

Influence of substituting B_2O_3 with Li_2O on the viscosity, structure and crystalline phase of low-reactivity mold flux

Rongzhen Mo, Xubin Zhang, Ying Ren, Junjie Hu, and Lifeng Zhang

Cite this article as:

Rongzhen Mo, Xubin Zhang, Ying Ren, Junjie Hu, and Lifeng Zhang, Influence of substituting B_2O_3 with Li_2O on the viscosity, structure and crystalline phase of low-reactivity mold flux, *Int. J. Miner. Metall. Mater.*, 30(2023), No. 7, pp. 1320-1328. https://doi.org/10.1007/s12613-023-2621-x

View the article online at SpringerLink or IJMMM Webpage.

Articles you may be interested in

Chen-yang Xu, Cui Wang, Ren-ze Xu, Jian-liang Zhang, and Ke-xin Jiao, Effect of Al₂O₃ on the viscosity of CaO-SiO₂-Al₂O₃-MgO-Cr₂O₃ slags, *Int. J. Miner. Metall. Mater.*, 28(2021), No. 5, pp. 797-803. https://doi.org/10.1007/s12613-020-2187-9

Cheng-bin Shi, Ding-li Zheng, Seung-ho Shin, Jing Li, and Jung-wook Cho, Effect of TiO₂ on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels, *Int. J. Miner. Metall. Mater.*, 24(2017), No. 1, pp. 18-24. https://doi.org/10.1007/s12613-017-1374-9

Ying Xu, Zhi-peng Yuan, Li-guang Zhu, Yi-hua Han, and Xing-juan Wang, Shear-thinning behavior of the CaO-SiO₂-CaF₂-Si₃N₄ system mold flux and its practical application, *Int. J. Miner. Metall. Mater.*, 24(2017), No. 10, pp. 1096-1103. https://doi.org/10.1007/s12613-017-1500-8

Jing Ma, Gui-qin Fu, Wei Li, and Miao-yong Zhu, Influence of ${\rm TiO_2}$ on the melting property and viscosity of Cr-containing high-Ti melting slag, *Int. J. Miner. Metall. Mater.*, 27(2020), No. 3, pp. 310-318. https://doi.org/10.1007/s12613-019-1914-6

Song Chen, Zhen Sun, and De-gui Zhu, Mineral-phase evolution and sintering behavior of MO-SiO₂-Al₂O₃-B₂O₃ (M=Ca, Ba) glass-ceramics by low-temperature liquid-phase sintering, *Int. J. Miner. Metall. Mater.*, 25(2018), No. 9, pp. 1042-1054. https://doi.org/10.1007/s12613-018-1655-y

Ze-yun Cai, Bo Song, Long-fei Li, Zhen Liu, and Xiao-kang Cui, Effect of CeO₂ on heat transfer and crystallization behavior of rare earth alloy steel mold fluxes, *Int. J. Miner. Metall. Mater.*, 26(2019), No. 5, pp. 565-572. https://doi.org/10.1007/s12613-019-1765-1

IJMMM WeChat

QQ author group

Influence of substituting B₂O₃ with Li₂O on the viscosity, structure and crystalline phase of low-reactivity mold flux

Rongzhen Mo^{1} , Xubin Zhang², Ying Ren¹, \boxtimes , Junjie Hu^{1} , and Lifeng Zhang³, \boxtimes

- 1) School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- 2) Lecture at College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
- 3) School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China (Received: 7 October 2022; revised: 28 February 2023; accepted: 1 March 2023)

Abstract: The low-reactivity mold flux with low SiO_2 content is considered suitable for the continuous casting of high-aluminum steel since it can significantly reduce the reaction between Al in steel and SiO_2 in mold flux. However, the traditional low-reactivity mold flux still presents some problems such as high viscosity and strong crystallization tendency. In this study, the co-addition of Li_2O and B_2O_3 in $CaO-Al_2O_3-10$ wt% SiO_2 based low-reactivity mold flux was proposed to improve properties of mold flux for high-aluminum steel, and the effect of Li_2O replacing B_2O_3 on properties of mold flux was investigated. The viscosity of the mold flux with 2wt% Li_2O and 6wt% B_2O_3 reached a minimum value of 0.07 $Pa \cdot s$. The break temperature and melting point showed a similar trend with the viscosity. Besides, the melt structure and precipitation of the crystalline phase were studied using Raman and X-ray diffraction spectra to better understand the evolution of viscosity. It demonstrated that with increasing Li_2O content in the mold flux from 0 to 6wt%, the degree of polymerization of aluminate and the aluminosilicate network structure increased because of increasing Li^+ released by Li_2O , indicating the added Li_2O was preferentially associated with Al^{3+} as a charge compensator. The precipitation of $LiAlO_2$ crystalline phase gradually increased with the replacement of B_2O_3 by Li_2O . Therefore, Li_2O content should be controlled below 2wt% to avoid $LiAlO_2$ precipitation, which was harmful to the continuous casting of high-aluminum steels.

Keywords: low-reactivity mold flux; viscosity; structure; crystalline phase

1. Introduction

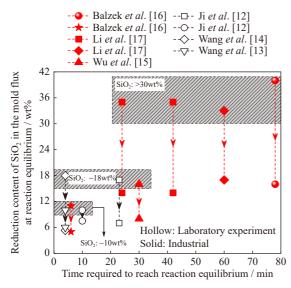

High-aluminum steel contains 0.5wt%-2.5wt% dissolved aluminum [1], which is widely used in automotive, shipping, and other fields because of its lightweight, high strength, and good plasticity. However, the continuous casting process of high-aluminum steel is restricted by the steel-slag interface reaction [2-3]. The reactive CaO-SiO₂-based mold flux brings difficulty in avoiding the strong reaction at the steel-slag interface between Al and SiO₂ [4–8]. As a result, the viscosity of mold flux increases, the surface quality of the slab reduces, and the smooth continuous casting process harms [9–10]. Street et al. [11] proposed a nonreactive CaO-Al₂O₃-based mold flux without SiO₂ to prevent the interface reaction. However, it greatly lowered glass properties and increased the crystallization tendency of the mold flux. Therefore, for a long time, reactive and nonreactive mold fluxes were barely used to cast high-aluminum steel continuously. Afterwards, the low-reactivity mold flux with a certain amount of SiO₂ was proposed, which helped weaken the steel-slag interface reaction and maintained glass properties of the mold flux.

