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Abstract: SiC nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix
composites are difficult to work at temperatures above 300°C, while their ceramic matrix composites must be prepared above 1000°C in an in-
ert atmosphere. Thus, for addressing the abovementioned problems, SiC/low-melting-point glass composites were well designed and prepared
at 580°C in an air atmosphere. Based on the X-ray diffraction results, SiC nanowires were not oxidized during air atmosphere sintering be-
cause of the low sintering temperature. Additionally, SiC nanowires were uniformly distributed in the glass matrix material. The composites
exhibited good mechanical and EMW absorption properties. As the filling ratio of SiC nanowires increased from 5wt% to 20wt%, the Vickers
hardness and flexural strength of the composite reached HV 564 and 213 MPa, which were improved by 27.7% and 72.8%, respectively, com-
pared with the low-melting-point glass. Meanwhile, the dielectric loss and EMW absorption ability of SiC nanowires at 8.2–12.4 GHz were
also gradually improved. The dielectric loss ability of low-melting-point glass was close to 0. However, when the filling ratio of SiC nanowires
was 20wt%, the composite showed a minimum reflection loss (RL) of −20.2 dB and an effective absorption (RL ≤ −10 dB) bandwidth of
2.3 GHz at an absorber layer thickness of 2.3 mm. The synergistic effect of polarization loss and conductivity loss in SiC nanowires was re-
sponsible for this improvement.

Keywords: SiC nanowires; glass composite; flexural strength; dielectric properties; microwave absorption

 

 1. Introduction

With the comprehensive application of wireless commu-
nication  technology,  the  harm  of  electromagnetic  waves
(EMW)  has  also  received  considerable  attention.  Corres-
pondingly,  high-performance  EMW-absorbing  materials
have been extensively studied in recent years [1–2]. Among
several  EMW-absorbing  materials,  SiC  materials  exhibit
great application potential because of their moderate electric
resistance,  high-temperature  resistance,  and  chemical  inert-
ness  [3].  Moreover,  one-dimensional  (1D)  SiC  can  build  a
three-dimensional  conductivity  loss  network  while  enhan-
cing  multiple  reflection  and  scattering  effects,  thereby
achieving  excellent  EMW  absorption  performance  [4–9].
However,  SiC/polymer  matrix  composites  are  difficult  to
work above 300°C, which limits the application of SiC-based
EMW-absorbing materials. Therefore, a series of SiC/ceram-
ic  matrix  EMW-absorbing  composites  was  prepared  on  the

basis of different forms of 1D SiC, such as fiber, whisker, and
nanowire  [10–21].  However,  such  ceramic  matrix  compos-
ites  are  usually  prepared  by  high-temperature  sintering  at
1000–1600°C,  and  inert  gas  is  used  as  a  protective  atmo-
sphere to avoid SiC oxidation. Huge energy consumption and
complex  processes  and  equipment  are  necessary.  Thus,
SiC/inorganic  matrix  composites  with  lower  sintering  tem-
peratures and moderate high-temperature resistance must be
developed.

Compared with  ceramic  matrix  composites,  glass  matrix
composites are easier to sinter at low temperatures. Li et al.
[22] prepared a dense SiC–Al2O3–glass composite coating at
900°C using a potassium silicate matrix material. Zhang et al.
[23]  fabricated  an  Al2O3/SiC  nanowires/glass  composite  at
900°C  by  using  the  Bi–B–Si–Zn–Al  glass.  Doo et  al. [24]
prepared a SiC whisker-reinforced ceramic tape at 850°C by
using  calcium  aluminoborosilicate  glass  as  the  matrix
material.  In  addition,  the  sintering  temperature  of  the  re- 
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duced graphene oxide/glass EMW absorption composite was
reduced to 700°C in an argon atmosphere [25–26]. However,
in our previous study, the initial oxidation temperature of SiC
nanowires  (SiCnw)  was  approximately  650°C  [27].  There-
fore, a low-melting-point glass with a sintering temperature
lower than 600°C was selected as an inorganic matrix materi-
al in this work. Such a low sintering temperature can be used
to prepare SiCnw/glass composites in air without a complex
inert atmosphere or vacuum furnace. Meanwhile, it can also
effectively reduce the oxidation of SiC to avoid the decline in
the EMW absorption performance. In general, the mechanic-
al properties of glass matrix materials are weaker than those
of ceramic matrix materials. However, as a typical 1D mater-
ial, SiC nanowires can also effectively enhance the mechan-
ical  properties  of  glass  matrix  composites  [23–24,28–29].
Therefore,  SiC  nanowires/low-melting-point  glass  compos-
ites were sintered at 580°C in an air atmosphere in this work,
which is significantly lower than the reported sintering tem-
perature  of  SiC  nanowires/inorganic  matrix  composites.
Moreover, the effects of the filling ratio of SiC nanowires on
the dielectric parameters, EMW absorption performance, and
mechanical properties of the composites were also investig-
ated.

