, (Fig. 1(b)).
The two regions are connected by various suboxide-type in-
terfacial regions with generally tetrahedral coordination.
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Fig. 1. Schematic of a-SiO structure: (a) the interface clusters
mixture model (the gray, light gray, and black regions repres-
ent sub-oxidic interface, SiO, clusters, and Si clusters, respect-
ively); (b) the reconstructed heterostructure model (the blue,
red, and green spheres represent Si and O in amorphous SiO,
and Si in Si clusters, respectively). (a) Reprinted from J. Non
Cryst. Solids, 320, A. Hohl, T. Wieder, P.A. van Aken, T.E.
Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J.
Mayer, and H. Fuess, An interface clusters mixture model for
the structure of amorphous silicon monoxide (SiO), 255-280,
Copyright 2003, with permission from Elsevier; (b) reprinted
by permission from Springer Nature: Nat. Commun., Atomic-
scale disproportionation in amorphous silicon monoxide, A.
Hirata, S. Kohara, T. Asada, M. Arao, C. Yogi, H. Imai, Y.W.
Tan, T. Fujita, and M.W. Chen, Copyright 2016.

With the intrinsic limitations of X-ray diffraction and oth-
er methods used for structural characterization, a complete
picture showing the actual atomic-scale structure of SiO; re-
mains challenging to provide.

3. Lithiation/delithiation mechanism of SiO,

Many efforts have been exerted to elucidate the lithiation
process of SiO,. The reactivity of SiO, depends on stoi-
chiometry and crystallinity. Crystalline SiO, cannot react
with lithium, whereas nanosized SiO, [36-38] and amorph-
ous SiO, domains presenting in the SiO [39—42] can electro-
chemically react with lithium to form lithium silicates and
Li,O. Yamamura et al. [43] reported that even amorphous
Si0, can react with lithium because of the presence of distor-
ted SiO, tetrahedrons. Nevertheless, the stoichiometric SiO,
is generally considered to be less active, and the nonstoi-
chiometric SiO, with x<2 is active toward lithium storage.

The lithiation/delithiation mechanism of SiO, material is
still not very clear, especially regarding the nature and re-
versibility of the electrochemical processes for the formed Li,.
Si alloy and lithium silicates during the first lithiation. Never-
theless, Si, lithium silicates, and Li,O are generally believed
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to form first during the first lithiation of SiO,, and then Si is
further lithiated (alloying-type of reaction) to form Li,Si al-
loy, typically up to x = 3.75 [20,34,39,44-52]. Formation of
Li,Si alloy is reversible, occurs at advantageous low poten-
tials vs. Li electrode, and provides the main part of the re-
versible capacity. By contrast, the formed lithium silicates
(e.g., Li4Si0O,, LigSi,05, Li,Si0;) during the first lithiation are
generally described as irreversible phases. The exception is
Li,SiOs, in which the lithium is considered deliverable but
does not contribute a substantial reversible capacity. In addi-
tion, the formation of Li,O is most possibly irreversible
[18,39,44-45]. Interestingly, numerous reports have proven
that the electrochemically inactive lithium silicates and Li,O
can provide crucial advantages for the electrode reaction, not
only relieving the volume change of the SiO,-based anodes
on lithiation/delithiation but also enhancing the diffusion of
Li" in the electrode, which contribute much to the improved
cycling stability and rate performance [18,20,39,47-48]. In
addition, the amount of the formed electrochemically inact-
ive products is strongly dependent on the electrode
charge/discharge current density. More irreversible products
will be generated at low C-rates with sufficient Li" provided,
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whereas the amount of the electrochemically inactive phases
decreases faster at high C-rates [53].

For the initial lithiation products of SiO,, Kim et al. [34]
proposed the formation of Li;sSi, for Si clusters, Li,O/Li;sSi,
for SiO interphase, and Li,Si0,/Li,5Si, for silicon oxide part
based on the RM structure model. As a result, 4.2 mol of Li
are supposed to be stored by 1 mol SiO. However, sub-
sequent investigation shows that various lithium silicates can
form in the initial lithiation, and some of them can be revers-
ible. The lithiation/delithiation mechanism of SiO, powders
prepared through high-energy mechanical milling (HEMM)
was investigated using ex situ high-resolution transmission
electron microscopy (HRTEM) [54]. In the first lithiation,
unreacted Si and Li,Si,05 phases appeared first when the po-
tential was lowered to 0.27 V (Fig. 2(a)). Then, Li,SiO,
formed subsequently at 0.24 V (Fig. 2(b)). Finally, the Li,sSi,
phase was obtained when the potential reached 0 V (Fig.
2(c)). When Li" was extracted, decomposition of Li,sSi, oc-
curred first at 0.34 V (Fig. 2(d)). Then, Li,Si,05 reacted with
Si to generate SiO, (Li,Si,0s + (1/2)Si — (5/2)Si0, + 2Li" +
2¢") at 0.39 V (Fig. 2(e)). This product could also be detected
after 10 cycles, suggesting that the formation of Li,Si,0s is
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Fig. 2. Ex situ HRTEM images when SiO was discharged to (a) 0.27 V, (b) 0.24 V, and (c) 0.0 V, and charged to (d) 0.34 V and (e)
0.39 V; () transition between formed phases during Li insertion for SiO negative electrode at 298 K, data shown in the ternary Li-Si-
O phase diagram; changes in the equilibrium SiO electrode potential at 298 K during (g) Li insertion and (h) Li removal after the
formation of Li;;Si,. (a—e) Reprinted with permission of Royal Society of Chemistry, from Quartz (SiO,): A new energy storage an-
ode material for Li-ion batteries, W.S. Chang, C.M. Park, J.H. Kim, Y.U. Kim, G. Jeong, and H.J. Sohn, 5, 5, Copyright 2012, per-
mission conveyed through Copyright Clearance Center, Inc.; (f~h) reprinted from J. Power Sources, 329, K. Yasuda, Y. Kashitani, S.
Kizaki, K. Takeshita, T. Fujita, and S. Shimosaki, Thermodynamic analysis and effect of crystallinity for silicon monoxide negative
electrode for lithium ion batteries, 462-472, Copyright 2016, with permission from Elsevier.
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reversible.

The behavior of SiO, suboxides with highly differing x
values (x = 0.17, 0.51, 1.02, and 1.34) in the charge and dis-
charge processes was investigated through X-ray photoelec-
tron spectroscopy [19]. Fully lithiated Li,,Si, Li,O, Li,SiO,,
and Li,SiO; form after the first discharge. Aside from the
Li,O and lithium silicates, a portion of Li,Si (x < 2) could not
be fully delithiated and remained after the first charge pro-
cess, which also contributes to the irreversible capacity loss
of SiO, on cycling. In addition, Li,SiO; might be a more
stable irreversible phase than Li,SiO, when SiO, 3, was util-
ized, whereas Li,SiO, was more stable when lower oxygen
contents SiOy 7, Si0ys;, and SiO, o, were first lithiated.