Fig. 1 summarizes the reduction of SiO₂ content and the

required time for reaction equilibrium during the continuous casting of high-aluminum steel for different compositions of mold flux. When the initial $\mathrm{SiO_2}$ content of the mold flux was approximately 35wt%, 18wt%, and 10wt%, more than 57%, approximately 55%, and less than 40% $\mathrm{SiO_2}$ was decreased, respectively, after the equilibrium reaction between steel and mold flux. It means that the $\mathrm{CaO-Al_2O_3-10wt\%SiO_2}$ low-reactivity mold flux can substantially alleviate the steel–slag interface reaction.

However, the low-reactivity mold flux also presented some problems, such as high viscosity and strong crystallization tendency. Thus, most researchers tried to improve its properties by optimizing the composition of the mold flux, such as addition B_2O_3 or Li_2O . Table 1 presents the variation trend of properties for some low-reactivity mold flux with increasing B_2O_3 or Li_2O content [7,15–16,18–31]. It was well-known that the addition of B_2O_3 effectively improve properties of mold flux [18–23], but the excessive addition of B_2O_3 to the mold flux significantly promoted the interface reaction between Al and B_2O_3 , leading to the fluctuation in mold flux properties [15–16]. Besides, a moderate amount of Li_2O in the mold flux was more obviously beneficial to lower the melting point, reduce the viscosity, and weaken the crystal-

Reduction content of SiO₂ and the required time for reaction equilibrium during the continuous casting of high-aluminum steel using the low-reactivity mold flux [12–17].

lization tendency [24–26], but excessive addition in the Li₂O content of the mold flux promoted the precipitation of high melting point crystalline phase LiAlO2, which would deteriorate properties of mold flux [27-29]. It was noted that the Li₂O in the mold flux does not participate in the steel–slag reaction [7,15,30], so maybe replacing B₂O₃ with moderate Li₂O in the mold flux not only improved properties of the mold flux, but also alleviated the interface reaction between Al and B₂O₃. A few studies on substituting Li₂O for B₂O₃ in the mold flux have been reported [13,15] and a suitable content of Li₂O in the low-reactivity mold flux for LiAlO₂ formation need further research especially with different B₂O₃ contents.

In this study, the effect of submitting B₂O₃ with different Li₂O content on the viscosity, structure, and crystalline phase of a CaO-Al₂O₃-10wt%SiO₂ low-reactivity mold flux was researched systemically to obtained the best ratio of B₂O₃ and Li₂O. Besides, the crystallization behavior of Li₂O in the B₂O₃-contianing CaO-Al₂O₃-10wt%SiO₂ mold flux was investigated.

2. Experimental

The mold flux was prepared using the reagent-grade powders of CaO, SiO₂, Al₂O₃, BaCO₃, CaF₂, Li₂CO₃, and B₂O₃. CaO powder was calcined at 1000°C for 5 h in a muffle furnace to decompose carbonate and hydroxide. The powders of SiO₂, Al₂O₃, BaCO₃, CaF₂, Li₂CO₃, and B₂O₃ were heated at 500°C for 2 h. Mixed powders were melted at 1400°C for 0.5 h in a graphite crucible to homogenize the chemical composition and eliminate bubbles. Ar gas with a purity of 99.999% was blown at a flow rate of 0.5 L/min. Samples were quenched in water and grounded into powders with a diameter smaller than 75 µm. The mold flux compositions were analyzed using X-ray fluoroscopy and inductively coupled plasma atomic emission spectrometry. The composition of the mold flux before and after pre-melting was almost identical, as listed in Table 2.

Rotational viscometry was used to investigate mold flux viscosity. The details of the experimental apparatus were presented in a previous study [19]. After the calibration measurement of the viscometer, a 250-g pre-melted sample was added to a graphite crucible at 1200°C in a MoSi₂ heating furnace. Samples were heated at 1300°C for 20 min to obtain a homogeneous melt under an Ar atmosphere at a flow rate of 0.5 L/min. The cylinder was slowly submerged into

Table 1. Effect of B ₂ O ₃ and Li ₂ O on CaO-Al ₂ O ₃ -based mold flux properties [7,15–16,18–										
	Additive	Additive amount / wt%		Slag		Melting point	Viscosity	Crystallizatio		
Τ	DΩ	0.4	CoO	9+0/CiO	A1.O					

Authors	Additive	Additive amount / wt%	Slag	Melting point	Viscosity	Crystallization	Reaction	Year
Wang et al. [18]	B_2O_3	0–4	CaO-8wt%SiO ₂ -Al ₂ O ₃					2011
Li et al. [19]	B_2O_3	8–12	CaO-Al ₂ O ₃	\downarrow	\downarrow	\downarrow		2017
Yan et al. [20]	B_2O_3	10-20	CaO-5wt%SiO ₂ -Al ₂ O ₃		\downarrow			2017
Yan et al. [21]	B_2O_3	10-20	CaO-5wt%SiO ₂ -Al ₂ O ₃			\downarrow		2016
Yu et al. [22]	B_2O_3	4–10	CaO-6wt%SiO ₂ -Al ₂ O ₃	\downarrow	\downarrow	\downarrow		2011
Huang <i>et al</i> . [23]	B_2O_3	0–9	CaO-6wt%SiO ₂ -Al ₂ O ₃		\downarrow			2013
Blazek et al. [16]	B_2O_3	10–16	CaO-SiO ₂ -Al ₂ O ₃				React	2011
Wu et al. [15]	B_2O_3	18	CaO-SiO ₂ -Al ₂ O ₃				React	2016
Kim et al. [24]	Li_2O	0–4	CaO-Al ₂ O ₃		\downarrow			2012
Wu et al. [25]	Li ₂ O	5–8	CaO-Al ₂ O ₃	$\downarrow \uparrow$	$\downarrow \uparrow$			2012
Li et al. [26]	Li ₂ O	0–8	CaO-Al ₂ O ₃			\downarrow		2018
Qi et al. [27]	Li_2O	10-18	CaO-Al ₂ O ₃		\downarrow			2017
Zhou <i>et al</i> . [28]	Li ₂ O	0–6	CaO-9wt%SiO ₂ -Al ₂ O ₃	\downarrow		$\downarrow \uparrow$		2018
Lu <i>et al</i> . [29]	Li ₂ O	2–7	CaO-11wt%SiO ₂ -Al ₂ O ₃			\downarrow^*		2014
Qi <i>et al</i> . [30]	Li ₂ O	10–18	CaO-2wt%SiO ₂ -Al ₂ O ₃		$\downarrow \uparrow$	1		2016
Wu et al. [15]	Li ₂ O	~2	CaO-5wt%SiO ₂ -Al ₂ O ₃				Non-react	2016
Yang et al. [7,31]	Li ₂ O	~2	CaO-7wt%SiO ₂ -Al ₂ O ₃				Non-react	2019

— decrease; ↑—increase; ↓↑—initial decrease and then increase; *—in the high temperature zone; blank indicates there are no relevant results shown in the reference; reaction means the reaction between steel and B₂O₃ or Li₂O in mold flux.

