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Abstract: The demand of high-end electromagnetic wave absorbing materials puts forward higher requirements on comprehensive perform-
ances of small thickness, lightweight, broadband, and strong absorption. Herein, a novel multi-layer stepped metamaterial absorber with gradi-
ent electromagnetic properties is proposed. The complex permittivity and permeability of each layer are tailored via the proportion of carbonyl-
iron and carbon-fiber dispersing into the epoxy resin. The proposed metamaterial is further optimized via adjusting the electromagnetic para-
meters and geometric sizes of each layer. Comparing with the four-layer composite with gradient electromagnetic properties which could only
realize reflection loss (RL) of less than −6 dB in 2.0–40 GHz, the optimized stepped metamaterial with the same thickness and electromagnetic
properties realizes less than −10 dB in the relevant frequency range. Additionally, the RL of less than −15 dB is achieved in the frequency
range of 11.2–21.4 GHz and 28.5–40 GHz. The multiple electromagnetic wave absorption mechanism is discussed based on the experimental
and simulation results, which is believed to be attributed to the synergy effect induced by multi-scale structures of the metamaterial. Therefore,
combining multi-layer structures and periodic stepped structures into a novel gradient absorbing metamaterial would give new insights into
designing microwave absorption devices for broadband electromagnetic protections.

Keywords: broadband absorption; metamaterials; gradient impedance; multi-scale synergic effect

 

 1. Introduction

As a new class of functional materials which is designed
for efficiently reducing or eliminating reflected electromag-
netic (EM) waves [1–3], absorbing materials are implemen-
ted to eliminate adverse EM waves effectively in electronic
safety,  healthcare,  and  national  defense  security  [4–5].  For
engineering  applications,  it  is  also  required  to  have  light
weight, temperature resistance, corrosion resistance, and oth-
er properties, in addition to realizing the efficient absorption
in  a  wide  frequency  band  [6–8].  Traditional  EM absorbing
materials  are  mostly  homogeneous  composites  formed  by
dispersing  lossy  absorbents  in  the  wave-transparent  matrix,
and the impedance matching and EM wave loss characterist-
ics  are  strongly  enslaved  to  the  intrinsic  EM parameters  of
the absorbing material [9–10]. Generally, there are two types
of lossy absorbents: magnetic lossy absorbents, such as car-
bonyl iron particles (CIP) [11–12], iron-base alloys [13], and
ferrites [14]; dielectric lossy absorbents, such as carbon fibers
[15–17],  carbon  nanotubes  (CNTs)  [18–19],  and  graphene
[20–22].  However,  the  high  density  and  the  degradation  of

magnetic lossy absorbents in the low-frequency range would
seriously constrain their applications [23]. Similarly, single-
layer homogeneous composites prepared with dielectric lossy
absorbents  are  difficult  to  realize  efficient  absorption  in  a
wide  frequency  range,  due  to  the  competition  between  the
impedance matching and electromagnetic losses,  since both
of  which  are  directly  dependent  on  the  EM  parameters
[24–26].

Therefore,  an  altered  approach  is  proposed  to  design  an
impedance-matched absorbing structure with layers of differ-
ent EM parameters (multi-layer gradient design): the materi-
al with small EM parameters and low loss is placed as the top
layer  to  meet  the  requirement  of  impedance  matching,  and
the material with large loss is chosen as the bottom layer to
meet  the  requirements  of  attenuation  for  transmitted  EM
waves [27–29]. For instance, a two-layer polymer-based ab-
sorbing composite reinforced by two types of SiC fibers with
different  electrical  resistivity  achieved  efficient  absorption
(>90%) in both X and Ku bands [24],  and the efficient  ab-
sorption  of  another  five-layer  gradient  CNTs/SiO2 compos-
ites  enhanced  1.5  times  as  high  as  that  of  the  single  layer 
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CNTs/SiO2 [30].  Therefore,  the impedance matching of the
absorbing structures could be significantly improved with the
multi-layered structure with gradient EM parameters, which
can effectively  reduce the  harsh requirements  to  realize  the
broadband  absorbing  performances  [31–33].  However,  the
multi-layer structure cannot solve the problem of EM wave
absorption in ultra-broadband frequency (such as 2–40 GHz),
which limits the critical engineering applications [34].