Yasuda et al. [55] explored the lithiation mechanism of
SiO by thermodynamic analysis and electrochemical experi-
ments. The results are summarized in Fig. 2(f)—(h). (1) Lithi-
um silicates (Li,S1,0s, Li,Si0;, and Li,SiO,4) should appear
together with the formation of Si (from point 1 to point 7 in
the graphs) up to the discharge capacity of 608 mAh-g’,
which is consistent with 600 mAh-g' capacity in the
0.35-0.5 V range from the lithiation curve of the amorphous
SiO in practical experiments; (2) the formed Si reacts with Li
to form Li-Si alloys (Li;»Si;, Li;Sis, and Li;3Si,) that are in
equilibrium with Li,SiO, (from point 7 to 13), corresponding
to a total discharge capacity of 2090 mAh-g ™', which does not
match the measured capacity of 2600 mAh-g"' in the
0.05-0.35 V range, even if the capacities of the conductive
additive and binder are deducted. This result suggests the
partial decomposition of already formed lithium silicates into
Li,0, which occurs with the concomitant release of Si. The
latter can contribute extra capacity with respect to the theor-
etical prediction; (3) Upon further lithiation, the Li,SiO,
phase is decomposed to form Li,O and Li,;Si,; (4) Further Li*
insertion produces LiySis from Li;3Si, (from point 15 to 17),
with a total discharge capacity of 2891 mAh-g'; (5) finally,
metallic Li is deposited at the lowest voltages, close to 0.0 V
(after point 18) [55].

Molecular dynamic simulations were adopted to investig-
ate the lithiation mechanism of SiO. Results indicated that
Li,SiO can theoretically store up to x = 5.22 of lithium, cor-
responding to a higher capacity of 3172 mAh-g', when Li,O
becomes dominant over Li-silicates. However, owing to large
activation barriers that should be overcome to decompose the
SiO, tetrahedral units in Li-silicates, the evolution of
Li,Si1,0s, LigSi,05, and Li,SiO, into Li,O is kinetically im-
possible under electrochemical conditions. Only Li,3,SiO
composition (i.e., average x = 4.39) can be achieved in prac-
tical experiments. They suggested that Li-silicates are dom-
inant over Li,O as the formed irreversible subphases. The
kinetically controlled transformation of Li-silicates into Li,O
in the matrix should lead to great improvements in the re-
versible capacity and rate capability of SiO [20].

Although extensive investigations have been carried out
on the lithiation/delithiation mechanism of SiO,, some diver-
gence still exists, especially on the issues of the final lithi-
ation products and the reversibility of some of these lithium

silicates. Nonetheless, the viewpoints that Li;5Si, is the final
lithium-silicon alloying product and that Li,SiO, is an irre-
versible lithiation product are widely accepted [34,43,45,55].
Apparently, the lithiation/delithiation mechanisms of SiO,
must be understood to improve the ICE and enhance the elec-
trochemical performance effectively.

4. Synthesis methods of electrochemically-act-
ive SiO,

Many efforts have been devoted to the synthesis of SiO,
anodes because it is not a naturally stable phase structure.
The successful methods reported can be generally grouped
into three approaches: (1) thermal evaporation [18-19,
56-57], (2) wet-chemistry [58-61], and (3) HEMM
[48,52,62], which are illustrated in Fig. 3.

Fig. 3. Schematic of major preparation methods of SiO,: (a)
thermal evaporation [63]; (b) wet-chemistry; (c) HEMM. (a)
Reprinted from Electrochim. Acta, 148, S.S. Suh, W.Y. Yoon,
D.H. Kim, S.U. Kwon, J.H. Kim, Y.U. Kim, C.U. Jeong, Y.Y.
Chan, S.H. Kang, and J.K. Lee, Electrochemical behavior of
SiO, anodes with variation of oxygen ratio for Li-ion batteries,
111-117, Copyright 2014, with permission from Elsevier.

4.1. Thermal evaporation methods

The widely adopted method for SiO, synthesis on an in-
dustrial scale is thermal evaporation, in which SiO, powder is
produced by sublimating and condensing SiO, and Si under
high temperatures [56,64—66]. Moreover, SiO, materials with
different silicon/oxygen ratios can be prepared by adjusting
the ratio of raw materials and process conditions [67]. Shin-
Etsu Chemical Co., Ltd. of Japan, Osaka Titanium Technolo-
gies Co., Ltd. of Japan, and Samsung SDI Co., Ltd. of South
Korea used this method to produce SiO, powders as an an-
ode component for LIBs on a commercial scale.

In addition, other physical and chemical techniques are
explored to fabricate SiO, powders or films include vacuum
electron beam evaporation [19], plasma spray physical vapor
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deposition [57,63], and infrared ray nanosecond laser abla-
tion [68]. SiO, with different silicon/oxygen ratios (x value)
can be obtained by controlling the processing parameters. As
an example, Takezawa et al. [19] used vacuum electron beam
evaporation to deposit amorphous SiO; films on copper sub-
strates through a reaction between evaporative Si and oxy-
gen, and the x value could be controlled by oxygen flow rate.
Therefore, SiO; films with different silicon/oxygen ratios (x =
0.17,0.51, 1.02, and 1.34) could be prepared, which enabled
the study of the influence of total oxygen content on the elec-
trochemical properties of SiO,.

Considering industrial applications, thermal evaporation
methods exhibit important advantages related to the control
of the total oxygen content in the material. However, their us-
age for the commercial-scale synthesis of LIBs remains to
have substantial issues, including large equipment invest-
ment, high energy consumption, and low productivity, result-
ing in the high cost of SiO, products.

4.2. Wet-chemistry routes

Wet-chemistry synthesis routes are widely used in the pre-
paration of various type powders because of the advantages
of the homogenous, atomic-scale mixing of the elements en-
sured at the initial stages of the procedure, the controllable
particle size and morphology of the product, as well as low-
energy consumption and associated low costs [58,69—-70].

The sol-gel methods are reported for the preparation of
SiO, materials [58—61]. The reaction conditions, including
starting chemicals, surfactants, catalysts, hydrolysis time,
drying, and reagent ratio, must be thoughtfully adjusted to
obtain the desired phase composition, structure, and morpho-
logy of the product. Liu ef al. [58] used vinyltriethoxysilane
(VTES) as the silicon source for the preparation of SiO,
powders. Under Stober reaction conditions, VTES was hy-
drolyzed and condensed to produce organosilicate, which
was subsequently processed to generate SiO, microspheres.
In addition, tetraethoxysilane (TEOS) [21,60,71-75] and tet-
ramethoxysilane [76-77] are frequently used as silicon
sources. Various material structures were prepared by com-
bining the template with a hydrothermal method [78-82].
With CTAB-assisted resorcinol self-assembly as a template,
Ren and Li [81] prepared rod-like SiO@C composite with
individual rod containing numerous interconnected nano-
spheres by using a hydrothermal method with a post pyrolys-
is process. The network-structured SiO/MWCNT/N-doped
C composite was fabricated as LIB anode through precipita-
tion and pyrolysis by using triethoxyethylsilane ((C,HsO);
SiC,Hj) as the silicon source [83].

