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Abstract: Seawater splitting is a prospective approach to yield renewable and sustainable hydrogen energy. Complex preparation processes
and poor repeatability are currently considered to be an insuperable impediment to the promotion of the large-scale production and application
of electrocatalysts. Avoiding the use of intricate instruments, corrosion engineering is an intriguing strategy to reduce the cost and presents con-
siderable potential for electrodes with catalytic performance. An anode comprising quinary AlCoCrFeNi layered double hydroxides uniformly
decorated on an AlCoCrFeNi high-entropy alloy is proposed in this paper via a one-step corrosion engineering method, which directly serves as
a remarkably active catalyst for boosting the oxygen evolution reaction (OER) in alkaline seawater. Notably, the best-performing catalyst ex-
hibited  oxygen  evolution  reaction  activity  with  overpotential  values  of  272.3  and  332  mV  to  achieve  the  current  densities  of  10  and
100 mA·cm−2, respectively. The failure mechanism of the obtained catalyst was identified for advancing the development of multicomponent
catalysts.
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 1. Introduction

Renewable and eco-friendly energy is required to build a
sustainable  energy  system  for  mitigating  the  global  energy
and  pollution  issue  due  to  the  unrestrained  consumption  of
fossil fuels [1–2]. Hydrogen (H2) is admittedly regarded as a
desired fuel for the green circulation economy due to its sig-
nificantly high energy density and nontoxic exhaust products
in the energy conversion process [3]. Among various techno-
logies  for  hydrogen  production,  water  electrolysis,  which
converts water into hydrogen and oxygen products, is a feas-
ible option to achieve an energy landscape in the future and
avoids the emission of noxious gas [4–6]. Moreover, the pop-
ularization of freshwater electrolysis might be impeded due
to the extreme lack of freshwater resources and result in con-
troversies  in  hot  arid  regions.  Therefore,  ocean  seawater,
which  represents  96.5vol%  of  the  total  water  resources  of
earth,  is  assumed to  be  the  almost  inexhaustible  natural  re-
source and highly suitable electrolyte feedstock for hydrogen
products via electrolysis, stimulating an urgent pursuit for the
development  of  cost-efficient  seawater  electrolysis  [7–9].
Governed by the electrochemical reactions, water splitting is
divided into hydrogen evolution reaction (HER) and oxygen
evolution reaction (OER) for H2 and O2 occurrences on the
cathode and anode, respectively.  Therein,  OER is generally

regarded as the bottleneck of water electrolysis because of its
multiple  proton-coupled  electron  transfer  process  and  more
sluggish intrinsic kinetics than HER, leading to large overpo-
tential  and  additional  energy  loss  in  water  electrolysis
[10–11].  In  comparison  with  freshwater  electrolysis,  the
challenges of electrochemical seawater splitting, such as low
conversion efficiency of H2 caused by chlorine evolution re-
action (CER) [12–13], the aggressive Cl− existing in the sea-
water  [14–15],  and  insoluble  precipitates  produced  by  the
dramatic fluctuations of local pH [16], would ruin and block
the electrode and lead to poor electrocatalytic activity as well
as unsatisfactory stability during electrolysis. Through the ef-
fort  of  many  researchers,  feasible  strategies  to  address  the
above-mentioned challenges and realize OER-selective sea-
water splitting could be summarized as follows: (i) utilizing
stable electrocatalysts to decrease the required overpotential
for  OER,  which  is  considered  to  be  the  major  strategy  for
high-efficiency water electrolysis, and (ii) alkalizing the sea-
water electrolyte, which not only increases the concentration
of ions in seawater and prevents drastic fluctuation in local
pH  but  also  provides  480  mV  of  the  potential  difference
between OER and CER in thermodynamics [11–16]. Never-
theless, complex catalysts could not be fabricated in a single
step  with  the  emergence  of  a  variety  of  catalysts  for  OER.
Therefore,  an  urgent  demand  for  a  simple  and  convenient 

 
✉ Corresponding authors: Bowei Zhang      E-mail: bwzhang@ustb.edu.cn;        Junsheng Wu      E-mail: wujs@ustb.edu.cn;        
  Yizhong Huang      E-mail: YZHuang@ntu.edu.sg
© University of Science and Technology Beijing 2023

International Journal of Minerals , Metallurgy and Materials
Volume 30, Number 10, October 2023, Page 1922
https://doi.org/10.1007/s12613-023-2624-7



preparation method of catalysts is required to reduce the pre-
paration period and cost  of multicomponent or complicated
catalysts.