Table 2. C

Compositions of different mold flux	wt%	

Sample	Before pre-melting									Afte	r pre-mel	ting		
Sample	CaO	SiO ₂	Al ₂ O ₃	BaO	CaF ₂	Li ₂ O	B_2O_3	CaO	SiO ₂	Al ₂ O ₃	BaO	CaF ₂	Li ₂ O	B_2O_3
S-LB-1	26.00	10.00	26.00	10.00	20.00	0	8.00	27.72	9.52	26.57	9.92	18.85	0	7.42
S-LB-2	26.00	10.00	26.00	10.00	20.00	2.00	6.00	27.50	9.69	26.45	9.79	19.08	1.92	5.55
S-LB-3	26.00	10.00	26.00	10.00	20.00	4.00	4.00	27.27	9.59	26.66	9.70	19.19	4.00	3.60
S-LB-4	26.00	10.00	26.00	10.00	20.00	6.00	2.00	27.27	9.75	26.58	10.01	18.80	5.95	1.64

the mold flux at a rotational rate of 12 r/min for the viscosity measurement. The melt was cooled at a rate of 6°C/min until the recorded viscosity approached 3 Pa·s.

The melting point was determined using the hemisphere melting point method. Alcohol was used to cement a 2-g sample of pre-melting powder into a cylinder with an inner radius of 3 mm and a height of 3 mm. The cylinder was placed in a furnace at 800°C and heated on a corundum plate at a rate of 25°C/min. The hemispherical temperature was recorded automatically when the cylinder height decreased to half of the original height. Precipitated crystalline phases in mold fluxes quenched at 950°C and 1150°C were identified using X-ray diffraction (XRD) (Rigaku-TTR III, Rigaku Corporation, Japan). The XRD data were collected in a range of 10° – 80° at a rate of 2° /s.

To identify the high-temperature melt structure at 1300°C, flux samples were quenched on a water-cooled copper plate for Raman spectrum (LabRAM HR800, Horiba Jobin Yvon, France) measurements. The quenched sample was taken from the crucible before the viscosity test. XRD results confirmed the glassy structure of quenched fluxes, as shown in Fig. 2. The Raman spectra were observed between 400 and 1600 cm⁻¹ through a 514-nm excitation source laser. The spectrum data were background subtracted and deconvoluted with the Gaussian function.

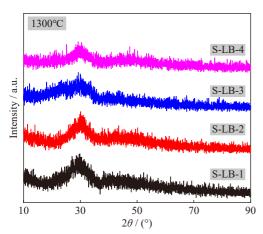


Fig. 2. XRD results of the as-quenched slag at 1300°C.

3. Results and discussion

3.1. Effect of substituting Li₂O for B₂O₃ on the viscosity and melting point of the mold flux

The viscosity of the mold flux with the substitution of Li₂O for B₂O₃ at different temperatures is shown in Fig. 3.

Fig. 4 presents the viscosity–temperature curves of the mold flux, which reflect the crystallization trend of the mold flux during cooling. With increasing Li₂O content in the mold flux, the viscosity first decreased and then obviously increased, particularly in the low-temperature zone. When it contained 2wt% Li₂O and 6wt% B₂O₃, the mold flux had a minimum viscosity of 0.07 Pa·s at 1300°C. When the mold flux contained 8wt% B₂O₃ (without Li₂O) or 6wt% Li₂O (i.e., 2wt% B₂O₃), the mold flux viscosity was 0.19 Pa·s or 0.34 Pa·s, respectively. Wang [13] found that 1.8wt% Li₂O and 7.2wt% B₂O₃ contained in the mold flux reduced the viscosity of the mold flux, consistent with the current results. Therefore, a combined addition of Li₂O and B₂O₃ to mold flux was beneficial to effectively reduce the mold flux viscosity.

Seetharaman et al. [32] proposed a mathematical method

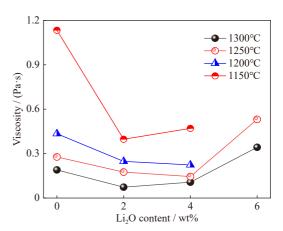
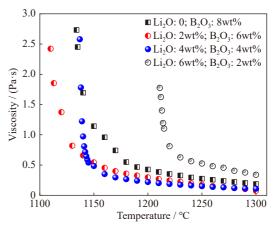



Fig. 3. Effect of Li₂O substituting for B₂O₃ on the mold flux viscosity.

Viscosity-temperature curves of the mold flux with various Li₂O and B₂O₃ contents.

for estimating the break temperature of mold flux using the viscosity–temperature relationship. Eq. (1) is the Arrhenius equation, and Eq. (2) is obtained from Eq. (1) by taking the derivative of the reciprocal of the temperature. Eqs. (3) and (4) are derived from the first and second partial derivatives of the activation energy with respect to the temperature, respectively. When the second partial derivative equals 0, the temperature is defined as the break temperature [32].

$$\ln \eta = \ln A + \frac{E_a}{RT} \tag{1}$$

$$\frac{E_{\rm a}}{R} = \frac{\partial \ln \eta}{\partial (1/T)} \tag{2}$$

$$\frac{1}{R} \frac{\partial E_{a}}{\partial T} = \frac{\partial \left(\frac{\partial \ln \eta}{\partial (1/T)} \right)}{\partial T} \tag{3}$$

$$\frac{1}{R} \frac{\partial^2 E_a}{\partial T^2} = \frac{\partial^2 \left(\frac{\partial \ln \eta}{\partial (1/T)} \right)}{\partial T^2} \tag{4}$$

where T is the temperature, °C; η is the viscosity of the mold flux at T, Pa·s; E_a is the activation energy of viscous flow, kJ/mol; A is the apparent exponential prefactor; R is the universal gas constant.