Another  efficient  way to  improve the  impedance match-
ing is the meta-structure design, and the discontinuous three-
dimensional  (3D)  periodic  structure  design  can  tailor  the
equivalent  EM  properties  through  the  optimization  of  unit
cells,  thereby  further  reducing  the  relationship  between  in-
trinsic  EM  parameters  and  impedance  matching  [35–38].
Furthermore,  the  periodic  array  of  subwavelength  protru-
sions could realize the regulation of EM waves, which would
generate  multiple  absorption  without  increasing  the  thick-
ness  of  the  material,  thereby effectively  broadening the  ab-
sorption  bandwidth  [39–42].  For  instance,  a  3D  reduced
graphene oxide sponge metamaterial could achieve the effi-
cient EM wave absorption of 2.4–40 GHz by optimizing the
impedance [43]. Therefore, periodic structure design togeth-
er  with  the  micro-structure  design  for  absorbing  materials
would excite  a  synergistic  effect  with the multi-scale struc-
tures,  which  would  broaden  the  effective  absorption  band-
width of  the  absorbing material  with  relatively small  thick-
ness [34].

It  can  be  seen  from the  above  that  both  multi-layer  and
meta-structures could improve the impedance matching char-
acteristics  to  achieve  efficient  broadband  absorption.  Fur-
thermore, there should be more degrees of freedom for mac-
roscopic  structure  design  via  combining  multilayer  struc-
tures and periodic structures into a gradient absorbing com-
posite  metamaterial  (GACM),  which  would  give  new  in-
sights  into  broadband  microwave  absorption.  In  this  paper,
the resin-based absorbing composites reinforced with typical
spherical  CIP  and  carbon  fibers  (Cf)  were  fabricated  as  in-
trinsic  lossy  materials  with  tunable  EM  parameters  for
GACM design. The periodic stepped structure with gradient
EM parameters was designed to optimize the absorbing prop-
erties,  then  the  four-layered  stepped  metamaterial  absorber
was  fabricated  via  the  template  method.  The  correlation
between  the  multi-scale  structures  (including  microstruc-
tures, layered structures, and periodic structures) and broad-
band absorbing properties was specified based on the simu-
lated  and  experimental  results.  Therefore,  the  proposed
GACM realizes reflection loss (RL) of less than −10 dB in
the frequency range of 2.0–40 GHz with a total thickness of
8.0 mm, indicating an ultra-broadband EM absorption, which
could  be  applied  as  absorbing  devices  for  broadband  EM
protections.

 2. Experimental
 2.1. Materials

Spherical CIP were purchased from Zhongmai Metal Ma-
terial  Technology  Ltd.  China  and  exhibited  a  diameter  of

5–10 µm with a purity of 98% and the density of 2.45 g/cm3.
Cf with  an  average  diameter  of  7 µm  and  the  density  of
1.76 g/cm3 were supplied by Shanghai Liso Composite Ma-
terial  Technology  Co.,  Ltd.,  China.  The  dispersant  (9076,
BYK Inc., Germany) was selected. The epoxy resin (ER) and
its curing agent were purchased from Shenzhen Jinhua Elec-
tronic  Materials  Co.  Ltd.  China.  The  defoaming  agent  (or-
ganic  silicone,  T-2005)  was  supplied  by  Foshan  Shenghui
New  Material  Co.  Ltd.  China.  All  materials  are  commer-
cially available and used without further purification in this
study.