Our group worked in this direction for more than ten
years. Amorphous SiO, powders with different particle sizes
were synthesized as anode materials for LIBs from TEOS via
sol—gel and hydrothermal methods [71-73,84]. With CTAB
and PVP self-assembled template, the mesoporous SiO,/C
composite with an arrayed molecular-sieve architecture was
prepared from TEOS and sucrose via a hydrothermal route
[82]. SiO,—C dual-phase glass was fabricated via a sol-gel

Int. J. Miner. Metall. Mater., Vol. 29, No. 4, Apr. 2022

method combined with calcination to increase the tapping
density [71]. The phase composition and the oxygen nonstoi-
chiometry of SiO, can be controlled by optimizing the pro-
cessing parameters. High Si content with a low x value of Si-
O, can deliver a high specific capacity, which can be
achieved by preparing a highly porous SiO,-based material
with a high specific surface area to realize sufficient reduc-
tion via a wet-chemistry route [74,85].

The wet-chemistry route for SiO, synthesis has advant-
ages in the chemical homogeneity and controllable morpho-
logy of target materials, as well as in capital investment re-
duction, which ensures a good demonstration of electro-
chemical performance and is conducive to the deployment of
Si0, anodes in the practical battery industry.

4.3. High energy mechanical milling

Compared with the traditional energy-consuming prepara-
tion processes, HEMM is simple in operation. The SiO,
powders can be synthesized using HEMM from Si and SiO,,
and the particle size of SiO, can be controlled by adjusting
the time of ball milling [86]. As reported, Si/O, can also be
used as raw materials to synthesize SiO,, and the x value in
SiO, can be tailored by tuning the exposure time of pure silic-
on powder to air [62,86-87]. For example, Cao et al. [62]
prepared an amorphous SiO, anode with oxygen content
between 0 < x < 0.37 through HEMM of Si powder in the air.
The amorphous SiO, has a particle structure of the nano-Si
core surrounding with amorphous SiO,.

HEMM can reduce the activation energy of a reaction
between the starting chemicals and realize the synthesis of
materials at low temperatures. In general, the particle size de-
creases with ball milling time extension, but may cause sec-
ondary agglomeration and produce impurities originating
from the milling chamber and balls. Thus, appropriate ball-
milling conditions must be controlled accurately to obtain the
desired oxygen content and particle size of the synthesized
SiO..

5. Fundamental challenges and solutions to
overcome limitations of SiO, anodes

As mentioned above, the inert buffer matrix composed of
lithium silicates and Li,O formed in the first lithiation of Si.
O, anodes helps mitigate volume changes in reversible elec-
trochemical processes and therefore improves the cycle sta-
bility of silicon suboxides as compared with pure Si.
However, SiO, anodes still have considerable volume
changes (~200%) upon lithiation/delithiation processes,
which has the potential to destroy the electrode structure and
cause a rapid capacity decay. Moreover, the electrochemic-
ally inactive lithium silicates and Li,O formed in the first lith-
iation result in a low ICE, and the low intrinsic electrical con-
ductivity limits the rate performance of SiO, electrodes [50].
These disadvantageous effects are associated with the fol-
lowing major challenges: (1) material pulverization effect on
cycling, (2) unstable solid-electrolyte interphase (SEI) film,
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(3) low ICE, and (4) electrode failure by cracking.

5.1. Morphology design for mitigating the pulverization
of SiO, on cycling

The capacity of pure silicon suboxide electrodes usually
degrades rapidly with cycling because of the particle pulver-
ization caused by the mechanical stresses related to the
volume changes. One of the effective approaches to address
this issue is to build special particle structures, such as core-
shell, yolk-shell, porous, and hollow structures, constructing
buffer layers or providing sufficient space to accommodate
the volume change.

For the core-shell structure, a layer of conductive material,
such as carbon or metal oxide, can be coated on the surface of
Si0, [72,88-94]. This type of structure can effectively limit
the volume expansion and improve the electronic conduction
of SiO,. For example, our group synthesized a core-shell
structure composed of SiO, nanoparticles coated with a thin
carbon layer through a simple and efficient wet-chemical
synthesis route, which provides a stable reversible capacity of
820 mAh-g ' after 100 cycles [72]. In addition, the dual-shell
coating structural composites can further inhibit the structur-
al damage caused by internal stress. Xiao et al. [89] synthes-
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ized SiO,@TiO,@C composite, and the introduced TiO, lay-
er with a high-crystallinity anatase phase can improve the
overall interface stability of the electrode. The volume
change of the electrode is effectively buffered, the discharge
capacity retention is 89.5% after 800 cycles at a current dens-
ityof 1.0 A g™

Different morphology designs also aim to create a free
space that can buffer the volume changes of SiO, material
[70,74,82,85,95-98]. As shown in Fig. 4(a)—~(f), porous, hol-
low, and yolk-shell structures can provide abundant free
space. Lee and Park [96] introduced a simple method to syn-
thesize a 3D porous silicon monoxide anode through wet-
chemical etching using bulk silica powder as the raw materi-
al (Fig. 4(a) and (b)). The porous structure can effectively
buffer the volume expansion of SiO, and promote a stable
cycling performance. However, its high specific surface area
causes excessive SEI generation, resulting in a low ICE of
60%. To address this issue, the author subsequently coated
the surface with a carbon layer and increased the ICE to 76%.
The yolk-shell and hollow structures were prepared using
chemical etching, respectively (Fig. 4(c)—(f)) [98-99]. These
structures enable SiO, material to expand freely into the in-
terior on lithiation, whereas the outer carbon-shell coating
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Fig. 4. (a) Schematic showing the synthesis route of porous SiO using Ag catalytic etching; (b) SEM mlcrograph of the obtained
porous SiO,; (c) preparation of yolk-shell SiO,/C and SiO,/C microspheres; (d) TEM image of yolk-shell SiO,/C; (e) schematic of
synthesis process for void@SiO,@C; (f) SEM image of hollow void@SiO,@C. (a, b) Reprinted from Nano Energy, 2, J.1. Lee and S.
Park, High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching, 146-152, Copyright 2013,
with permission from Elsevier; (c, d) reprinted from Energy Storage Mater., 19, Z.H. Liu, Y.L. Zhao, R.H. He, W. Luo, J.S. Meng, Q.
Yu, D.Y. Zhao, L. Zhou, and L.Q. Mai, Yolk@shell SiO,/C microspheres with semi-graphitic carbon coating on the exterior and in-
terior surfaces for durable lithium storage, 299-305, Copyright 2019, with permission from Elsevier; (e, f) D.L. He, P. Li, W. Wang,
Q. Wan, J. Zhang, K. Xi, X.M. Ma, Z.W. Liu, L. Zhang, and X.H. Qu, Small, 16, art. No. 1905736 (2020) [99]. Copyright Wiley-VCH

Verlag GmbH & Co. KGaA. Reproduced with permission.
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maintains the integrity of the whole particle structure, which
is beneficial to the interface stability, thus promoting the
steady growth of the SEI film. The yolk-shell structured
Si0,/C material shows a good cycle performance of 972
mAh-g ! after 500 cycles at 500 mA-g ' [98]. Our team pre-
pared a dandelion-like highly porous SiO, particle coated
with a conformal carbon layer, in which the abundant meso-
pores effectively accommodate the volume variation of the
particles upon lithiation, thereby endowing the material with
an excellent cycle stability of 88.6% capacity retention at 2
A-g " after 1000 cycles [74].