The break temperature calculation process is shown in Fig. 5. The melting point was measured using the hemispheric point method. Fig. 6 shows the variation in the melting point and break temperature of the mold flux. With increasing Li₂O content in the mold flux, the melting point and break temperature first decreased and then increased, consistent with the evolution tendency of the viscosity. The combined addition of B₂O₃ and Li₂O to the mold flux reduced the viscosity, melting point, and break temperature of the mold flux.

3.2. Effect of substituting Li₂O for B₂O₃ on the structure of the mold flux

Aluminate and silicate network structures exist in the low-reactivity mold flux. The theory of silicate network structure is relatively mature [33–39]. The aluminate network struc-

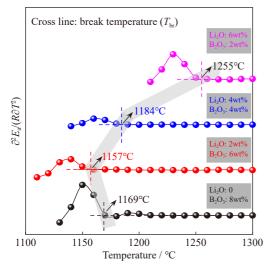


Fig. 5. Calculation process of the break temperature.

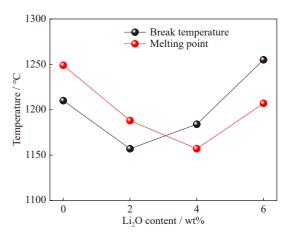


Fig. 6. Melting point and break temperature of the mold flux with various Li_2O and B_2O_3 contents.

ture is more complex than the silicate network structure. Aluminum has three coordination numbers of 4, 5, and 6, which form the network former ([AlO₄] structural unit) and network modifier ([AlO₅] and [AlO₆] structural units), respectively. Scholars [40-42] used high-resolution solid-state NMR spectroscopy (²⁷Al NMR) and molecular dynamics simulations to study the structural unit of the CaO-Al₂O₃ binary system and obtained consistent results. With the CaO/ Al₂O₃ molar ratio greater than 1, the possibility of [AlO₄] structural units being present in the highly peralkaline composition is higher. Two coordination environments enable the boron atom to form [BO₄] and [BO₃] structural units. The major structure in the borate structure is the two-dimensional boroxol ring, which is linked by the [BO₃] triangular structure [24,43-44]. The three-dimensional borate structure is formed by the interconnection of the triangular [BO₃] and tetrahedral [BO₄] structural units [9,24,43–45]. With the addition of the above 30mol% network modifiers (including alkali metals and alkaline earth metals) to the mold flux, the [BO₃] structural unit is dominant [46]. Because the content of network modifiers in the low-reactivity mold flux in the current study is higher than 60mol% [46], the borate network structure is mainly composed of [BO₃] structural units.

Assignments of the deconvoluted Raman bands are summarized in Table 3 [9,46–65]. The original and deconvoluted Raman spectra of mold fluxes with various Li₂O and B₂O₃ contents are shown in Figs. 7 and 8. The related fractions of structural units are shown in Figs. 9 and 10. As Li₂O replaced B₂O₃ in the mold flux, the fraction of Al_{IV}-O-B_{III} structural units composed of [BO₃] gradually decreased, and the total fraction of the borate structure decreased from approximately 18wt% to 10wt%. The borate structure decreased because of a reduction in B₂O₃ content in the mold flux. The fraction of the Al-F linkage decreased slightly with the substitution of Li₂O for B₂O₃ in the mold flux. With the Li₂O content of the mold flux increasing from 0 to 6wt%, the fraction of the Al-O-Al linkage increased from 6wt% to 12wt%, and the fraction of Al-O decreased, indicating that the fraction of the bridging oxygen in the aluminate structure increased. The higher content of free oxygen ions (O²⁻) generated by Li₂O led to the breakage of the Si-O-Si linkage to

Raman shift / cm ⁻¹	Assignment	References
~530	Al–F stretching vibration ([AlF ₆] octahedral structure)	[47–49]
540-560	Al-O-Al bending vibrations	[47,49–55]
630–650	AI _{IV} –O–B _{III} bending vibration	[56–57]
750–780	Al-O stretching vibration in AlO ₄ units with 1 or 2 non-bridge oxygens	[47,50–51]
830–850	Al-O-Si linkage	[49]
850–880	$\mathrm{Q}_{\mathrm{Si}}^{0}$	[58–61]
900–920	$\mathrm{Q}^1_{\mathrm{Si}}$	[58–61]
950–1000	$\mathrm{Q}^2_{\mathrm{Si}}$	[58–61]
1200-1300	B-O ⁻ linkage in pyroborate units ([B ₂ O ₅] ⁴)	[62–64]
1320-1340	B-O linkage in chain and ring metaborate units	[9,46,64–65]

Table 3. Assignments of deconvoluted Raman bands [9,46–65]

form the Si–O⁻ linkage, reducing the degree of polymerization (DOP) of the silicate network structure in the CaO–SiO₂-based mold flux [66–67]. However, for the CaO–Al₂O₃–10wt%SiO₂-based low-reactivity mold flux, Li₂O played a more important role as a charge compensator. With the Li₂O in the mold flux increased, the Al–O⁻ linkage-transformed Al–O–Al linkage was promoted. Meanwhile, the charge compensation of Li⁺ between Al³⁺ and Si⁴⁺ could link the

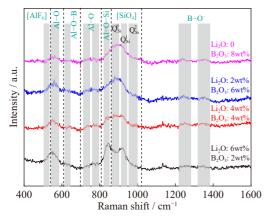


Fig. 7. Original Raman spectra of mold fluxes with different Li₂O and B₂O₃ contents.

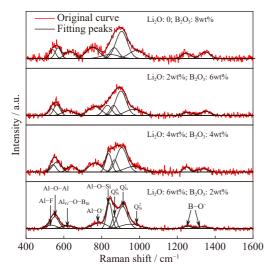


Fig. 8. Deconvoluted Raman spectra of mold fluxes with various Li_2O and B_2O_3 contents.

Al–O⁻ and silicate structural units to form the Al–O–Si linkage with a higher DOP of the melt structure [18–19,21]. Correspondingly, the fraction of Al–O–Si increased, and the structural units of stretching vibrations of Si–O in SiO_4^{4-} (Q_{Si}^2), $Si_2O_7^{6-}(Q_{Si}^1)$, and SiO_3^{2-} (Q_{Si}^0) decreased.

3.3. Effect of substituting Li_2O for B_2O_3 on the crystalline phase of the mold flux

Figs. 11 and 12 show the precipitation of crystalline

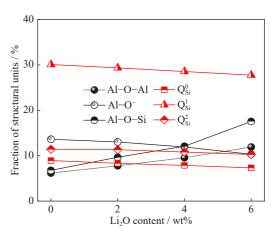


Fig. 9. Fraction of aluminate and silicate structural units of mold fluxes with various Li₂O and B₂O₃ contents.