 2.2. Fabrication of CIP/Cf/ER composites

In  order  to  achieve  the  target  EM  parameters  for  meta-
structural  design,  the  CIP/Cf-reinforced ER absorbing com-
posites were fabricated in ring shapes following the standard
of coaxial method. The weight proportion of epoxy resin and
curing agent was 100:30. The weight proportions of defoam-
ing agent and dispersant in the resin slurry were 0.01% and
1%,  respectively.  First,  the  Cf and  dispersant  with  certain
volume fractions were mixed uniformly with hot epoxy resin
and  defoaming  agent,  and  then  vigorously  stirred  at  100°C
for 60 min to remove air bubbles. Second, the CIP with cer-
tain volume fractions were added into the above resin mix-
ture to obtain a new uniform mixture. Third, the certain qual-
ity  hardener  was  mixed  uniformly  for  30  min.  Finally,  the
fabricated mixture after vacuum defoaming for 30 min was
poured into a flexible silicone resin mould, and insulated at
80°C for 12 h to obtain specimens for EM parameters tests.
In order to obtain the EM properties of CIP/Cf/ER compos-
ites for grandient absorbing material designed, eight kinds of
composite (as shown in Table 1) with different compositions
were fabricated and measured.
 
Table 1.    Different volume fractions of CIP and Cf in the fab-
ricated CIP/Cf/ER composites

Sample No. Component
1# 40vol% CIP + 0.0vol% Cf

2# 45vol% CIP + 0.0vol% Cf

3# 50vol% CIP + 1.7vol% Cf

4# 55vol% CIP + 2.1vol% Cf

5# 57vol% CIP + 0.0vol% Cf

6# 57vol% CIP + 3.3vol% Cf

7# 63vol% CIP + 3.5vol% Cf

8# 65vol% CIP + 2.0vol% Cf

 

 2.3. Fabrication  of  gradient  absorbing  composite
metamaterial

The  proposed  gradient  absorbing  meta-structure  consists
of a four-layer CIP/Cf/ER composites on the top and the met-
al backplane at the bottom, which is illustrated in Fig. 1(a).
The four types of CIP/Cf/ER (5#, 6#, 7#, and 8#) are selected
for  the  layers  after  the  optimization  process.  The  details  of
optimization method for EM wave absorption performances
are in our previous work [35].  The values of the geometric
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structure parameters are chosen as follows: a1 = 18 mm, a2 =
14 mm, a3 = 12 mm, a4 = 10 mm, and d1 = d2 = d3 = d4 =
2.0 mm.

In order to verify and test the RL of the designed gradient
CIP/Cf/ER metamaterial from 2 to 40 GHz, a structural plate
of 180 mm × 180 mm × 8 mm was fabricated with a two-step
molding method, which is given in Fig. 1(b). First, the poly-
methyl  methacrylate  (PMMA)  mould  with  corresponding
sizes was manufactured by high precision numerically con-
trolled  machining.  Second,  the  flexible  female  silicone
mound was achieved via pouring the liquid high temperature
silicone  after  vacuum  defoaming  and  curing  in  the  above
male PMMA mould at room temperature for 5 h. Third, the
certain content mixture of CIP/Cf/ER were poured carefully
into the silicone mould layer to fill  the first  layer,  and then
cured at 100°C for 12 h. Then, the above procedure was re-
peated to fill the other three layers and complete the curing
process.  Finally,  the  gradient  CIP/Cf/ER  metamaterial  was
obtained by demoulding process.

 2.4. Characterization and measurements

Microstructure observations and analysis of the CIP/Cf/ER
composites  were  performed  by  using  field-emission  scan-
ning electron microscopy (SEM, Jeol, JSM-7610FPlus). The
complex  permeability  and  permittivity  of  CIP/Cf/ER  com-
posites were determined by a vector network analyzer (VNA,
N5234A) with the coaxial  test  method (outer diameter of 7
mm, inner diameter of 3 mm, and thickness of 3 mm) from 2
to 18 GHz. The RL of the prepared GACM was measured by
the arch frame test system with two broadband horn antennas
connected to two ports of the VNA (MS4644A; Japan), with
the  emitting  and  receiving  EM wave  signals  in  2–40  GHz.
CST  Microwave  Studio  was  used  to  simulate  the  RL,  EM
field distribution, and power loss of the designed GACM.