Over  the  past  decades,  the  most  commonly  employed
routes  for  catalysts  are  hydrothermal  [17–19],  solvothermal
[20–21], co-precipitation [22–23], electrodeposition [24–25],
cation exchange [26–27], and cathode plasma electrolytic de-
position  [28–29].  However,  it  is  difficult  to  satisfy  the  re-
quirements  of  several  multicomponent  catalysts  generated
from  complicated  reaction  systems,  including  considerable
reproducibility,  controllability,  and  practicability  for  indus-
trial  manufacture  and  commercial  applications  [30].  In  re-
cent years, metal corrosion, which spontaneously and inevit-
ably caused considerable damage to metallic materials in the
natural environment, is unexpectedly identified as a simple,
reproducible, and low-cost procedure for the large-scale ap-
plication to in-situ preparation of catalytic products onto sub-
strate and minimization of the labor cost and assembly com-
plexity.  Benefiting  from in-situ growth  and  general  2D/3D
structures  of  products,  catalysts  produced  via  the  corrosion
process would exhibit remarkable conductivity and large act-
ive surface area, which is referred to as corrosion engineer-
ing,  and  demonstrated  a  potential  route  to  generate  binder-
free,  additive-free,  and  conductive  electrodes  with  remark-
able  electrocatalytic  activities  [31–33].  Corrosion  engineer-
ing has been widely used for simple Ni-, Fe-, and NiFe-based
catalysts directly grown onto Ni foam, Fe foam, and stainless
steels,  respectively.  However,  corrosion  engineering  should
be  continuously  explored  to  produce  multicomponent  and
complicated catalysts [34–38]. Since the realization of elec-
trochemical  catalysis  in  the  early  days,  noble  metal-based
materials  invariably  represent  the  commercial  and  most  ef-
fective  catalysts  (for  example,  platinum-based  materials  for
HER  and  ruthenium  or  iridium  oxides  for  OER)  [39–41].
Nevertheless, due to the drawbacks of scarcity on earth and
the high cost of commerce, the rapid development and com-
mercial application of precious metal-based catalysts are re-
stricted  [42–43].  To  date,  transition  metal-based  catalysts,
such  as  relevant  sulfides  [44–45],  phosphides  [46–47],  ni-
trides [48], oxides [49], and hydroxides [50], have exhibited
remarkable catalytic performance, even surpassing activities
of noble metal-based catalysts in many reports [51–53]. Spe-
cifically, among various electrocatalytic materials, transition
metal-based  layered  double  hydroxides  (LDHs)  have  re-
cently drawn considerable attention owing to numerous ad-
vantages, such as unique lamellar structure, tunable chemical
composition, large surface area, and structural stability, thus
making them an outstanding catalyst for alkaline and neutral
electrolysis  with  low  cost  and  adequate  resources  [54–58].
Additionally,  multicomponent  transition  metal-based  LDHs
prepared by incorporating or  doping methods would gener-
ally further boost the intrinsic kinetics of OER due to the syn-
ergistic effect of transition metals [59–60]. Strasser et al. [14]
firstly  reported  the  remarkable  electrocatalytic  performance
of NiFe-LDHs material in a weak alkaline stimulated seawa-
ter (0.1 M KOH + 0.5 M NaCl), realizing 100% Faraday effi-
ciency toward OER and showing the potential  of  transition
metal-based  LDHs  materials  for  electrochemical  seawater