5.2. SiO,-based composite anode materials

Another effective way to resolve the particle pulveriza-
tion is to combine SiO, with a second phase to form mul-
tiphase architecture (carbon, metal, metal oxide, etc.). The
second phase can buffer the volume change caused by SiO,
lithiation, prevent the aggregation of SiO, particles, and/or
construct a conducting network between the particles to im-
prove the cycling performance of the electrode.

5.2.1. SiO,/C composites

Combining SiO, with carbon materials is a common,
simple, economical, and overall promising approach to im-
prove the performance of SiO, anodes. Carbon materials can
efficiently improve the conductivity and thereby promote the
reaction kinetics occurring at the electrodes. Furthermore,

Int. J. Miner. Metall. Mater., Vol. 29, No. 4, Apr. 2022

carbon materials can properly buffer the volume changes of
Si0, during cycling and thus enhance electrode stability [51].
Several methods can be employed to synthesize SiO,/C com-
posites, but the electrochemical properties of the prepared
composites differ greatly. A general overview of the recently
published results is shown in Table 1.

As observed from Table 1, the carbon materials applied to
form composites with SiO, mainly include graphite, amorph-
ous carbon, graphene, and carbon-based nanomaterials.
Graphite is known for its good electrical conductivity, which
can enhance the electrode reaction kinetics of SiO,.
Si0,/graphite composites can be prepared by direct mixing or
by coating the surface of SiO, with graphitized carbon
[103,106,116].

An amorphous carbon layer can be formed by mixing Si.
O, with organic materials and calcining at high temperatures.
The formed carbon shell layer effectively improves the con-
ductivity of SiO,-based composites and buffers the volume
changes of SiO, during lithiation/delithiation. Compared with
a direct mixing method, adding carbon source in a sol-gel
process allows to realize a uniform dispersion of carbon
source with silicon source in controlled hydrolysis
[69,71,84,104,117]. Uniformly dispersed SiO,/C composites
can also be synthesized using a hydrothermal method
[72,108,118]. As a representative sample, SiO,/C composite
spheres prepared from the mixture of polydimethylsiloxane

Table 1. Comparison of electrochemical performance of SiO,—C composite electrodes.

Anode Carbon Carbon Initial discha'rge capacitz (mAh- gfl)( Stable capacity

. content / Charge capacity (mAh-g™')/Coulombic (mAh-g')/ Number Year Ref.
material source wt% efficiency (%)/Current density (mA-g ") of cycles

Si0,/C Citric acid 1 1995/1297/65/100 844/200 2017 [100]
Si-Si0,~C Citric acid 11 1948/1562/80/100 1373/100 2017 [l01]
Si/Si0,@C Sucrose 63 1619/1214/75/100 1095/100 2018 [102]
Si0,/C RF 40 1460/965/66/100 854/150 2018  [58]
Si0,/rGO GO — 3765/2564/68/100 580/200 2018 [78]
Si0,/G/C Graphite, Pitch 74% 775/653/84/100 524/350 2019 [103]
Si/Si0./N—-C Konjac flour 48 1757/1147/65/100 952/100 2019 [104]
Si0,/C Sucrose 12 1284/830/65/100 755/300 2019 [69]
Si0,/ND-C Citric acid 37 1793/1209/67/100 1182/100 2019 [105]
SiO,@graphite—Fe Graphite — 2331/1139/49/200 757/100 2019 [106]
Si0,@C C,H, (CVD) 7 1986/1491/75/1000 1290/500 2019 [107]
Si0,/C Hexane 8 1666/1081/65/100 1029/100 2019 [108]
DC-HSIO, pﬁﬁi‘iﬁe?fgin 22 1858/1113/60/100 982/200 2019 [70]
SiO,/graphene Graphene — 2091/1326/63/100 1270/120 2019 [109]
GO@SiO,@C GO, PVP 6 1785/707/40/100 410/200 2020 [110]
N@C/SiO, Rice husks — 2225/1661/72/100 1019/100 2020 [111]
VG@SiO/N—C C?;; I()%;;E)’ 33 1797/1324/74/100 1230/100 2020 [112]
Void@Sio,@C Pitch 33 1226/751/61/100 696/500 2020 [99]
Si0,/C Bamﬁﬁﬁsh""t 77 1332/1258/94/200 1289/400 2021 [113]
Si-Si0,@C  Sugarcane leaves 60 1451/1277/88/200 1562/400 2021 [114]
Si0,/C Citric acid 43 1067/684/64/100 721/202 2021 [115]

Note: RF—resorcinol/formaldehyde; MWCNT—multiwall carbon nanotube; PAN—polyacrylonitrile; G—graphite; rGO—reduced

graphene oxide; ND—nano-diamond; DC—dual carbon conductive network; VG—uvertical graphene; PVP—polyvinylpyrrolidone.
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and hexane show a high reversible capacity of 1603 mAh-g™'
with a capacity retention of 96.1% at 0.2 A-g™' after 400
cycles [108].

Graphene has a high surface area, superior electronic con-
ductivity, and excellent mechanical flexibility. The incorpor-
ation of graphene into SiO, can increase electronic conduct-
ivity, limit the volume change, and improve electrode reac-
tion kinetics and cycling performance. Various SiO,/
graphene composites as anodes for LIBs have been reported.
SiO,/graphene composites with different ratios were pre-
pared from multilayer graphene and SiO, powders through
HEMM [109]. The prepared composite electrode exhibits a
reversible capacity of 1326 mAh-g™' with a capacity reten-
tion of 95.8% after 120 cycles, which is much higher than
that of SiO, electrodes (capacity retention of 62.6% after 120
cycles). With respect to the SiO,/graphene composite, the in-
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troduction of other carbon components and the design of spe-
cial structures were also adopted to improve the electro-
chemical performance of SiO, anodes. Multicomponent
nanosheets rGO-SiO,@C were prepared (Fig. 5(a)) in a con-
figuration of rGO nanosheets as the substrate, porous SiO, as
the intermediate layer, and nitrogen-doped nanoporous car-
bon as the shell. The highly porous structure of the compos-
ite ensures good cycling stability of the electrode (Fig.
5(a)—(c)) [110]. Similar multicomponent microspheres were
prepared by Han et al. [112], in which SIOCN microspheres
were obtained by pyrolysis of C;oHyN,OSi, and then
graphene (VG) was vertically grown on their surface. The
outer porous graphene and inside conductive N-doped car-
bon enable the multicomponent SiO,-based microspheres to
exhibit an attractive electrochemical performance with a high
specific capacity and long-term cyclability (Fig. 5(d)—(f)).
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(a) Schematic of the proposed fabrication route of rGO@SiO,@C nanosheets; (b) TEM image of rGO@SiO,@C; (c) CE