 3. Results and discussion
 3.1. Properties of CIP/Cf/ER composites

Fig.  2(a)  and  (b)  shows the  original  morphology  of  CIP
and Cf.  In Fig. 2(c), CIP and Cf are evenly dispersed in the
epoxy resin, and the morphology of CIP and Cf is similar to

the original state in Fig. 2(a) and (b), and the epoxy fills into
the  gaps  between  CIP  and  Cf.  The  measured  relative  com-
plex permeability (µ = µ′ − jµ″)) and permittivity (ε = ε′ − jε″)
of CIP/Cf/ER composites are shown in Fig. 2(d) and (e). For
all samples, the values of the real part of relative permeabil-
ity  and imaginary part  of  relative  permittivity  change relat-
ively small, while the values of the imaginary part of relative
permeability  and  real  part  of  relative  permittivity  change
greatly. Comparing the specimens of 1# and 2# (6# and 7#),
the imaginary part of permeability increases greatly, but the
imaginary  part  of  permittivity  slightly  changes  with  the  in-
crease of CIP content. As the increase of Cf content, the ima-
ginary part of permittivity increases obviously by comparing
the specimens of 3# and 4# (5# and 6#). It is shown that CIP
mainly  regulates  magnetic  loss  while  Cf mainly  regulates
dielectric loss. This is because the charge movement, which
is induced by the conductive network formed with Cf in the
alternating electromagnetic field, produces a reverse induced
magnetic field to reduce the magnetic loss ability. By intro-
ducing  these  two  kinds  of  EM  wave  absorbing  agents,  the
frequency-dpendent  permeability  and  permittivity  of  the
CIP/Cf/ER  composites  can  be  adjusted  effectively.  The  de-
creased  real  part  of  permeability  with  increasing  frequency
should be caused by the domain-wall motion and relaxation
in CIP, while the decreased imaginary part should be the res-
ult of the natural resonance and eddy-current loss in CIP. The
less variation of real part in permittivity could be due to the
fact that the polarization of the dielectric dipoles is in phase
with  the  oscillation  of  the  electric  field  vector  of  the  trans-
verse  electromagnetic  wave,  while  the  increased  imaginary
part with increasing frequency could be the result of the re-
laxation polarization and electric conductance during the os-
cillation  of  the  dipoles  in  the  high-frequency  range  [12].
Therefore, The gradient variation of EM parameters provides
more choosabilities for designing multi-layer absorbing ma-
terials.

Based  on  the  transmission  line  theory  and  metal  back-
plane model, the RL of absorbing materials can be calculated
by  its  permeability  (µ),  permittivity  (ε),  and  thickness  (d)
[44]:

 

Electromagnetic wave(a)

(b)
Gradient absorbing metamaterial

Silicone mould

Silicone mould

Fabricated sample

Silicone mould Curing process Demoulding process

Filling process

PMMA mould

Pin

Pin: power of incident wave
Pref: power of reflection wave

Unit cell Magnetic-dielectric loss composite

Carbonyl iron

Carbon fiber

Epoxy resin

ε: relative permittivity
μ: relative permeability

Pref

Fig. 1.    (a) Schematic of the proposed gradient metamaterial; (b) fabrication process of the proposed gradient absorbing metama-
terial.
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where Z0 is the characteristic impedance of free space, Zin is
the input impedance at the interface between the air and ab-
sorbing material, f is the frequency of EM wave, and c rep-
resents the speed of light in the free space. The theoretical RL
for single layer absorbing materials with respect to frequency
and thickness can be calculated through Eqs. (1) and (2). As
shown in Fig. 2(f)–(i), these single-layer CIP/Cf/ER compos-
ites  only  show  strong  EM  wave  absorption  at  certain  fre-
quency points with a certain thickness, and these absorption
peaks come from n/4 (n = 1, 2, 3, 4, …) wavelength reson-
ance [45].  Obviously,  without  macro structural  design,  it  is
difficult  to  achieve broadband absorption by simply adjust-
ing permittivity and permeability [46]. Therefore, it is neces-
sary to design multilayer and metamaterial at macro scale on
the  basis  of  the  above  material  microstructure  design  to
achieve ultra-broadband EM wave absorption.