splitting. Furthermore, as mentioned in several references, in-
situ formed  hydroxide  layers  on  the  anode  surface  play  an
important role in the service life of catalysts due to the resist-
ance of hydroxide layers for blocking the invasion of Cl− into
effective catalytic sites to poison catalyst [9,11,13]. The high-
entropy alloys (HEAs) are supposed to be the desirable ma-
terials for catalysts to reduce the cost of labor and time dur-
ing  the  fabrication  of  multi-element  metal-based  catalysts.
Significantly, the HEAs exhibit the potential to supply mul-
tiple elements simultaneously due to the coexistence feature
of multiple elements in one structure, avoiding the addition of
metal salts or binders during the fabrication for catalysts dir-
ectly serving as electrodes toward water splitting. Moreover,
the HEAs are assumed to be a promising and functional cata-
lyst material in electrocatalysis due to the synergistic effect of
multiple elements adjacent to each other, leading to the form-
ation of new and tailorable active sites [61–63]. Some HEAs
with  certain  components  and  several  high-entropy  metallic
oxides/hydroxides/phosphates on the surface of HEAs have
been  verified  to  possess  considerable  catalytic  performance
for  water  splitting  [64–66].  Moreover,  most  of  the  HEAs
show excellent corrosion resistance and mechanical strength
due  to  special  features,  including  severe  lattice  distortion,
slow diffusion, and high entropy of mixing and unique cock-
tail effects. Thus, HEAs have tremendous potential to be re-
used for catalysis or electrocatalysis with super long service
life [67]. Nevertheless, searching for a single-step and large-
scale applied fabrication strategy is urgent and indispensable
for the commercial application of transition metal-based LDHs
catalysts.

In this work, the transition metal-based AlCoCrFeNi quin-
ary LDH (AlCoCrFeNi-LDHs) array in-situ grown on an Al-
CoCrFeNi-HEAs  was  prepared  using  the  hydrothermal
method, in which NaOH and heat drive corrosion process oc-
curred  on  the  surface,  and  developed  as  a  high-efficiency
catalyst  for  OER in  alkaline  seawater  electrolyte.  The  con-
ductive substrate of HEAs not only provides metallic ions for
LDHs but also serves as the anode of the electrolyzer. HEAs
have been verified to possess considerable potential in cata-
lysis [68–70]. Specifically, the influence of heating temperat-
ure  and  solution  on  morphology  and  electrocatalytic  per-
formance was studied.  The major factor that  causes the de-
gradation  of  the  OER  activity  of  the  AlCoCrFeNi-LDHs
catalyst was further investigated. This work provides not only
a  facile,  scalable,  and  efficient  approach  to  fabricate  multi-
metal-based  LDHs  but  also  a  failure  mechanism  and  pos-
sible researchful orientation for prolonging the operating life
of multicomponent LDH-based catalysts.

 2. Experimental
 2.1. Fabrication of AlCoCrFeNi-LDHs

The pure Al, Co, Cr, Fe, and Ni metals with high purity
(99.99wt%) were obtained by arc melting under an argon at-
mosphere.  Subsequently,  the  melting  and  casting  of  metals
were  conducted  under  the  vacuum condition  of  1  kPa,  fol-
lowed by sweeping with argon three times.  The mixture of
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raw materials  (Table S1) was repeatedly melted and solidi-
fied  several  times  to  obtain  an  AlCoCrFeNi-HEAs  with  a
highly  alloyed  state  and  ideal  chemical  homogeneity.  Al-
CoCrFeNi-LDHs  were  prepared  through  a  facile  and  one-
step  hydrothermal  approach  in  a  NaOH  solution.  Firstly,  a
small piece of AlCoCrFeNi-HEAs with the dimensions of 10
mm × 10 mm × 0.5 mm was ground and thoroughly rinsed
with deionized water to remove impurities on the surface of
the  AlCoCrFeNi-HEAs.  Subsequently,  the  AlCoCrFeNi-
HEAs was dried at 60°C under vacuum for 12 h. In a typical
preparation procedure, 0.06 mol NaOH was dissolved in 20
mL of deionized water. The above solution and the clean Al-
CoCrFeNi-HEAs  were  transferred  to  a  Teflon-sealed  auto-
clave  after  vigorous  stirring.  Finally,  the  autoclave  was
heated for 8 h at 150°C, followed by cooling to room temper-
ature  for  AlCoCrFeNi-LDHs  to  facilitate  its  growth  on  the
surface  of  the  AlCoCrFeNi-HEAs.  The  resultant  product
washed  with  deionized  water  and  ethanol  to  remove  the
residue on the surface, and then dried at 60°C under vacuum
for further test, and it was labeled as LDHs–x M–y h (x and y
correspond to the concentration of NaOH and the duration of
heat, respectively).