 2. Experimental
 2.1. Materials

Low-melting-point  glass  powders  (YFX-1273)  with  a
softening temperature of 580°C were purchased from Fuzhou
Invention Photoelectrical Technology Co., Ltd. Their chem-
ical  composition  is  shown  in Table  1.  SiC  nanowires  (SiC
content ≥ 99wt%) were prepared by microwave heating and
concentrated  by  using  a  gravity  method  [30].  The  glass
powders and SiC nanowires were ball milled in a polyethyl-
ene milling jar with agate balls for 30 min, and ethanol was
used  as  the  liquid  medium.  The  weight  content  of  SiC
nanowires  in  the  raw  materials  was  set  at  0,  5%,  10%,  or
20%, which were labeled as GS0, GS5, GS10, and GS20, re-
spectively. The mixed slurry was dried at 110°C in a vacuum
drying oven. The powder mixture was pressed into a rectan-
gular green body under 50 MPa and then sintered at 580°C
for  30  min  in  an  air  atmosphere.  Afterward,  the  sintered
samples  were  ground  to  22.86  mm  ×  10.16  mm  ×  2  mm
(length × width × height)  for  dielectric  parameter  measure-
ment by using the waveguide method.

 
Table 1.    Chemical composition of glass powders  wt%

ZnO B2O3 SiO2 K2O ZrO2 Fe2O3 Al2O3 CuO Y2O3 NiO
41.00 33.20 10.96 13.26 0.23 0.05 1.24 0.03 0.02 0.01

 

 2.2. Characterization

The chemical composition was determined by Inductively
Coupled-Plasma Optical Emission Spectrometry (ICP-OES,
VARIAN 715-ES, USA). The composites were analyzed by
using  an  X-ray  diffractometer  with  Сu  Kα radiation  (XRD,
Bruker  D8  Advance,  Germany).  Field-emission  scanning
electron microscopy (FESEM, ZEISS Ultra 55, Oberkochen,
Germany) equipped with an energy dispersive spectroscopy
(Oxford Instruments X-Max, Oxford, UK) was used to char-
acterize the micro-morphology of composites. The hardness
of the composites was determined by using a micro-indenter
equipped with a diamond Vickers indenter. Flexural strength
measurements were performed on bar specimens (3 mm × 4
mm × 36 mm) using a three-point bend fixture with a span of
30 mm. Dielectric  permittivity  at  8.2–12.4  GHz was meas-
ured  by  using  a  Keysight  PNA-L  N5232A  vector  network
analyzer (Palo Alto, Canada) with the waveguide method.

 3. Results and discussion

Fig. 1 shows the phase composition of low-melting-point
glass  and  SiCnw/glass  composites  with  different  SiC
nanowire  filling  ratios.  The  low-melting-point  glass  is
primarily  composed  of  an  amorphous  phase,  with  a  small
amount of ZnO and SiO2 crystal phases. Based on the XRD
patterns  of  the  composites,  sharp  diffraction  peaks  corres-
pond  to  the  (111),  (200),  (220),  (311),  and  (222)  crystal
planes and stacking faults (SF) of 3C-SiC (cubic crystalline).

With the increase in  the SiC nanowire filling ratio,  the dif-
fraction peak intensity of SiC is significantly enhanced relat-
ive  to  the  amorphous  diffraction  peak.  Therefore,  SiC
nanowires are not oxidized when sintered at 580°C.
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Fig. 1.      XRD patterns of the SiCnw/glass composites sintered
at 580°C.
 