 3.2. Gradient CIP/Cf/ER composite metamaterial

CST  simulation  optimization  was  carried  out  to  achieve
the  maximum  broadband  EM  wave  absorption  under  the
minimum  thickness.  The  effective  absorption  bandwidth
(EAB)  with  RL  less  than −10  dB  (>90%  absorption)  and
strong absorption intensity were taken as targets for material
selection  for  each  layer  and  the  optimization  of  geometric
structure parameters. Fig. S1(a) and (b) shows the simulated
RL  curves  of  gradient  structure  and  gradient  metamaterial
structure  under  different  material  combinations.  The  RL
curves for different geometric structure parameters are shown
in the Fig. S2(a)–(f). The material types and geometric struc-
ture parameters of each layer for the final optimized structure
are shown in Table S1. Fig. 3(a) gives the RL curves of op-
timized four-layer gradient composite and gradient compos-
ite metamaterial. The RL value is almost less than −10 dB in
the 2–40 GHz frequency for the GACM, while the RL value
of the four-layer gradient composite is only less than −6 dB.
The contribution of each layer of the gradient  metamaterial
on the rate of power loss calculated via the CST simulation is
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Fig. 2.    (a) Original morphology of CIP; (b) original morphology of Cf; (c) the distribution of CIP and Cf in the ER matrix. (d, e)
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plotted in Fig. 3(b). The layer-1 at the bottom contributes the
largest  absorption  in  relative  lower  frequency  band  (about
2–10 GHz) of EM waves, and realizes more than 52.6% ab-
sorption  at  3.2  GHz.  Different  from  the  bottom  absorbing
layer-1, the layer-4 on the top contributes the largest absorp-
tion in relative higher frequency band (about 20–36 GHz) of
EM waves. Similarly, the middle layer near the bottom (lay-
er-2) shows large EM wave absorption at relatively low fre-
quencies,  while  the  middle  layer  near  the  top  (layer-3)  has
strong  EM  wave  absorption  at  relatively  high  frequencies.
The EM wave absorption of the layer-3 is about 30% in the
whole  6–40  GHz  frequency  band.  Therefore,  the  designed
four-layer  gradient  metamaterial  could  realize  the  ultra-
broadband EM waves absorption (more than 90% absorption
band is 38 GHz in the frequency range of 2–40 GHz).

The  normalized  complex  input  impedance  can  be  ob-
tained from the simulated complex parameters of S11 and S21

by the effective medium theory [47] and the result was plot-
ted in Fig. 3(c) and (d):

Z ( f ) =
√
µeff

εeff
=

√
(1+S 11)2−S 2

21

(1−S 11)2−S 2
21

(3)

The  improved  absorption  efficiency  of  the  designed
metamaterial absorber could be mainly attributed to two as-
pects:  (1)  the  non-continuous  periodic  stepped  meta-struc-
ture can further improve the impedance matching, resulting
in  less  reflection  of  the  EM  wave  at  the  surface  of  the
metamaterial;  (2)  the  multiple  loss  mode  induced  by  the

multi-scale  structure,  such  as  coupling  effect  between  unit
cells and multiple resonance induced by electromagnetic in-
terfaces  of  the  meta-structure,  can  effectively  attenuate  the
transmitted EM wave, resulting in less secondary reflection
for the EM wave [43].