 2.2. Characterization

The  morphology  and  microstructure  characterizations
were  performed  by  scanning  electron  microscopy  (SEM,
Regulus 8100) and transmission electron microscopy (TEM,
TECNAI  F20),  and  energy  dispersive  spectroscopy  (EDS)
data  were  also  achieved  on  SEM  and  TEM  microscopes.
Grazing incident  X-ray diffraction (XRD, Brucker  D8 AD-
VANCE)  was  conducted  to  identify  the  crystallographic
structure of the AlCoCrFeNi-LDHs and AlCoCrFeNi-HEAs
using the following parameter: Cu Kα radiation, scanning rate
of 5°·min−1, and 2θ angle ranging from 10°–90°. X-ray pho-
toelectron spectroscopy (XPS) was performed on a Thermo
ESCALAB 250XI, and all  data of the binding energy were
calibrated to the C 1s peak at 284.8 eV. The content of metal
ions was investigated by an inductively coupled plasma-op-
tical  emission  spectroscopy  (ICP-OES),  which  was  per-
formed by using an Agilent ICPOES730.

 2.3. Electrochemical measurements

All  electrochemical  performances  were  measured  on  an
electrochemistry  workstation  (Autolab  PGSTAT  302N)  in
stimulated  alkaline  seawater  (1  M KOH +  0.5  M NaCl)  at
room temperature by a three-electrode configuration. The as-
prepared AlCoCrFeNi-LDHs on AlCoCrFeNi-HEAs, graph-
ite  rod,  and Ag/AgCl saturated KCl served as  the working,
counter, and reference electrodes, respectively. All potentials

(E)  were  converted  to  the  reversible  hydrogen  electrode
(ERHE) according to the formula:
ERHE = EAg/AgCl+0.197+0.059×pH (1)

The OER activity was exhibited by linear sweep voltam-
metry (LSV) curves, which were realized at a scan rate of 10
mV·s−1.  Additionally, all  the LSV curves in this work were
corrected with iR compensation (80%), and overpotential (η)
was calculated via the formula:
η = ERHE−1.23 (2)

The frequency range of 0.01 Hz to 100 kHz was applied to
electrochemical  impedance  spectroscopy  (EIS)  measure-
ments, and the numerical relationship of electrochemical sur-
face area (ECSA) of processed samples was evaluated by fit-
ting  the  value  of  double-layered  capacitance  (Cdl).  Mean-
while,  the Cdl value  was  estimated  by  cyclic  voltammetry
(CV) curves in the non-Faradaic potential range at the scan
rate of 10, 30, 50, 70, 90, and 110 mV·s−1. The differences in
charging  current  densities  (j = ja – jc)  were  linear  with  the
scan rate and the half value of the relevant slope corresponds
to the Cdl. The i–t curve stability test of the as-prepared cata-
lyst  was  conducted  at  a  constant  current  density  of  100
mA·cm−2 at room temperature. Moreover, the OER perform-
ance of the catalyst was measured again after a stability test
to contrast the electrochemical activity with an intact catalyst.

 3. Results and discussion

The  schematic  illustration  of  the  preparation  process  for
the  AlCoCrFeNi  quinary  LDH  (AlCoCrFeNi-LDHs)  cata-
lyst is presented in Fig. 1. Under different NaOH concentra-
tions, the hydrothermal reaction of AlCoCrFeNi-HEAs was
conducted  at  150°C  for  different  treatment  time  (including
heating up and holding processes) of 4, 8, 12, and 24 h. Al-
CoCrFeNi-HEAs occurs  corrosion  during  the  hydrothermal
reaction, followed by the release of five metallic ions com-
bined with OH− to form uniform AlCoCrFeNi-LDHs sheets
with high surface area on the HEAs surface. SEM and TEM
images were used for the time- and concentration-dependent
evolutions  of  AlCoCrFeNi-LDHs  to  investigate  the  growth
mechanism,  respectively. Fig.  2(a)  and  S1  reveal  the  mor-
phology  of  AlCoCrFeNi-LDHs changes  from small  and  ir-
regular  flakes  to  large and regular  sheets,  as  the  concentra-
tion of NaOH increases while the heating duration is 8 h. Fig.
S1(a) shows the coexistence of tiny LDH flakes and similar-
sized metallic oxide particles on the surface of the LDHs–0.1
M–8 h sample. Fig. S1(b) reveals the morphology of sample
prepared in 1 M NaOH was a scene of interlaced LDH sheets
with different sizes. Subsequently, AlCoCrFeNi-LDH sheets
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were grown on the surface of the AlCoCrFeNi-HEAs, creat-
ing  uniform  layered  structures  with  large  active  areas  and
smooth surfaces after the hydrothermal reaction in 3 M and 5
M NaOH, as shown in Fig. 2(a) and Fig. S1(c), respectively.
However, the high concentration (Fig. S1(d–e)) and long hy-