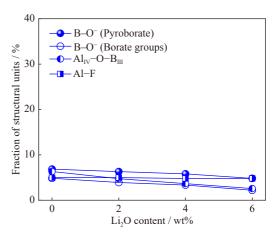


Fig. 10. Fraction of other structural units of mold fluxes with various Li₂O and B₂O₃ contents.

phases in mold fluxes with different $\rm Li_2O$ and $\rm B_2O_3$ contents at 1150 and 950°C. Crystalline phases in the mold flux substantially increased as the temperature decreased from 1150 and 950°C. The replacement of $\rm B_2O_3$ by $\rm Li_2O$ in the mold flux promoted the precipitation of $\rm CaF_2$, $\rm LiAlO_2$, and

11CaO·7Al₂O₃·CaF₂ crystals and inhibited the precipitation of 2CaO·Al₂O₃·SiO₂ crystals. A higher B₂O₃ content in the mold flux retarded CaF₂ phase precipitation, consistent with previous studies by Yang *et al.* [31] and Xiao *et al.* [68]. With the content of Li₂O more than 2wt%, the high melting point

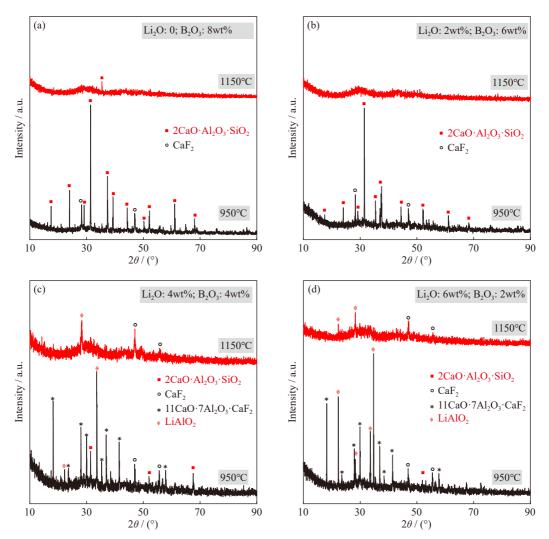


Fig. 11. Effect of various Li_2O and B_2O_3 contents on the crystalline phase of the mold flux. (a) Li_2O : 0, B_2O_3 : 8wt%; (b) Li_2O : 2wt%, B_2O_3 : 6wt%; (c) Li_2O : 4wt%, B_2O_3 : 4wt%; (d) Li_2O : 6wt%, B_2O_3 : 2wt%.

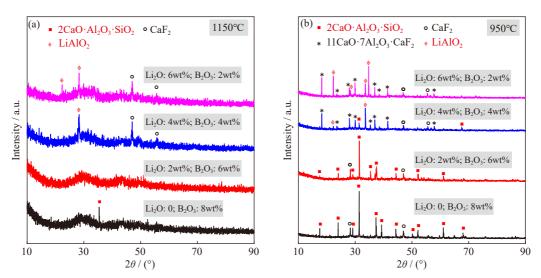


Fig. 12. Effect of Li₂O replacing B₂O₃ on the crystalline phase of the mold flux at different temperatures (a) 1150°C; (b) 950°C.

crystalline phase of LiAlO₂ (1700°C) gradually precipitated. The LiAlO₂ phase easily precipitated in the CaO–Al₂O₃ slag system because of its structural characteristics [45,69–70]. The precipitated LiAlO₂ increased the viscosity and worsened the crystallization tendency of the mold flux [19–20]. As the Li₂O content in the mold flux increased from 0 to 6wt%, the crystallization tendency of the mold flux first decreased and then increased at 1150°C. Notably, the mold flux with 2wt% Li₂O and 6wt% B₂O₃ was the pure liquid phase at 1150°C.

LiAlO₂ crystal formation required the charge compensation effect of Li⁺ on the aluminate structure; thus, with increasing Li₂O content in the mold flux, Li⁺ replaced metal cations such as Ca²⁺ in the [AlO₄] structural unit [21]. As the Li₂O content of the mold flux increased from 0 to 6wt%, Li₂O strengthened the aluminate network structure through Li⁺, while LiAlO₂ crystals gradually precipitated in the mold flux. This result was consistent with the Raman spectroscopy results. In summary, mold flux viscosity first decreased and then increased with the substitution of Li₂O for B₂O₃ in the mold flux. The melt structure and precipitated crystalline phase caused the evolution of viscosity. The precipitation of crystalline phases and the higher DOP increased the viscosity of the mold flux. The addition of $2wt\%\ Li_2O$ and 6wt%B₂O₃ to the mold flux reduced the reactivity, viscosity, and melting point of the mold flux and lowered the crystallization tendency of the mold flux in the high-temperature zone. The combined addition of Li₂O and B₂O₃ to the mold flux improved the properties of the mold flux of high-aluminum steels.

4. Conclusions

In this study, the evolution of viscosity, melt structure, and crystalline phase of the mold flux with the replacement of B_2O_3 by Li_2O from 0 to 6wt% was investigated. The main results are summarized as follows.

- (1) The combined addition of Li_2O and B_2O_3 with appropriate proportion was beneficial to reduced the viscosity, melting point, and break temperature of the low-reactivity mold flux. The viscosity reached a minimum of 0.07 Pa·s with 2wt% Li_2O and 6wt% B_2O_3 in the mold flux.
- (2) An increase in Li₂O content in the mold flux from 0 to 6wt% strengthened aluminate and aluminosilicate structures by increasing Li⁺ released from Li₂O. Meanwhile, the proportion of silicate structural units decreased.
- (3) The replacement of B₂O₃ by Li₂O in the mold flux promoted LiAlO₂ precipitation, and a Li₂O content of no more than 2wt% is suggested to avoid LiAlO₂ phase precipitation.

Acknowledgements

This work was financially supported by the National Science Foundation China (No. U22A20171) and the Scinence and Technology Program of Hebei, China (No. 20311004D). We also appreciate the other support from High Steel Center

(HSC) at North China University of Technology, Yanshan University, University of Science and Technology Beijing, Hebei Innovation Center of the Development and Application of High Quality Steel Materials, China, and Hebei International Research Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials, China.

Conflict of Interest

The authors declare no conflict of interest.