The electric field, magnetic field, and power loss density
distributions  at  four  significant  resonant  frequency  peaks
(3.12,  13.6,  24.6,  and 39.8 GHz) were calculated to further
understand  the  mechanism  of  absorption  behaviors  in  the
proposed metamaterial,  and the results are shown in Fig. 4.
For the first absorption peak at 3.12 GHz (Fig. 4(a)), the elec-
tric field distribution is mainly concentrated on the outside of
the metamaterial structure along the y direction (direction of
the electric field), and the magnetic field mainly focuses on
the  bottom  middle  of  the  metamaterial  plate.  Major  power
loss  takes  place  on the  bottom of  the  structure  which coin-
cides  with  magnetic  field  concentration  areas,  and  shows  a
typical complex ferromagnetic resonance and λ/4 resonance
characteristics  [42].  When  the  frequency  increased  to  13.6
GHz (Fig. 4(b)), their modulus of electric field |E|, modulus
of magnetic field |H|, and power loss distributions are all sim-
ilar,  which  is  mainly  aggregated  in  the  top  and  trapezoidal
shell  region of the meta-structure.  For the higher frequency
peaks at 24.6 GHz and 39.8 GHz (Fig. 4(c) and (d)), electric
field,  magnetic  field,  and  power  loss  distributions  are  all
mainly occurred in the trapezoidal shell region of the meta-
structure. With the increase of frequency, the electromagnet-
ic  field  distribution  and  power  loss  distribution  gradually
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shift from the bottom and inside of the material to the shell
regions. The higher the frequency, the closer it is to the shell.
In addition, with the increase of frequency, the electric field
distribution is more similar to the power loss distribution, in-
dicating  that  the  electric  loss  plays  an  increasingly  obvious
role in the total power loss, which is related to the increase of
the imaginary part of the permittivity of the CIP/Cf/ER com-
posites at high frequency as shown in Fig. 2. Therefore, the

incorporation of the meta-structure of the gradient absorbing
material would result in the enhanced power loss in a broad-
band  frequency,  leading  to  a  broadband  electromagnetic
wave absorbing capacity.

In order to validate the combination design of multilayer
gradient  structure  and the  stepped metamaterial,  the  corres-
ponding  CIP/Cf/ER  GACM  was  prepared. Fig.  5(a)  shows
the fabricated sample and the test diagram of the segmental
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support RL method. Fig. 5(b) gives the measured and simu-
lated RL curves of the optimized metamaterial. The prepared
GACM with the total thickness of 8.0 mm realizes less than
−10  dB  RL  in  2.0–40  GHz,  indicating  an  ultra-broadband
EM absorption, that is the more than 90% effective absorp-
tion bandwidth covers the whole six frequency bands (S, C,
X, Ku, K, and Ka bands). In addition, the experimental RL
covers −15 dB absorption bandwidth in frequency ranges of
11.2–21.4  GHz and  28.5–40 GHz.  Therefore,  the  proposed
gradient metamaterial design methodology is effective to ob-
tain broadband EM wave absorbing materials. As shown in
Fig.  5(c),  the designed GACM possesses  the advantages of
both  broadband  absorption  properties  and  thin  thickness,
compared with other dielectric loss [7,26,37,43,48] based and
magnetic/magnetic-dielectric  loss  [25,42,45–46,49]  based
absorbing  metamaterials  in  reported  literatures.  Generally,
dielectric lossy metamaterials usually have the small density
with  a  large  thickness,  while  magnetic  lossy  and  dielectric
cooperative lossy metamaterials usually have the small thick-
ness.  The proposed GACM achieves strong absorption (RL
less than −10 dB) in full-band of 2–40 GHz, which is much
better than the bandwidth of other metamaterials, as shown in
Fig. 5(c).