Fig. 2(a) shows the micro-morphology of the powder mix-
ture of low-melting-point glass powders and SiC nanowires.
The particle size of low-melting-point glass powders is 1–5
µm,  and  the  diameter  and  length  of  SiC  nanowires  are
50–200 nm and tens of microns,  respectively. Fig.  2(b)–(d)
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shows  the  typical  surface  morphology  of  the  SiCnw/glass
composite with different SiC filling ratios. A large number of
SiC nanowires are randomly and uniformly embedded in the
glass matrix. After sintering in air, the morphology of the SiC
nanowires did not significantly change. In addition, the con-
tent  of  SiC nanowires  in  the  composite  gradually  increases
with the increase of the filling ratio.

Fig. 3 shows the mechanical properties of the SiCnw/glass
composite.  After  the  introduction  of  SiC  nanowires,  the
Vickers  hardness  and  flexural  strength  of  the  low-melting-
point glass were significantly enhanced. The hardness value
increased from HV 442 of the GS0 sample to HV 564 of the
GS20  sample,  with  an  increase  of  27.7%.  Meanwhile,
samples GS5 (179 MPa), GS10 (207 MPa), and GS20 (213
MPa) showed 45.7%, 68.6%, and 72.8% improvements, re-
spectively,  in  the  flexural  strength  compared  with  sample
GS0 (123 MPa), which can be attributed to the enhancement
mechanism  of  SiC  nanowires,  including  bridging,  pullout,
and  crack  deflection.  The  abovementioned  results  indicate
that the SiCnw/glass composites have good mechanical prop-
erties.

Fig.  4(a)–(c)  shows  the  dielectric  properties  of  SiCnw/

glass composites in the frequency range of 8.2–12.4 GHz. In
the whole measurement frequency range, the relative dielec-
tric constant (ε′), dielectric loss (ε″), and loss tangent (tan δ =
ε″/ ε′)  of  the  low-melting-point  glass  (GS0  sample)  are
~5.418, ~0.015, and ~0.003, respectively, which indicates a
dielectric loss ability of nearly zero. By contrast, SiCnw/glass
composites exhibit higher dielectric properties. In addition, as
the  filling  ratio  of  SiC  nanowires  increased  from  5wt%  to
20wt%, ε′,  ε″,  and  tan δ of  composites  increased  from
5.83–6.08,  0.74–0.86,  and  0.12–0.14  to  9.73–10.17,  2.65–
3.21, and 0.27–0.32, respectively. The dielectric loss tangent
(tan δ) is a key index of EMW-absorbing materials, which is
used  to  indicate  the  ability  of  materials  to  dissipate  EMW.
Moreover, a higher tan δ value represents a stronger dissipat-
ive  attenuation  ability  of  an  EMW.  The tan δ value  of  the
GS20  sample  has  increased  by  approximately  100  times
compared with low-melting-point glass. Therefore, the intro-
duction  of  SiC  nanowires  has  dramatically  enhanced  the
dielectric loss ability of the glass. This remarkable improve-
ment in dielectric properties can be attributed to the polariza-
tion  loss  and  conductance  loss  induced  by  SiC  nanowires
[31–33]. On the contrary, the real (µ′) and imaginary (µ″) rel-
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Fig. 2.    SEM images of (a) the powder mixture of raw materials, (b) GS5, (c) GS10, and (d) GS20.
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ative  permeability  of  all  samples  are  lower  than  1.049  and
0.027, respectively (Fig. 4(d)).  This result indicates that the
magnetic  loss  ability  of  the  composite  material  is  weak.
Fig. 5 shows the Cole–Cole curves of the composites, which
can illustrate the loss mechanism of the EMW. In this curve,

a semicircle represents a kind of polarization relaxation loss.
The Cole–Cole curve of the low-melting-point glass is irreg-
ular,  which  corresponds  to  its  poor  dielectric  loss  ability.
After  the  introduction  of  SiC  nanowires,  a  clear  semicircle
appears in the GS5 sample, which indicates that the polariza-
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tion  loss  contributes  to  its  dielectric  loss  ability.  This  phe-
nomenon  is  primarily  due  to  the  lattice  defects  of  SiC
nanowires [32]. With the further increase of the filling ratio
of SiC nanowires, a tail appears in the curve, and its length
gradually  increases.  Therefore,  considerable  conductance
loss occurs in the composite [34]. As mentioned previously,
at a higher filling ratio of SiC nanowires, an electrical con-
duction network can be easily formed, thereby enhancing the
conductance loss ability.

The reflection loss (RL) was calculated in accordance with
the transmission line theory [35],  which is  used to evaluate
the EMW absorption performance of materials.