drothermal duration (Fig. S2(b–c)) would lead to the appear-
ance  of  tablet-shape  LDH  products  in  concentration-  and
time-dependent  evolutions,  respectively.  Moreover, in-situ
growth  of  LDHs  was  proven  by  the  sectional  SEM  image
(Fig. S3).
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Fig. 2.    Microscopic characterization and metallic elemental content of the as-prepared catalyst: (a) SEM image of LDHs–3 M–8 h
sample; (b) TEM and (c) HRTEM images of LDH sheets detached from LDHs–3 M–8 h sample, respectively; (d) corresponding ele-
mental mapping of the selected area in (c); (e) elemental content of LDH sheets from LDHs–3 M–8 h sample.
 

TEM  image  of  the  LDH  sheets  further  confirm  the  ex-
tremely thin construction of AlCoCrFeNi-LDHs (Fig. 2(b)),
which is  consistent with the SEM results.  Moreover,  lattice
fringes  with  a d-spacing  of  0.243  nm  were  observed  in  a
high-resolution TEM image (Fig. 2(c)), corresponding to the
(101) plane. Fig. 2(d) further displays the homogeneous dis-
tribution of Al, Co, Cr, Fe, and Ni in the LDH sheets. This
finding verifies the successful preparation of quinary LDHs,
which  are  formed  by  the  coinstantaneous  incorporation  of
metallic ions with OH−. ICP analysis was conducted for the
atomic  ratio  of  metals  in  as-synthesized  LDHs  and  reveals
that the atomic ratio of Al, Co, Cr, Fe, and Ni is 1:0.04:0.44:
0.16:2.36, as shown in Fig. 2(e).

The XRD analysis was applied to study the crystal struc-
ture and phase compositions of the pretreated HEAs and Al-
CoCrFeNi-LDHs.  According  to  the  measurement  results  of
XRD, the existing XRD standard cards (PDF# 06-0696 and
PDF#  14-0117)  were  used  as  the  approximate  peak  of  Al-
CoCrFeNi-HEAs and AlCoCrFeNi-LDHs. The XRD pattern
of the AlCoCrFeNi-LDHs after hydrothermal treatment com-
prehensively  indicates  six  diffraction  peaks  at  19.5°,  33.4°,
39.0°,  44.5°,  64.8°,  and  82.2°,  which  are  indexed  as  (001),
(100),  and  (101)  planes  of  the  synthesized  materials  and
(110),  (200),  and  (211)  planes  of  AlCoCrFeNi-HEAs  sub-
strate  (Fig.  3).  The  chemical  compositions  and  the  surface
chemical  states  of  the  selected  catalyst  were  identified  by
XPS measurement. The XPS survey spectrum (Fig. 4(a)) re-

veals the presence of Al, Co, Cr, Fe, and Ni along with O ele-
ments in the LDH material, consistent with the EDX results
(Fig. 2(e)). Fig. 4(b) shows the two peaks at 73.9 and 68.6 eV
corresponds to Al 2p and Ni 3p, respectively [71]. The Co 2p
spectra (Fig. 4(c)) exhibits two broad peaks assigned as Co
2p3/2 and Co 2p1/2 at 780.9 and 795.9 eV, respectively. In ad-
dition, two additional peaks at 784.3 eV and 799.2 eV corres-
pond to the satellite peaks [72]. Four peaks are found with the
high-resolution XPS spectrum of Cr 2p (Fig. 4(d)), including
two peaks of Cr 2p3/2 and Cr 2p1/2 at 577.1 and 586.8 eV, re-
spectively, which are assigned to trivalent chromium hydrox-
ide. The other two tiny peaks at 589.1 and 579.3 eV are re-
ported  to  be  trivalent  chromium  combined  with  additional
ligands to form complex compounds, which exist on the sur-
face of the catalyst [73]. For the Fe 2p XPS spectrum (Fig.
S4(d)), the signals situated at 711.9 and 724.5 eV are related
to the Fe 2p3/2 and Fe 2p1/2, respectively, denoting the state of
Fe3+.  The peak located at  721.2 eV can be identified as the
relevant satellite peak of Fe [9,26]. As shown in Fig. 4(e) for
the Ni 2p XPS spectrum, two main peaks of Ni 2p3/2 and Ni
2p1/2 appear at 856 and 873.3 eV, respectively, as well as two
relevant satellite peaks at 861.8 and 879.6 eV, confirming the
presence  of  Ni2+ [74].  The  XPS spectra  of  O  1s  (Fig.  4(f))
show three peaks located at 531.5, 529, and 533.3 eV, which
can be attributed to OH−, M–O, and H2O on the sample sur-
face, respectively.