References

- [1] X.J. Fu, G.H. Wen, P. Tang, Q. Liu, and Z.Y. Zhou, Effects of CaO/Al₂O₃ ratio on crystallisation behaviour of CaO-Al₂O₃ based mould fluxes for high aluminium TRIP steel, *Ironmaking Steelmaking*, 41(2014), No. 5, p. 342.
- [2] H.X. Yu, D.X. Yang, J.M. Zhang, G.Y. Qiu, and N. Zhang, Effect of Al content on the reaction between Fe-10Mn-xAl (x = 0.035wt%, 0.5wt%, 1wt%, and 2wt%) steel and CaO-SiO₂-Al₂O₃-MgO slag, *Int. J. Miner. Metall. Mater.*, 29(2022), No. 2, p. 256.
- [3] Y. Chen, S.P. He, Z.R. Li, X.B. Zhang, Q.Q. Wang, and Q. Wang, Properties and structure of a new non-reactive mold flux for high-Al steel, *J. Iron Steel Res. Int.*, 29(2022), No. 1, p. 61.
- [4] M.S. Kim and Y.B. Kang, A reaction model to simulate composition change of mold flux during continuous casting of high Al steel, [in] R.G. Reddy, P. Chaubal, P.C. Pistorius, U. Pal, eds, Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, Springer, Cham, 2016, p. 271.
- [5] M.S. Kim, M.S. Park, and Y.B. Kang, A reaction between high Mn-high Al steel and CaO-SiO₂-type molten mold flux: Reduction of additive oxide components in mold flux by Al in steel, *Metall. Mater. Trans. B*, 50(2019), No. 5, p. 2077.
- [6] M.S. Kim, M.S. Park, S.E. Kang, J.K. Park, and Y.B. Kang, A reaction between high Mn-high Al steel and CaO-SiO₂-type molten mold flux: Reaction mechanism change by high Al content ([pct Al]₀ = 5.2) in the steel and accumulation of reaction product at the reaction interface, *ISIJ Int.*, 58(2018), No. 4, p. 686.
- [7] M.S. Kim, S.W. Lee, J.W. Cho, M.S. Park, H.G. Lee, and Y.B. Kang, A reaction between high Mn-high Al steel and CaO-SiO₂-type molten mold flux: Part I. composition evolution in molten mold flux, *Metall. Mater. Trans. B*, 44(2013), No. 2, p. 299.
- [8] Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma, and F. Yang, Effects of basicity and MgO content on the viscosity of the SiO₂—CaO—MgO–9wt%Al₂O₃ slag system, *Int. J. Miner. Metall. Mater.*, 21(2014), No. 4, p. 353.
- [9] G.H. Kim and I. Sohn, Role of B₂O₃ on the viscosity and structure in the CaO–Al₂O₃–Na₂O-based system, *Metall. Mater. Trans. B*, 45(2014), No. 1, p. 86.
- [10] S.P. He, Z.R. Li, Z. Chen, T. Wu, and Q. Wang, Review of mold fluxes for continuous casting of high-alloy (Al, Mn, Ti) steels, *Steel Res. Int.*, 90(2019), No. 1, art. No. 1800424.
- [11] S. Street, K. James, N. Minor, A. Roelant, and J. Tremp, Production of high-aluminum steel slabs, *Iron Steel Technol.*, 5(2008), No. 7, p. 38.
- [12] C.X. Ji, Y. Cui, Z. Zeng, Z.H. Tian, C.L. Zhao, and G.S. Zhu, Continuous casting of high-Al steel in Shougang Jingtang steel works, *J. Iron Steel Res. Int.*, 22(2015), No. 1, p. 53.
- [13] H. Wang, Study on Crystallization Behaviors and Heat Transfer of High Al Steel Mould Fluxes [Dissertation], Chongqing

- university, Chongqing, 2010.
- [14] H. Wang, P. Tang, G.H. Wen, and X. Yu, Effect of Na₂O on crystallisation behaviour and heat transfer of high Al steel mould fluxes, *Ironmaking Steelmaking*, 38(2011), No. 5, p. 369.
- [15] T. Wu, S.P. He, L.L. Zhu, and Q. Wang, Study on reaction performances and applications of mold flux for high-aluminum steel, *Mater. Trans.*, 57(2016), No. 1, p. 58.
- [16] K. Blazek, H.B. Yin, G. Skoczylas, M. McClymonds, and M. Frazee, Development and evaluation of lime alumina-based mold powders for casting high-aluminum TRIP steel grades, [in] AISTech, Iron and Steel Technology Conference and Exhibition, 2011, p. 1577.
- [17] J.M. Li, M.F. Jiang, and L.F. Sun, Development of low responsiveness mold fluxes for 20Mn₂₃AIV, *China Metall.*, 27(2017), No. 12, p. 28.
- [18] H.M. Wang, T.W. Zhang, H. Zhu, G.R. Li, Y.Q. Yan, and J.H. Wang, Effect of B₂O₃ on melting temperature, viscosity and desulfurization capacity of CaO-based refining flux, *ISIJ Int.*, 51(2011), No. 5, p. 702.
- [19] J.L. Li, B.W. Kong, B. Galdino, et al., Investigation on properties of fluorine-free mold fluxes based on CaO–Al₂O₃–B₂O₃ system, Steel Res. Int., 88(2017), No. 9, art. No. 1600485.
- [20] W. Yan, W.Q. Chen, Y.D. Yang, and A. McLean, Viscous characteristics and modelling of CaO–Al₂O₃–based mould flux with B₂O₃ as a substitute for CaF₂, *Ironmaking Steelmaking*, 46(2019), No. 4, p. 347.
- [21] W. Yan, W. Chen, Y. Yang, C. Lippold, and A. McLean, Evaluation of B₂O₃ as replacement for CaF₂ in CaO–Al₂O₃ based mould flux, *Ironmaking Steelmaking*, 43(2016), No. 4, p. 316.
- [22] X. Yu, G.H. Wen, P. Tang, and H. Wang, Effect of B₂O₃ on the physico-chemical properties of mold slag used for high-Al steel, *J. Changging Univ.*, 34(2011), No. 1, p. 66.
- [23] X.H. Huang, J.L. Liao, K. Zheng, H.H. Hu, F.M. Wang, and Z.T. Zhang, Effect of B₂O₃ addition on viscosity of mould slag containing low silica content, *Ironmaking Steelmaking*, 41(2014), No. 1, p. 67.
- [24] G.H. Kim and I. Sohn, Influence of Li₂O on the viscous behavior of CaO–Al₂O₃–12 mass% Na₂O–12 mass% CaF₂ based slags, *ISIJ Int.*, 52(2012), No. 1, p. 68.
- [25] T. Wu, Q. Wang, S.P. He, J.F. Xu, X. Long, and Y.J. Lu, Study on properties of alumina-based mould fluxes for high-Al steel slab casting, *Steel Res. Int.*, 83(2012), No. 12, p. 1194.
- [26] J.L. Li, B.W. Kong, X.Y. Gao, Q.C. Liu, Q.F. Shu, and K. Chou, Investigation the influences of B₂O₃ and R₂O on the structure and crystallization behaviors of CaO–Al₂O₃ based F-free mold flux, *Metall. Res. Technol.*, 115(2018), No. 3, art. No. 304
- [27] J. Qi, C. Liu, and M. Jiang, Role of Li₂O on the structure and viscosity in CaO–Al₂O₃–Li₂O–Ce₂O₃ melts, *J. Non Cryst. Solids*, 475(2017), p. 101.
- [28] L.J. Zhou, H. Li, W.L. Wang, D. Xiao, L. Zhang, and J. Yu, Effect of Li₂O on the behavior of melting, crystallization, and structure for CaO–Al₂O₃-based mold fluxes, *Metall. Mater. Trans. B*, 49(2018), No. 5, p. 2232.
- [29] B.X. Lu, K. Chen, W.L. Wang, and B.B. Jiang, Effects of Li₂O and Na₂O on the crystallization behavior of lime–alumina-based mold flux for casting high-Al steels, *Metall. Mater. Trans. B*, 45(2014), No. 4, p. 1496.
- [30] J. Qi, C.J. Liu, C.L. Li, and M.F. Jiang, Viscous properties of new mould flux based on aluminate system with CeO₂ for continuous casting of RE alloyed heat resistant steel, *J. Rare Earths*, 34(2016), No. 3, p. 328.
- [31] J. Yang, H. Cui, J. Zhang, O. Ostrovski, C. Zhang, and D. Cai, Effect of Na₂O on the interfacial reaction between CaO–Al₂O₃ based mold fluxes and high-Al steel at 1500°C, *ISIJ Int.*, 59(2019), No. 12, p. 2247.
- [32] S. Seftharaman, S.C. Du, S. Sridhar, and K.C. Mills, Estima-