Zin =

√
µr

εr
tanh

(
j
2π f d

c
√
µrεr

)
(1)

RL = 20lg
∣∣∣∣∣Zin−1
Zin+1

∣∣∣∣∣ (2)

where Zin is the input impedance of the absorber, εr and µ r are
the  complex  permittivity  and  permeability  of  the  absorber,
respectively, f is the frequency of the incident microwave, d
is the absorber thickness, and c is the velocity of light. At the
same thickness of absorbing material, lower RL represents a
stronger EMW absorption ability. Fig. 6 shows three-dimen-
sional plots of the RL of SiCnw/glass composites versus the
absorber thickness (1–5 mm) and frequency (8.2–12.4 GHz).
The RL calculation results are completely consistent with the
dielectric measurement results.  The low-melting-point glass
has  almost  no  EMW-absorbing  performance  in  the  whole

measured frequency and thickness range, in which its minim-
um  RL  was  larger  than −1  dB.  With  the  formation  of  the
SiCnw/glass composites, the RL value of the composites de-
creases  significantly,  which  indicates  that  their  EMW  ab-
sorption  performance  has  been  effectively  enhanced.
However,  when  the  filling  ratios  of  SiC  nanowires  in  the
composites are 5wt% and 10wt%, their minimum RL values
are only −5.3 and −11.0 dB, respectively. As the filling ratio
further increases to 20wt%, the composite shows a minimum
RL  of −20.2  dB  for  thickness  of  2.8  mm  (−20.2  dB@2.8
mm) and an effective absorption (RL ≤ −10 dB) bandwidth
of 2.3 GHz (9.8–12.1 GHz) at an absorber layer thickness of
2.3 mm (2.3 GHz@2.3 mm). This improved EMW absorp-
tion ability is primarily attributed to the synergistic effect of
polarization loss and conductivity loss of SiC nanowires. In
addition, compared with the representative 1D SiC inorganic
composite (Table 2), the SiCnw/glass composite exhibits re-
markable EMW absorption properties. Notably, its prepara-
tion conditions are simple. Thus, the abovementioned results
indicate that the SiCnw/glass composite has good mechanic-
al and EMW absorption properties, and it can be prepared at
a  low  temperature  in  air  atmosphere,  making  it  a  potential
high-performance EMW absorption material. Moreover, this
well-designed SiC/glass composite  provides a  novel  insight
into  EMW-absorbing  materials  other  than  polymer  and
ceramic  matrix  composites.  By  reducing  the  sintering  tem-
perature  of  the  glass  matrix  material,  this  EMW-absorbing
material  can  be  easily  transformed  into  a  coating  and  pre-
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R.R. Shi et al., Electromagnetic wave absorption and mechanical properties of SiC nanowire/low-melting-point ... 1813



pared on a variety of substrate surfaces, which may have bet-
ter  corrosion  resistance  and  mechanical  properties  than  the
polymer matrix EMW-absorbing coating [22].

 4. Conclusion

SiC  nanowires/low-melting-point  glass  composites  were
sintered at  580°C in an air  atmosphere.  Based on the XRD
results, SiC nanowires were not oxidized during low-temper-
ature  sintering.  Therefore,  these  composites  exhibit  good
mechanical  and  EMW  absorption  properties.  With  the  in-
crease  of  the  filling  ratio  of  SiC  nanowires  from  5wt%  to
20wt%,  the  Vickers  hardness  and  flexure  strength  of  the
composite increased by 27.7% and 72.8% compared with the
glass, reaching HV 564 and 213 MPa, respectively. In addi-
tion, the dielectric permittivity and EMW absorption proper-
ties  of  the  composites  in  the  frequency  range  of  8.2–12.4
GHz are  gradually  enhanced.  When the  filling  ratio  of  SiC
nanowires reaches a maximum of 20wt% in this experiment,
the composite material also achieves a minimum RL of −20.2
dB. Meanwhile, it shows an effective absorption (RL ≤ −10
dB) bandwidth of 2.3 GHz at the absorber layer thickness of
2.3 mm. This improvement can be attributed to the synergist-
ic  effect  of  polarization  loss  and  conductivity  loss  of  SiC
nanowires. Moreover, this well-designed SiC/glass compos-
ite  provides  a  novel  insight  into  EMW-absorbing  materials
other than polymer and ceramic matrix composites.
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