and cycling stability at a current density of 1 A-g”' of rGO@SiIO,@C and rGO@SiO,@C; (d) diagram for the synthesis of VG@Si.
0,/NC microspheres; (¢) SEM image of VG@SiO,/NC; (f) Comparison of cycling performance of the prepared samples at 0.1 A-g™".
(a—c) Reprinted from L.Y. Chen, J. Zheng, S.Y. Lin, S. Khan, J.L. Huang, S.H. Liu, Z.R. Chen, D.C. Wu, and R.W. Fu, Synthesis of
SiO,/C composite nanosheets as high-rate and stable anode materials for lithium-ion batteries, ACS Appl. Energy Mater., 3(2020), No.
4, p. 3562. Copyright 2020 American Chemical Society; (d—f) reprinted with permission of Royal Society of Chemistry, from Vertical
graphene growth on uniformly dispersed sub-nanoscale SiO,/N-doped carbon composite microspheres with a 3D conductive net-
work and an ultra-low volume deformation for fast and stable lithium-ion storage, M.S. Han, Y.B. Mu, F. Yuan, J.B. Liang, T. Jiang,
X.D. Bai, and J. Yu, 8, Copyright 2020, permission conveyed through Copyright Clearance Center, Inc.

Carbon nanotubes have attracted much attention because
of their numerous advantages, including good conductivity,
excellent flexibility, high strength, and good stability. Their
usage to form composites with SiO, is expected to strengthen
electrical conductivity, homogenize the electrode reaction on
the whole electrode surface, enhance the resistance against
stress, and therefore improve the cycling performance of the
electrode. For example, Guo et al. [119] prepared a flexible
continuous thin film electrode composed of carbon nan-
otubes and SiO,, which show a relatively stable and high spe-
cific capacity of ~1240 mAh-g”' after 100 cycles at 100
mA-g.

5.2.2. SiO/metal and SiO,/metal oxide composites

In addition to combining SiO, with various carbon materi-
als, compositing SiO, with metals and metal oxides is anoth-
er effective way to improve the electrochemical performance
of SiO; electrodes. The metal oxides formed by the reaction
of SiO, and metals can alleviate the large volume changes of

SiO, electrodes during cycling. Moreover, the added metals
can enhance the electronic conductivity, which can further
improve the charge transfer kinetics of SiO, anodes.

Wen and other researchers [48,120] prepared a series of
nanosized Si-based composites using SiO and metals, such as
Li or Ni [121], by using HEMM followed by heat treatment.
During milling, nanosized composites consisting of an inact-
ive matrix (Li,0O, Li,SiO,, or Ni,Si0,) and uniformly distrib-
uted active particles (Si or Si—Ni) form (Fig. 6(a)). The inert
phases can effectively buffer the volume expansion and en-
hance the cycling stability of electrodes. The ICE of this type
of electrode can be considerably increased at the expense of
specific capacity because the oxygen in SiO has been fixed
by the addition of metals to form an inactive matrix.

Metals coated on the SiO, surface can effectively mitigate
the pulverization of the electrodes. Apart from enhancing the
conductivity, the integrity of the frame structure of the mater-
ial can be improved with metal nanoparticle coating. This can
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Fig. 6. (a) HRTEM image of the composite powder after milling SiO and lithium metal for 10 h, and the inset of the figure shows
clear lattice fringes of Li,SiO,; (b) schematic particle structure; (¢) HRTEM image; (d) cycle performance; (e) rate performance of
SiO,—TiO,@C ; (f) cycling performance of cells with UHEM anode (current C/9 and C/3) and SPEX anode (current C/3) at room
temperature. (a) Reprinted from J. Power Sources, 164, X.L. Yang, Z.Y. Wen, X.X. Xu, B. Lin, and S.H. Huang, Nanosized silicon-
based composite derived by in situ mechanochemical reduction for lithium ion batteries, 880-884, Copyright 2007, with permission
from Elsevier; (b—e) Z.L. Li, H.L. Zhao, P.P. Lii, Z.J. Zhang, Y. Zhang, Z.H. Du, Y.Q. Teng, L.N. Zhao, and Z.M. Zhu, Adv. Funct.
Mater., 28, 1605711 (2018) [73]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission; (f) reprinted from
B. Liu, A. Abouimrane, Y. Ren, M. Balasubramanian, D.P. Wang, Z.Z. Fang, and K. Amine, New anode material based on
SiO-Sn,Co,C; for lithium batteries, Chem. Mater., 24(2012), No. 24, p. 4653. Copyright 2012 by American Chemical Society.

be attributed to the homogenized electrode reaction on the
particle surface enabled by the metal nanoparticles, which
ensures a uniform particle volume change and so less struc-
tural stress inside the particles. Numerous SiO,-based com-
posite materials coated with W [122], Cr [123], or Cu [124]
have been developed by physical vapor deposition or wet-
chemistry methods.

In addition to improving the cycling performance of SiO,,
some additional benefits can be obtained by using metal ox-
ides to form composites. For example, TiO, has various mer-
its, including high thermal stability (which helps suppress re-
actions between SiO, and the electrolyte), good mechanical
properties to endure the volume changes of SiO,, and low
costs. Several SiO,-based composites have been reported
with the addition of TiO, [91,125-126]. Li et al. [73] de-
signed a watermelon-like structured SiO,-TiO,@C nano-
composite by using the sol-gel method (Fig. 6(b)), TiO,
nanocrystals were evenly embedded inside the SiO, matrix
(Fig. 6(c)). The addition of TiO, components effectively im-
proves the electron and lithium-ion conductivity inside SiO,
particles and releases the structural stress occurring in the
charge and discharge of SiO,. The SiO~TiO,@C electrode
exhibits stable cycle performance (~910 mAh-g™" after 200
cycles at 0.1 A-g") and excellent rate performance (Fig. 6(d)
and (e)) [73].

Moreover, some other metal oxides, such as Fe,O; [127],
Zr0, [128], and SnO, [129], are employed to improve the

cycle performance of SiO, by increasing the conductivity of
the composite and buffering the volume changes during lithi-
ation/delithiation. Liu et al. [130] prepared a family of com-
posite anode materials, SiO/Sn;Co3Cyy, consisting of
50wt% SiO and 50wt% Sn3;Co3,Cy, by a custom-made ul-
trahigh-energy ball milling (UHEM) setup. The formed com-
posite materials combine the high capacity of SiO, and the
good cycle performance of Sn;Co3¢Cyo. Experimental results
(Fig. 6(f)) showed that the UHEM SiO/Sn;;Co03,Cy4y compos-
ite electrode delivered reversible capacities of 1040 and 900
mAh-g at currents of 100 and 300 mA-g ' after 100 cycles,
respectively. Subsequently, Liu ef al. [131] used a cheaper
and environmentally friendly iron instead of expensive and
toxic cobalt to prepare SiO/Sn.Fe,C. composite anodes
through the same method. It was shown that the S0wt%
SiO—-50wt% SnzFes;Cy composite electrode delivered re-
versible capacities of 900 and 700 mAh-g ™ at current densit-
ies of 300 and 800 mA-g ', respectively. Table 2 summarizes
the representative electrochemical performance of SiO,/met-
al and SiO,/metal oxide composite anodes.