- tion of liquidus temperatures for multicomponent silicates from activation energies for viscous flow, *Metall. Mater. Trans. B*, 31(2000), No. 1, p. 111.
- [33] J.Y. Chen, W.L. Wang, L.J. Zhou, and Z.H. Pan, Effect of Al₂O₃ and MgO on crystallization and structure of CaO–SiO₂–B₂O₃-based fluorine-free mold flux, *J. Iron Steel Res. Int.*, 28(2021), No. 5, p. 552.
- [34] J.T. Ju, K.S. Yang, Z.H. Zhu, Y. Gu, and L.Z. Chang, Effect of CaF₂ and CaO/Al₂O₃ on viscosity and structure of TiO₂-bearing slag for electroslag remelting, *J. Iron Steel Res. Int.*, 28(2021), No. 12, p. 1541.
- [35] F. Yuan, Z. Zhao, Y.L. Zhang, and T. Wu, Influence of Cr₂O₃ content on viscosity and rheological behavior of Cr₂O₃-containing slags, *J. Iron Steel Res. Int.*, 29(2022), No. 4, p. 601.
- [36] D.L. Zheng, G.J. Ma, X. Zhang, M.K. Liu, and J. Xu, Effect of CaO/Al₂O₃ on structure, viscosity, and surface tension of electroslag remelting-type CeO₂-bearing slag, *J. Iron Steel Res. Int.*, (2022), p. 1.
- [37] L.J. Zhou, H. Luo, W.L. Wang, X. Yan, and H.F. Wu, Effect of Al₂O₃/Na₂O ratio and MnO on high-temperature properties of mold flux for casting peritectic steel, *J. Iron Steel Res. Int.*, 29(2022), No. 1, p. 53.
- [38] F. Yuan, Z. Zhao, Y.L. Zhang, and T. Wu, Effect of Al₂O₃ content on the viscosity and structure of CaO–SiO₂–Cr₂O₃–Al₂O₃ slags, *Int. J. Miner. Metall. Mater.*, 29(2022), No. 8, p. 1522.
- [39] C.Y. Xu, C. Wang, R.Z. Xu, J.L. Zhang, and K.X. Jiao, Effect of Al₂O₃ on the viscosity of CaO–SiO₂–Al₂O₃–MgO–Cr₂O₃ slags, *Int. J. Miner. Metall. Mater.*, 28(2021), No. 5, p. 797.
- [40] B.T. Poe, P.F. McMillan, B. Coté, D. Massiot, and J.P. Coutures, Structure and dynamics in calcium aluminate liquids: High-temperature 27Al NMR and Raman spectroscopy, *J. Am. Ceram. Soc.*, 77(1994), No. 7, p. 1832.
- [41] P.F. McMillan, W.T. Petuskey, B. Coté, D. Massiot, C. Landron, and J.P. Coutures, A structural investigation of CaO–Al₂O₃ glasses via 27Al MAS-NMR, *J. Non Cryst. Solids*, 195(1996), No. 3, p. 261.
- [42] D.R. Neuville, L. Cormier, and D. Massiot, Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by ²⁷Al MQ-MAS NMR and Raman spectroscopy, *Chem. Geol.*, 229(2006), No. 1-3, p. 173.
- [43] V.P. Klyuev and B.Z. Pevzner, The influence of aluminum oxide on the thermal expansion, glass transition temperature, and viscosity of lithium and sodium aluminoborate glasses, *Glass Phys. Chem.*, 28(2002), No. 4, p. 207.
- [44] V.P. Klyuev and B. Pevzner, Structural interpretation of the glass transition temperature and thermal expansion of glasses in the system BaO–Al₂O₃–B₂O₃, *Phys. Chem. Glasses*, 41(2000), p. 380.
- [45] J. Qi, C.J. Liu, and M.F. Jiang, Viscosity-structure-crystallization of the Ce₂O₃-bearing calcium-aluminate-based melts with different contents of B₂O₃, *ISIJ Int.*, 58(2018), No. 1, p. 186.
- [46] G. Padmaja and P. Kistaiah, Infrared and Raman spectroscopic studies on alkali borate glasses: Evidence of mixed alkali effect, *J. Phys. Chem. A*, 113(2009), No. 11, p. 2397.
- [47] J.H. Park, D.J. Min, and H.S. Song, Structural investigation of CaO–Al₂O₃ and CaO–Al₂O₃–CaF₂ slags via Fourier transform infrared spectra, *ISIJ Int.*, 42(2002), No. 1, p. 38.
- [48] N. Ma, J.L. You, L.M. Lu, J. Wang, M. Wang, and S.M. Wan, Micro-structure studies of the molten binary K₃AlF₆–Al₂O₃ system by *in situ* high temperature Raman spectroscopy and theoretical simulation, *Inorg. Chem. Front.*, 5(2018), No. 8, p. 1861.
- [49] J. Yang, J.Q. Zhang, O. Ostrovski, C. Zhang, and D.X. Cai, Effects of fluorine on solidification, viscosity, structure, and heat transfer of CaO–Al₂O₃-based mold fluxes, *Metall. Mater. Trans. B*, 50(2019), No. 4, p. 1766.
- [50] P. McMillan and B. Piriou, Raman spectroscopy of calcium aluminate glasses and crystals, J. Non Cryst. Solids, 55(1983), No.