The  realization  of  strong  and  broadband  absorption  per-
formance by the designed GACM can be mainly attributed to
its multiscale and multiple EM wave absorption mechanism,
which is summarized in the Fig. 6. On one hand, the combin-

ation  of  multilayer  gradient  structure  and periodic  structure
leads  to  excellent  impedance  matching  properties  in  broad-
band  frequency.  As  shown in Fig.  3(c)  and  (d),  comparing
with  the  four-layer  gradient  composite,  the  real  part  of  im-
pedance of the designed GACM is more close to unity while
imaginary part is more close to zero for all frequency band.
This  well  impedance  matching  could  reduce  the  primary
backward reflection of the EM wave at the surface of the de-
signed  metamaterial  [35,40],  which  promotes  EM  wave  to
enter  into  material  for  further  dissipation  as  shown  in
Fig. 6(a). On the other hand, multi-scale structure design can
produce multiple EM wave loss behavior in different scales,
so  that  the  EM  wave  entering  the  material  is  almost  con-
sumed.  For  the  macroscopic  scale,  magnetic  field  conver-
gence  effect  and  coupling  resonance  of  the  stepped  meta-
structures would be dominated with dispersed CIP and Cf in
ER matrix.  Metamaterial  structures can excite  multiple EM
resonance  between  periodic  structures  at  different  frequen-
cies,  and  multilayer  structure  shows  multiple  EM  interfer-
ence,  as  indicated  in Fig.  6(b)  and  (c).  At  the  microscopic
scale,  the  intrinsic  losses  of  CIP/Cf/ER  composite  include
magnetic  losses caused by CIP and dielectric  losses caused
by  Cf occuring  (Fig.  6(d)–(f)).  Both  the  magnetic  loss  of
nature  resonance,  eddy  current,  and  exchange  resonances
generated from CIP and the conductance loss, dipole polariz-
ation, and interfacial  polarization coming from Cf are suffi-
cient  factors  for  its  EM wave  dissipation.  Additionally,  the
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dielectric  losses  of  the  CIP/Cf/ER  composite  caused  by  Cf

with conductive loss as well as dielectric polarization effects
and  extra  multiple  reflections  induced  by  numerous  meso-
scopic interfaces in the CIP/Cf/ER composite would also en-
hance the attenuation capacity of the metamaterial  absorber
[49–50].  Therefore,  the  combination  of  multilayer  gradient
structure  and  periodic  structure  could  significantly  improve
the impedance matching of the metamaterial, and the strong
attenuation of EM wave is mainly attributed to the synergy
effect  of  multiple EM wave absorption mechanisms caused
by multi-scale structures.

 4. Conclusions

The critical requirement for EM wave absorbing materials
is to realize more than 90% absorption in the broader range of
operating  frequencies.  In  this  study,  a  novel  multi-layered
stepped metamaterial is designed and fabricated via combing
the multilayer structure and periodic stepped structure. Based
on  the  complex  relative  permeability  and  permittivity  of
CIP/Cf/ER  composites,  the  geometric  parameters  of  the
multi-layered periodic stepped structure were optimized, and
a four-layer absorbing metamaterial with a total thickness of
8.0 mm was proposed and fabricated.  The prepared sample
achieved  an  ultra-broadband  EM  wave  absorption,  which
realized  less  than −10 dB RL in  the  range  of  2.0–40 GHz,
covering the whole S, C, X, Ku, K, and Ka frequency bands.
Additionally, the experimental RL covers −15 dB absorption
bandwidth  in  the  frequency  ranges  of  11.2–21.4  GHz  and
28.5–40 GHz. The impedance matching of the designed ab-
sorbing  metamaterial  was  significantly  improved  via  com-
bining the multilayer gradient structure and periodic stepped
structure, and the strong attenuation of EM wave should be
mainly attributed to the synergic effect of multiple EM wave
absorption  mechanisms  caused  by  multi-scale  structures.
Therefore,  the  proposed  GACM  shows  an  ultra-broadband
EM  absorption  property  with  a  relatively  small  thickness,
which could be applied as absorbing devices for broadband
EM protections.
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