The  electrocatalytic  OER  activity  of  the  AlCoCrFeNi-
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HEAs  and  the  as-prepared  catalysts  with  different  prepara-
tion  conditions  were  evaluated  using  a  standard  three-elec-
trode configuration in an alkaline simulated seawater electro-
lyte (0.5 M NaCl + 1 M KOH) at room temperature. The 0.5
M NaCl solution is generally regarded as an artificial substi-
tute approximately served as natural seawater because of the
similar existence of predominant Na+ and Cl− [75]. The LSV
profiles  (Fig.  5(a,  d))  showed that  LDHs–3 M–8 h exhibits
optimal  OER  activity  among  all  related  products  and  un-
treated AlCoCrFeNi-HEAs, requiring overpotentials of 272.3
and  332  mV to  deliver  10  and  100  mA·cm−2,  respectively.
These  overpotentials  are  relatively  smaller  than  LDHs–0.1
M–8  h  (326.3  and  418  mV),  LDHs–1  M–8  h  (301.8  and
383.6 mV), LDHs–5 M–8 h (279.1 and 369 mV), LDHs–7
M–8 h  (296.8  and  389.2  mV),  LDHs–3 M–4 h  (286.3  and
364.9  mV),  LDHs–3  M–12  h  (290.9  and  368.4  mV),
LDHs–3 M–24 h (315.8 and 601.3 mV), and AlCoCrFeNi-
HEAs (349.8 and 455.4 mV) to attain the same current dens-
ities of 10 and 100 mA·cm−2. This finding demonstrates that

as-synthesized  AlCoCrFeNi  quinary  LDHs  exert  a  positive
influence on electrochemical performance. Notably, the OER
activity of the LDH catalyst rises as a function of increased
concentration of NaOH or hydrothermal duration from 0 to 3
M or 0 to 8 h, respectively, due to the increasing active site on
the surface according to the SEM results (Figs. S1–S2). Op-
positely,  the  electrochemical  performance  of  OER declined
gradually with the further increase in concentration or dura-
tion  due  to  blocked  mass  transfer  caused  by  large-sized
LDHs. Furthermore, the Tafel plots are displayed in Fig. 5(b,
e) to evaluate the catalytic kinetics of the samples for OER.
LDHs–3 M–8 h yields a lower Tafel slope of 48.87 mV·dec−1