- 2, p. 221.
- [51] T.S. Kim and J.H. Park, Structure–viscosity relationship of lowsilica calcium aluminosilicate melts, *ISIJ Int.*, 54(2014), No. 9, p. 2031.
- [52] H. Li, P. Hrma, J.D. Vienna, M.X. Qian, Y.L. Su, and D.E. Smith, Effects of Al₂O₃, B₂O₃, Na₂O, and SiO₂ on nepheline formation in borosilicate glasses: Chemical and physical correlations, *J. Non Cryst. Solids*, 331(2003), No. 1-3, p. 202.
- [53] E.Z. Gao, W.L. Wang, and L. Zhang, Effect of alkaline earth metal oxides on the viscosity and structure of the CaO–Al₂O₃ based mold flux for casting high-al steels, *J. Non Cryst. Solids*, 473(2017), p. 79.
- [54] J.X. Gao, G.H. Wen, T. Huang, B.W. Bai, P. Tang, and Q. Liu, Effect of Al speciation on the structure of high-Al steels mold fluxes containing fluoride, *J. Am. Ceram. Soc.*, 99(2016), No. 12, p. 3941.
- [55] G.H. Kim and I. Sohn, Effect of Al₂O₃ on the viscosity and structure of calcium silicate-based melts containing Na₂O and CaF₂, J. Non Cryst. Solids, 358(2012), No. 12-13, p. 1530.
- [56] R. El Hayek, F. Ferey, P. Florian, A. Pisch, and D.R. Neuville, Structure and properties of lime alumino-borate glasses, *Chem. Geol.*, 461(2017), p. 75.
- [57] L.S. Du and J.F. Stebbins, Site connectivities in sodium aluminoborate glasses: Multinuclear and multiple quantum NMR results, *Solid State Nucl. Magn. Reson.*, 27(2005), No. 1-2, p. 37.
- [58] D.R. Neuville, G.S. Henderson, L. Cormier, and D. Massiot, The structure of crystals, glasses, and melts along the CaO–Al₂O₃ join: Results from Raman, Al *L* and *K*-edge X-ray absorption, and ²⁷Al NMR spectroscopy, *Am. Mineral.*, 95(2010), No. 10, p. 1580.
- [59] P. McMillan, Structural studies of silicate glasses and melts—Applications and limitations of Raman spectroscopy, Am. Mineral., 69(1984), No. 7-8, p. 622.
- [60] B.O. Mysen and D. Virgo, Structure and properties of fluorine-bearing aluminosilicate melts: The system Na₂O-Al₂O₃-SiO₂-F at 1 atm, *Contr. Mineral. Petrol.*, 91(1985), No. 3, p.

- 205
- [61] J.Y. Park, G.H. Kim, J.B. Kim, S. Park, and I. Sohn, Thermophysical properties of B₂O₃-containing mold flux for high carbon steels in thin slab continuous casters: Structure, viscosity, crystallization, and wettability, *Metall. Mater. Trans. B*, 47(2016), No. 4, p. 2582.
- [62] B.P. Dwivedi and B.N. Khanna, Cation dependence of Raman scattering in alkali borate glasses, *J. Phys. Chem. Solids*, 56(1995), No. 1, p. 39.
- [63] H. Li, Y.L. Su, L.Y. Li, and D.M. Strachan, Raman spectroscopic study of gadolinium(III) in sodium-aluminoborosilicate glasses, *J. Non Cryst. Solids*, 292(2001), No. 1-3, p. 167.
- [64] E.I. Kamitsos, M.A. Karakassides, and G.D. Chryssikos, Vibrational spectra of magnesium–sodium–borate glasses. 2. Raman and mid-infrared investigation of the network structure, *J. Phys. Chem.*, 91(1987), No. 5, p. 1073.
- [65] Y. Kim and K. Morita, Relationship between molten oxide structure and thermal conductivity in the CaO-SiO₂-B₂O₃ system, *ISIJ Int.*, 54(2014), No. 9, p. 2077.
- [66] X.D. Xing, Z.G. Pang, C. Mo, S. Wang, and J.T. Ju, Effect of MgO and BaO on viscosity and structure of blast furnace slag, *J. Non Cryst. Solids*, 530(2020), art. No. 119801.
- [67] L. Zhang, W.L. Wang, S.L. Xie, K.X. Zhang, and I. Sohn, Effect of basicity and B₂O₃ on the viscosity and structure of fluor-ine-free mold flux, *J. Non Cryst. Solids*, 460(2017), p. 113.
- [68] D. Xiao, W.L. Wang, and B.X. Lu, Effects of B₂O₃ and BaO on the crystallization behavior of CaO–Al₂O₃-based mold flux for casting high-Al steels, *Metall. Mater. Trans. B*, 46(2015), No. 2 p. 873
- [69] W. Yan, W. Chen, Y. Yang, C. Lippold, and A. McLean, Effect of CaO/Al₂O₃ ratio on viscosity and crystallisation behaviour of mould flux for high Al non-magnetic steel, *Ironmaking Steelmaking*, 42(2015), No. 9, p. 698.
- [70] Q. Wang, J. Yang, C. Zhang, D.X. Cai, J.Q. Zhang, and O. Ostrovski, Effect of CaO/Al₂O₃ ratio on viscosity and structure of CaO–Al₂O₃-based fluoride-free mould fluxes, *J. Iron Steel Res. Int.*, 26(2019), No. 4, p. 374.