5.3. Electrolyte additives for stabilization of SEI film on
SiO, electrodes

The discussed above serious problem related to the in-
stability of SEI formed on SiO, materials can be addressed by
proper usage of the liquid electrolyte additives. In fact, the
degradation of a battery involves the active material and the
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Table 2. Electrochemical performance of SiO,/metal and SiO,/metal oxide composite electrodes

Initial discharge capacity (mAh-g ")/

Ano@e Charge capacity (mAh-g')/Coulombic efficiency (%)/ Stable capacity (mAh-g™)/ Year Ref.
material Current density Number of cycles
SiO/Li 951/770/81/0.1 mA-cm? 762/50 2007 [132]
SiO/SnO/Li 1338/901/67/0.1 mA-cm2 574/200 2009 [90]
Si0/Sn3¢C030Cao 1030/1480/70%/300 mA-g 900/300 2012 [130]
Si0/SnzgFe30Cyg 1343/900/67/300 mA-g ' 900/50 2013 [131]
Si0/Fe,05 2773/1893/68/160 mA-g™! 1335/50 2013 [127]
C/Cr/SiO, 780/591/76%/0.5 C 490/50 2014 [123]
SiO/W/graphite 964/566/59/0.5 C 358/100 2015 [122]
Si0/Zr0,/C 1737/1157/67/80 mA-g™' 721/100 2016 [128]
SiO/Cu/graphite 1177/2473/48/50 mA-g”' 836/100 2017 [124]
SiO/TiO, 1070/137/78/100 mA-g* 730/100 2019 [125]
Si0,/Sn0,/C 2186/1158/53/100 mA-g™ 1127/100 2020 [129]

electrolyte. Regarding typically used liquid electrolytes, Lin
et al. [133] found that LiPF; salt can be hydrolyzed even in
the presence of a small number of water molecules, which
generates harmful HF [Egs. (1)—(3)] [133-134]:

LiPF, — LiF + PFs (M
PFs + H,O — POF; + 2HF (2)
POF; + H,O —» HPO,F, + HF (3)

The strong tendency of Si to form Si—F bonds promotes
the reaction between SiO and HF, which produces more H,O
and thus causes further hydrolysis of LiPF [134]. This pro-
cess can destroy the carbon layer on the surface of SiO and
prevents the formation of the stable SEI film, which ulti-
mately leads to the ongoing destruction of the electrode.

Electrolyte additives are the most simple, economical, ef-
fective, and feasible way to help construct a stable SEI film
on anode materials, preventing the continuous decomposi-
tion of the electrolyte [135]. Mitigating the damage of HF on
SiO, anodes is also crucial for the cycling performance of Si-
O,-based electrodes.

Vinylene carbonate (VC) and fluoroethylene carbonate
(FEC) are the most widely used additives in SiO,-based LIBs
[27,136-138]. VC was first reported as the additive for Si-
based LIBs by Chen et al. [139] in 2006. Such addition facil-
itates the formation of a uniform, smooth, and flexible SEI
film with polycarbonate as the main component to withstand
the volume changes of SiO, [134]. FEC can also form a
stable SEI film on the surface of Si, which prevents the pen-
etration of the electrolyte breaking the —Si—Si— network
bonds [140] and restricts the decomposition of the electro-
lyte, the oxidation of Si [141], and even the diffusion of HF
to some extent [142]. The main components in the SEI film
formed by FEC are LiF and polyene compounds. LiF nano-
crystals not only have well Li" conductivity but also can en-
hance Li" conductivity by the creation of interface defects
between LiF and the organic matrix in the SEI film, which
improves the rate performance of SiO, electrodes [134,141].
However, VC and FEC have their own limitations. The VC
additive usually causes a dense SEI film, which blocks the
migration of Li" and so limits the power density of the bat-

tery. The film formed by FEC is less flexible and cannot fit
well with the volume changes of SiO,, thus reducing the
cycle life [134]. Our group employed LiNO; and VC as syn-
ergistic additives for electrodes and electrolytes, respectively,
to improve the electrode/electrolyte interface properties. The
reduction products of Li;N and LiN,O, from LiNO; and
polycarbonate from VC endow the SEI film with high ionic
conductivity and enhanced elasticity, which enable a fast and
uniform electrode reaction. The synergistic effect of LiNO;
and VC enables the bare SiO electrode to deliver a high re-
versible capacity of 1062.3 mAh-g™' and an excellent cycling
performance with 94.5% capacity retention and 99.80% cou-
lombic efficiency for 160 cycles [143].

Many functional electrolyte or electrode additives have
been developed to promote the formation of stable and firm
SEI film. For example, LiF was introduced into the electrode
to compensate for the Li" consumption during SEI film form-
ation [116]. 4,5-Difluoro-1,3-dioxolan-2-one shows strong
electronegativity because of the two fluorine elements and
thus can be easily reduced to form a solid SEI film on the
electrode surface, thus improving the cycling performance of
SiO, electrodes [144]. LiBOB can decompose to form a more
resistive SEI film, which can control the alloying depth of
SiO and prevent the formation of crystalline Li;sSi, phase,
thus improving the cycling performance of SiO electrodes
[145]. Moreover, LiTFSI/Py13-TFSI can passivate the SiO,
electrode surface to form a stable, dense, and flat SEI film
composed of pyrrolidinium, TFSI ions, and their decomposi-
tion products, effectively improving the cycling life of SiO,-
based anodes [146].

5.4. Methods for overcoming the low ICE of SiO,-based
anodes

In the initial lithiation of SiO,, the ICE of the SiO, anode
can be much lower than that of pure Si or graphite because of
the formation of the SEI and irreversible phases, such as
Li,O, Li,SiO,, and other lithium silicates. A large part of Li
ions from the electrolyte and cathode is immobilized in the
first lithiation, decreasing the availability of lithium and sig-
nificantly restricting the practical applications of SiO,. Many
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effective methods have been proposed to mitigate this funda-
mental problem. At present, the two most important
strategies are prelithiation and prereduction.

5.4.1. Prelithiation methods

Prelithiation is a viable method to offset the irreversible Li
consumption during cycling by introducing extra Li into
electrodes in advance. The effective approaches reported in-
clude direct contact with metal lithium, chemical and electro-
chemical prelithiation, and cathode-side prelithiation.

(I) Direct addition of metal lithium powders.

Direct addition of metal lithium powders into the SiO,
electrode is commonly adopted for Si-based anodes to com-
pensate for the large irreversible lithium consumption. The
direct contact of metal lithium with active SiO, particles
makes SiO, partially prelithiated, which allows the genera-
tion of irreversible products before the lithium comes from
the cathode during the initial charge. This phenomenon
avoids the irreversible consumption of cathode lithium.
Stable lithium metal powder (SLMP) is an efficient prelithi-
ation agent composed of lithium carbonate and lithium metal
powder [48]. Li metal particles are uniformly coated by lithi-
um carbonate, which forms a protective layer to handle the
material in dry air safely. As such, pressure must be applied
to break the lithium carbonate layer in the prelithiation pro-
cedure to activate the lithium metal powder. The complete
process of the SLMP route is shown in Fig. 7(a) [147]. In
2005, Jarvis et al. [148] first reported the application of
SLMP in the graphite anode for LIBs. By introducing
1.93wt% SLMP, the ICE of the graphite anode could in-
crease from 77.9% to 95.4%, demonstrating the high effect-
iveness of this approach. Subsequently, SLMP prelithiation
was applied to several LIB anodes, including Si [149] and Si-
O, [150-151]. With 15wt% SLMP added, the ICE of a mi-
cro-sized SiO-based anode was improved from 68.1% to
98.5% [150].