in  comparison  with  that  of  LDHs–0.1  M–8  h  (50.25
mV·dec−1), LDHs–1 M–8 h (50.21 mV·dec−1), LDHs–5 M–
8  h  (54.43  mV·dec−1),  LDHs–7  M–8  h  (54.9  mV·dec−1),
LDHs–3  M–4  h  (53.52  mV·dec−1),  LDHs–3  M–12  h  (53.2
mV·dec−1), and LDHs–3 M–24 h (90.78 mV·dec−1), reveal-
ing  the  relatively  rapid  OER  catalytic  kinetics  on  LDHs–3
M–8  h.  Electrochemical  impedance  spectroscopy  (EIS)
measurements were employed to determine the charge trans-
fer resistance (Rct) of catalysts,  and the Nyquist plots of as-
prepared catalysts are presented in Fig. 5(c, f). LDHs–3 M–
8  h  possess  the  smallest  diameter  of  the  impedance  arc
among  all  the  samples,  demonstrating  the  smallest Rct and
best  conductivity,  which  proves  the  relatively  outstanding
catalytic performances. Additionally, the values of Cdl, which
are measured via CV with increasing scan rate (Figs. S5–S6),
were  fitted  to  estimate  the  electrochemically  active  surface
area. Fig.  5(g–h)  shows  the Cdl values  of  LDHs–3  M–8  h,
LDHs–0.1  M–8  h,  LDHs–1  M–8  h,  LDHs–5  M–8  h,
LDHs–7  M–8  h,  LDHs–3  M–4  h,  LDHs–3  M–12  h,  and
LDHs–3 M–24 h were 1.47, 0.53, 1.4, 1.27, 0.8, 1.19, 1.31,
and 1.2 mF·cm−2, suggesting that LDHs–3 M–8 h provides a
large surface for active sites during OER and comprises the
conclusion of the overpotential mentioned above, and the rel-
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Fig. 4.    XPS spectra of LDHs–3 M–8 h: (a) survey spectra; (b) Al 2p; (c) Co 2p; (d) Cr 2p; (e) Ni 2p; (f) O 1s.
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ative CV data were displayed in Figs. S5–S6. Based on pre-
vious studies, the enhanced electrochemical performance of
surface-modified AlCoCrFeNi-HEAs for OER could be con-
cluded  as  follows:  (i)  doping  effect  of  transition  metal  ele-
ments for driving synergism and boosting OER kinetics; (ii)
unique  2D  structure  for  large  electrochemical  surface  area
and substantially exposed active sites; (iii) fast mass transfer
and the release of gaseous product due to appropriate space
among LDHs sheets; (iv) fast electron transfer speed due to
the in-situ growth  of  LDH sheets  onto  the  HEAs electrode
[76–82]. Additionally, the OER stability was tested under a
constant  overpotential  for  72 h to  evaluate  the potential  for
practical  application.  Impressively,  LDHs–3  M–8  h  exhib-
ited  excellent  performance  in  successive  24  h  at  a  current
density  of  100  mA·cm−2 (Fig.  6).  However,  the  significant
fluctuations  were  found  after  the  following  30  h,  and  the
catalyst  underwent  a  slow  but  continuous  degradation  of
catalytic performance after the next 18 h. Moreover, the OER
activity of the selected LDHs–3 M–8 h catalyst outperforms
many  recently  reported  multicomponent-based  OER  cata-
lysts, and some details are shown in Table 1.

The sample of  LDHs–3 M–8 h underwent  72 h stability

test was investigated by the same analysis method to exam-
ine the failure mechanism for the degradation of  AlCoCrF-
eNi-LDHs catalysts during the OER electrocatalytic process.
Samples of LDHs–3 M–8 h before and after the 72 h stabil-
ity  test  are  named  AlCoCrFeNi-LDHs-BST  and  AlCoCrF-
eNi-LDHs-AST,  respectively.  AlCoCrFeNi-LDHs-AST  ex-
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hibited the overpotential of 283 and 364 mV at 10 and 100
mA·cm−2 (Fig.  7(a)),  a  high  value  of  the  Tafel  slope  (78.5
mV·dec−1) (Fig. 7(b)), and a relatively large Rct, indicating a

slight  degradation  of  activity  for  OER  than  AlCoCrFeNi-
LDHs-BST  (Fig.  7(c)).  However,  AlCoCrFeNi-LDHs-AST
possessed  substantially  larger Cdl (4.61  mF·cm−2)  than  Al-
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Table 1.    OER performance of the catalyst in this work in comparison with other multicomponent-based catalysts

Catalyst Electrolyte Overpotential / mV Durability Ref.

AlCoCrFeNi-LDHs@AlCoCrFeNi-HEAs 1 M KOH + 0.5 M NaCl η100 = ~332 72 h ~100 mA·cm–2 This work
Fe–Ni(OH)2/Ni3S2 1 M KOH + 0.5 M NaCl η100 = ~320 27 h ~100 mA·cm–2 [83]
NiFe LDH@Co3O4/NF 1 M KOH + 0.5 M NaCl η100 = 330 — [84]
0.5Fe–NiCo2O4@CC 1 M KOH + 0.5 M NaCl η10 = 273 — [85]
NiCoHPi@Ni3N/NF 1 M KOH + 0.5 M NaCl η100 = 365 120 h ~200 mA·cm–2 [86]
Oct_Cu2O-NF 1 M KOH + 0.5 M NaCl η100 = 510 — [87]
NiMo film@NF 1 M KOH + 0.5 M NaCl η100 = 450 15 h ~10 mA·cm–2 [88]
NiCoP/NiCo-LDH@NF 1 M KOH + 0.5 M NaCl η50 = 350 50 h ~15 mA·cm–2 [89]
Ni3S2–MoS2–Ni3S2@NF 1 M KOH + 0.5 M NaCl η100 = 330 100 h ~100 mA·cm–2 [90]
RuNi–Fe2O3/IF 1 M KOH + 0.5 M NaCl η100 = ~350 20 h ~100 mA·cm–2 [91]
CoSe/MoSe2 1 M KOH + 0.5 M NaCl η10 = 320 48 h ~10 mA·cm–2 [92]
Mo–CoPX/NF 1 M KOH + 0.5 M NaCl η100 = 420 100 h ~10 mA·cm–2 [93]
B–CoNiOOH/PANI@
TiO2/Ti 1 M KOH + 0.5 M NaCl η100 = 398 72 h ~200 mA·cm–2 [94]