Due to the high specific capacity of metallic lithium (3860
mAh-g "), only a small amount of SLMP is sufficient to real-
ize the prelithiation of SiO, electrodes. Furthermore, SLMP
has important advantages related to the facile and control-
lable prelithiation route. However, the high cost, environ-
mental pollution, and potential safety problems limit its wide
application.

(IT) Chemical prelithiation.

As early as 2005, Tabuchi et al. [152] developed a Li-
doped SiO active material (Li,SiO) with the reduced irrevers-
ible capacity by a process involving the dissolution of naph-
thalene and metallic Li into butyl methyl ether solvent to
form a Li-organic complex solution and then immersing the
SiO electrodes in the abovementioned solution. It is a facile
method to compensate for the irreversible lithium-ion loss
that the anode materials react with reductive prelithiation re-
agents directly. The degree of prelithiation can be tuned by
the immersion time. The process of chemical prelithiation is
shown schematically in Fig. 7(b) [153].

In recent years, many prelithiation reagents have been ex-
ploited to improve the ICE of negative electrodes [152—154],
and considerable progress has been made. Yan et al. [155] re-
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ported an effective strategy to achieve the uniform pre-lithi-
ation of SiO,/C microparticles by mixing with a lithium-bi-
phenyl complex solution so that the ICE of half-cell was as
high as 90%. However, such reagents usually show high re-
activity in ambient air, which is challenging for practical ap-
plications.

(IIT) Electrochemical prelithiation.

The electrochemical approach is a relatively simple meth-
od to achieve the prelithiation of SiO, electrodes. It can be di-
vided into direct and indirect contact prelithiation routes
[156-159].

When the lithium foil is in direct contact with SiO, elec-
trodes with also a presence of the electrolyte, electrons trans-
fer from Li metal to SiO,, with concurrent insertion of Li",
because of the potential difference between the lithium foil
and SiO, electrode, achieving the required prelithiation
[156—157]. The method is simple and operable, but the pre-
lithiation depth and uniformity are not satisfactory. In 2019,
Meng et al. [158] optimized the prelithiation of the direct
contact of the anode and Li foil, proposing to add a resist-
ance buffer layer (RBL) between the Li foil and SiO, elec-
trode to achieve uniform prelithiation. The rate and depth of
lithiation can be adjusted by controlling the resistance of
RBL and the time of the process. When assembled in a full
cell with NCM622 cathode, the ICE of the prelithiated
NCM622-Si0, full cell can increase from 68.9% to 87.3%
with respect to the one without prelithiation.

As for the indirect contact prelithiation, a temporary bat-
tery must be constructed using SiO, and Li metal as the posit-
ive and negative electrodes, respectively. The SiO, electrode
is discharged with a specific current to achieve the insertion
of Li" [159]. The degree of prelithiation can be controlled by
circuit parameters, such as voltage and current density.
However, constructing a temporary battery is time-consum-
ing and brings additional costs, which is unrealistic for com-
mercial applications. To overcome this issue, Kim et al. [159]
proposed a modified electrochemical prelithiation where
pressure on a temporary constructed cell was applied, and a
roll-to-roll manufacturing line was employed, as shown in
Fig. 7(c). The degree of prelithiation can be accurately tuned
by controlling short circuit time and monitoring voltage.
When the resistance reached 100 Q and the short circuit time
was 30 min, the carbon-coated SiO, (denoted as c-SiO,) elec-
trode showed an optimized ICE of 94.9%. When assembled
with NCA cathode, the energy density of the prelithiated c-
SiO/NCA full cell was 155% higher than that of the pristine
¢-SiO,/NCA battery.

(IV) Cathode-side prelithiation.

The ICE of SiO, can be improved by introducing Li-con-
taining cathode additives. As shown in Fig. 7(d) [160], the in-
troduction of such additives can effectively compensate for
the irreversible capacity loss of SiO, and reduce the Li" loss
of the cathode. Cathode additives, such as LigCoO, [160],
Li;N [161], and Li,O, [162], could supply extra lithium to
compensate for the irreversible capacity loss of the anode.
Noh and Cho [160] assembled a LiCoO,/SiO, full cell with
15wt% LisCoO, added to the LiCoO, cathode, which exhib-
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its a reversible capacity ratio from 43% to 66%.

In general, cathode-side prelithiation provides more op-
tions for improving the ICE of SiO,. Different additives
should be matched with the potential of the cathodes so that
the extra-lithium can be released in the charge window.
Moreover, the additive amount should be well-controlled.
5.4.2. Prereduction method

As discussed above, in the initial lithiation process, the ir-
reversible capacity loss of SiO, mainly comes from the side
reactions between Li and SiO, and the formation of SEI. The
former contributes a large part of irreversible capacity be-
cause of the formation of various electrochemically inactive
lithium silicates and lithium oxide. As such, the initial oxy-

gen amount x in the material strongly influences such capa-
city loss [120]. Therefore, SiO, reduction by reacting with re-
ductive metals, such as Al [163], Li [48,120], and Ni [121],
has been proposed to form metal oxides and silicates. Apart
from decreasing the x value of SiO, and avoiding the lithium
consumption from oxygen, the formed metal oxides and
silicates can buffer the volume changes of SiO, to improve its
cycle performance.

Jeong et al. [163] prepared a nanostructured composite
material with chemical composition SiAl;,O through
HEMM using SiO powder and Al metal powder as the raw
materials. The SiO, in the disproportionated SiO can be re-
duced to Si, and the electrochemically inactive Al,O; is gen-
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erated in HEMM, which can mitigate the cracking and frac-
ture of the active material in the cycling process. It was
shown that such formed SiAl,,O composite was composed
of silicon nanocrystallites and an amorphous matrix consist-
ing of Si0, and Al,O;. The ICE was increased by 10% when
compared with unmodified SiO, and the SiAl,,O material ex-
hibited a stable cycling performance with a reversible capa-
city of 800 mAh-g ' over 100 cycles at 120 mA-g .

5.5. Alleviation of the macro-cracking effect of SiO, elec-
trodes

It is of great importance to ensure tight bonding of SiO,
particles and the conductive agent between each other, and
with the current collector, to prevent loss of electrical contact.
However, providing sufficient adhesion to maintain elec-
trode integrity under large volume changes upon cycling is
difficult because of the weak Van der Waals forces between
SiO, and typically used polyvinylidene fluoride (PVDF)
binders. In addition, the usage of PVDF results in strong
swelling and the toxicity of concomitant solvent N-methyl-2-
pyrrolidone. Various binders have been employed in SiO,-
based electrodes and can be classified into two categories
based on their functions: (1) improvement of adhesion
through hydrogen bonding between the binder and SiO, and
(2) formation of a 3D cross-linked network to improve the
mechanical properties of the electrode.

5.5.1. Hydrogen bonding for improving adhesion

The Van der Waals force between the binder and the SiO,
particle is a weak intermolecular force. Thus, it can be easily
destroyed by large volume changes. By contrast, the hydro-

K,

(a)

KGM molecular chain
SiO; prolective layer

Conjugated
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gen bond is relatively strong and shows some self-healing
function in volume change environments [164—165]. There-
fore, the design of binders with functional groups that can
form hydrogen bonds with SiO, particles has become an im-
portant aspect for the deployment of SiO, in LIBs.

Sodium carboxymethyl cellulose (CMC) and sodium al-
ginate (Alg) have been adopted as binders in SiO, electrodes;
these binders, which benefit from the presence of polar
groups on their molecular chains, can provide stronger adhe-
sion than PVDF by forming abundant hydrogen bonds
[156,166—-167]. This phenomenon is also widely observed in
other biomass-originating binders, such as xanthan gum
[168], guar gum [169], chitosan [170], B-cyclodextrin [171],
and konjac glucomannan (KGM) [26]. For example, com-
pared with Alg, KGM can form more hydrogen bonds with
Si—OH on the surface of Si@SiO,. Molecular mechanics
simulation revealed that the interfacial adhesion energy
between KGM and Si@SiO, is 0.205 J-m % which is 0.018
J-m? higher than that of Alg (Fig. 8(a) and (b)). The strong
adhesion of binder with SiO; active particle and the self-heal-
ing ability of hydrogen bond make the electrode tolerant to
the mechanical stress caused by the large volume change in
SiO, upon lithiation/delithiation. Some other non-biomass
adhesives, including poly(acrylic acid) (PAA) [172-173],
polyvinyl alcohol (PVA) [174-175], and polyacrylamide
[176], exhibit similar functions and can be used to improve
electrode integrity.

5.5.2. Formation of 3D cross-linked network

Morphological analysis suggests that the contact between

binders and active materials has three main types: point—
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point, point-line, and point-net. The point—point shows the
smallest contact area and the weakest adhesion. This contact
type mainly involves styrene-butadiene rubber and poly(tet-
rafluoroethylene) binders. Most of the single-polymer adhes-
ives form the point-line contact, which provides a large com-
bination area and considerable adhesion strength. Among
them, PVDF, CMC, Alg, PAA, and PVA are typical ex-
amples. Although the adhesion area of the point-net contact
type is not much larger than that of the point-line contact
type, it can effectively accommodate the volume changes in
SiO, through the deformation between the branches to form a
3D bonding network, showing the best adhesion perform-
ance [177]. Therefore, forming a cross-linked 3D adhesive
network is another important area regarding the development
of high-performance binders.

PAA is a widely used material for 3D cross-linked net-
work construction. It can not only form hydrogen bonds with
Si0, particles but also partly bridge and cross-link itself by
carboxylic groups in PAA molecules, forming a 3D network
that could accommodate the large volume changes of SiO,
[172]. However, PAA is apt to self-polymerize to form stiff
bundles through carboxyl groups, which would reduce the
contact sites of the binder with active SiO;, particles. He et al.
[99] in situ cross-linked polyacrylic acid and d-sorbitol bind-
er to form a 3D network structure, which enables the SiO
electrode to have improved cycling stability than that with
PAA by providing more contact sites for active particles. In
another research, Cho et al. [178] prepared polyrotaxane
cross-linked PAA (PRPAA) as a binder. PRPAA is com-
posed of cyclodextrin rings and poly(ethylene glycol) chains.
Cyclodextrin rings covalently cross-link to PAA through the
ester linkage and thread along the poly(ethylene glycol)
chain, providing a sliding motion effect (Fig. 8(c) and (d)),
which ensures a good elasticity of this binder. Based on this
design, 1-pyrenemethanol (PyOH)-modified carbon-coated
Si0 (c-SiO) electrode with mass loading between 2.3 and 2.5
mg preserves a capacity of approximately 2.54 mAh-cm™
with 97.6% capacity retention after 100 cycles at 1.78
mA-cm . In addition, 92.6% capacity retention was achieved
after 250 cycles (Fig. 8(e))

6. Conclusions and outlook

Without a doubt, SiO, is the most potential anode material
for high-energy-density LIBs, owing to the high specific ca-
pacity and manageable volume changes in lithiation/delithi-
ation processes. However, several challenges remain toward
the practical deployment of SiO, in LIBs, including low ICE
and poor cycling performance. The latter is associated with
particle pulverization, unstable SEI film, and electrode crack-
ing failure. To overcome these issues, great efforts have been
exerted in recent years, which resulted in significant ad-
vancements in the electrochemical performance of SiO,-
based anodes.

A series of novel structures and composites was designed
to overcome the material pulverization caused by volume

changes. Introducing free space and combining SiO, with the
conducting phase (different forms of carbon, metallic ele-
ments, MO,, and so on) are effective ways to improve elec-
trochemical performance. The synthetic technical routes and
specific processing parameters have a strong influence on
particle morphology, microstructure, and chemical composi-
tions (x value), which decisively affect the electrochemical
performance demonstration of SiO,-based electrodes.

The development of additives and novel binders is an im-
portant direction to improve the performance of SiO,-based
anodes. Additives for electrolytes or electrodes can enhance
the stability of the SEI film on SiO, and reduce the continu-
ous consumption of the electrolyte. Meanwhile, the undesir-
able thickening of the SEI film and the increase in the intern-
al resistance of the battery can be avoided. Apart from ex-
ploring novel additives, a combination of different electro-
lyte additives could be effective and useful. Binders maintain
electrode integrity and relieve the performance degradation
due to loss of the electrical contact between the active materi-
al and the conductive agent or the current collector. Future
works could focus on the exploration of new binders with
specific groups that have high adhesion energy with SiO,/Si,
self-healing function, and/or the ability to form a 3D cross-
linked network. Functional conductive binders are also
meaningful.

Prelithiation and prereduction are efficient ways to over-
come the low ICE of SiO, electrodes. Prelithiation technolo-
gies include the direct addition of metal lithium powders or
prelithiation agents, chemical reaction, electrochemical pre-
lithiation, and cathode-side prelithiation. Prereduction of Si-
O, with metal is another route to increase the ICE and im-
prove the cycle performance of SiO, electrodes. In this re-
gard, the cost, safety, and scalability are crucial factors af-
fecting the practical application of these techniques in SiO,-
involved batteries.

Although SiO, anodes are still facing critical challenges in
route to commercialization, significant progress has been
achieved in electrochemical performance in recent years. Fu-
ture breakthroughs most likely related to the development of
simple and low-cost synthesis routes and the overall im-
provement of the performance of SiO, anodes shall ensure
their wide usage in next-generation high-energy-density LIBs.
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