CoCH@CFP 1 M KOH + 0.5 M NaCl η100 = 385 — [95]
MoNiFe–OH/NFF 1 M KOH η100 = 323 100 h ~100 mA·cm–2 [96]
NiFeCo-LDHs 1 M KOH η100 = ~330 80 h ~100 mA·cm–2 [97]
FeCoNiMnCu HEAs 1 M KOH η10 = 280 40 h ~10 mA·cm–2 [70]
(Fe0.25Co0.61Cu0.14)Se 1 M KOH η10 = 278 18 h ~10 mA·cm–2 [98]
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CoCrFeNi-LDHs-BST  (Fig.  7(d))  due  to  its  rough  surface,
which was caused by continual  current  and resulting in  the
exposure of additional active sites (not highly efficient active
sites for OER). Fig. S7 shows that the morphology of LDHs
remained  unchanged  after  the  long-term  stability  test,  and
this  finding  demonstrates  the  robustness  of  the  interlaced
sheet  structure.  Compared  with  AlCoCrFeNi-LDHs-BST
(Fig.  S8),  no new peaks were found in the XRD pattern of
AlCoCrFeNi-LDHs-AST,  verifying  the  stable  chemical
compositions of AlCoCrFeNi-LDHs. XPS measurement was
conducted to study the element states of AlCoCrFeNi-LDHs-
AST, and all fitted peaks show nearly negligible shifts in Al
2p, Cr 2p, Fe 2p, Ni 2p, and O 1s XPS spectra (Fig. S4). The
enhanced signal in the Co 2p XPS spectrum implies the oxid-
ation  of  the  Co  element  under  the  action  of  current  on  the
electrode.  Furthermore,  the  content  of  metallic  ions  dis-
solved in the electrolyte after the stability test was investig-
ated by ICP measurement. The concentration of Co ions was
too low to be considered. Notably, no significant difference
was observed in the dissolution of each ion despite the low-
est content of Fe in LDHs (Fig. 8). Thus, the degradation of
OER electrocatalytic performance primarily originated from
the  collapse  of  highly  efficient  active  sites,  which  mainly
comprise Fe element.
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 4. Conclusion

In summary, one-step synthesis of quinary AlCoCrFeNi-
LDHs thin sheets, which were directly grown on AlCoCrF-
eNi-HEAs, was achieved using a facile hydrothermal meth-
od.  As-formed  AlCoCrFeNi-LDHs  are  highly  porous,  self-
supported  on  the  substrate,  and  afford  a  large  surface  area,
which ensure efficient mass and charge transfer and abund-
ant active metal sites for enhanced OER activity in alkaline
seawater electrolyte. The optimal synthesis parameter of the
catalyst  is  heated  in  3  M NaOH solution  for  8  h  under  the
temperature of 150°C, which exhibits a low overpotential of
272.3 and 332 mV at 10 and 100 mA·cm−2, respectively, and
yields a small Tafel slope of 48.87 mV·dec−1. In addition, the
AlCoCrFeNi-LDHs catalyst presents almost no fading and a

small degradation after the first 24 and following 48 h stabil-
ity test. The 2D structure, chemical composition, and chem-
ical states were well maintained after long-term test in com-
parison  with  initial  as-prepared  AlCoCrFeNi-LDHs.  Mean-
while, the dissolution of highly efficient catalytic sites is pre-
sumed to be the major reason for the attenuated OER activity.
This  facile  preparation  scheme  of  AlCoCrFeNi-LDHs  rep-
resents a potential method to develop other multicomponent
and  non-noble  metal-based  LDH  catalysts  for  large-scale
seawater splitting and hydrogen production.
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