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Abstract: Zinc-ion batteries (ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy
density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hy-
drogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Ap-
propriate zinc metal-free anodes provide a higher working potential  than metallic  zinc anodes,  effectively solving the problems of zinc
dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle
life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research pro-
gress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides,
transition metal sulfides, MXene (two dimensional transition metal carbide) composites, and organic compounds, with discussions on their
properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is ex-
pected to provide a reference for the further promotion of commercial rechargeable ZIBs.
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 1. Introduction

People are increasingly aware of the urgency of develop-
ing renewable energy sources in response to the massive con-
sumption  of  traditional  nonrenewable  energy  sources  and
pollution  problems  caused  by  coal  combustion  [1–2].  The
full  utilization  of  renewable  and  the  evolution  of  different
types  of  power  storage  systems  are  also  popular  issues  of
concern.  Electrochemical  energy  storage  technology  has
been rapidly developing in recent years. Lithium-ion batter-
ies have dominated the power battery market [3]. However,
some inherent  defects  of  lithium, including low safety,  low
power density, high cost, and raw material supply problems,
have hindered its application in energy storage [4–5]. There-
fore, developing batteries of non-lithium-ion systems has be-
come critical to meet the needs of different application scen-
arios. Among them, the demand for replacing Li-ion batter-
ies with zinc-ion batteries (ZIBs) continues to increase [6–7].
ZIBs hold a broad application prospect within the field of en-
ergy  storage  due  to  their  low cost,  high  safety,  high  power
density, and environmental friendliness [8–10].

ZIBs generally comprise three fundamental  components:
cathode, anode, and electrolyte. The cathode, which is con-
nected to critical indicators, such as cost, energy density, and

discharge  platform,  is  critical  to  the  performance  of  ZIBs.
Vanadium oxides  [11–14],  manganese  oxides  [15–19],  and
Prussian blue analogs [20–22] are the most common cathode
materials for ZIBs. The electrolyte is an essential part of the
battery,  providing a  pathway for  ion  exchange between the
cathode and the anode [23–24]. Zinc metal is an ideal anode
material for ZIBs because of its abundant reserves, environ-
mental  friendliness,  low  cost,  and  low  redox  potential.
However,  dendrite  growth,  hydrogen  evolution,  and  corro-
sion on the surface of the zinc anode are inevitable during the
charging  and  discharging  processes,  and  these  problems
severely limit the battery performance [25–26]. Therefore, a
comprehensive understanding of the challenges encountered
by zinc anode and their solution strategies is important for the
development of highly stable and reversible ZIBs.

Various modification strategies, such as surface modifica-
tions  [27–29],  structural  designs  [30–31],  zinc  alloying
[32–36], and electrolyte optimization [37–38], have been im-
plemented  to  improve the  issues  of  dendrite  growth,  corro-
sion, hydrogen evolution, and byproducts on the anodes [39].
These  improvements  have  brought  the  performance  of  the
modified anodes close to the level  required for  commercial
application. However, the low discharge depth and poor plat-
ing/stripping efficiencies of the zinc anode result in low en- 
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ergy  density  in  the  full  cell  despite  such  improvements.
“Rocking  chair” ZIBs  have  been  developed  to  provide  a
proper  operating  potential  between  their  electrodes  to  ad-
dress the aforementioned issues, almost completely avoiding
dendrites  and hydrogen evolution  problems [40].  Consider-
ing “rocking chair” ZIBs, these batteries have a high weight
energy density and a long lifetime due to their rapid electron-
ic  transport  dynamics,  while  their  theoretical  capacity  is
lower than that of zinc anodes of undefined mechanism.

Reviews  of  zinc  metal-free  anodes  in  this  area  are  still
fairly restricted despite the increasing attention on “rocking
chair” batteries. This paper summarizes the development of
zinc-free metal anodes in ZIBs (Fig. 1). First, this paper sum-
marizes the shortages and optimization strategies for zinc an-
odes in ZIBs, followed by an overview of the characteristics
of zinc metal-free anodes. Then, the zinc metal-free anodes
are classified (Fig.  2)  and introduced.  Last,  the future chal-
lenges  and  outlook  for  the  zinc  metal-free  anode  are  dis-
cussed.

 2. Issues  with  anodes  for  ZIBs  and  feature  of
zinc metal-free anodes

The  emergence  of  dendrites,  corrosion,  passivation,  and

hydrogen  evolution  on  the  zinc  anode  interface  hinders  the
practical  application  of  the  battery  during  operation  [55].
Zinc ions tend to deposit in areas with high electric force in-
tensity and gradually form zinc dendrites [56], leading to bat-
tery  short-circuiting  in  severe  cases  [57].  Zinc  dendrites
weaken the battery structure and increase the specific surface
area  of  the  anode,  resulting  in  the  occurrence  of  side  reac-
tions.  Electrochemical  corrosion  also  occurs  on  the  anode
surface  during  the  discharge  process  [58].  These  electro-
chemical corrosion products can cover the active sites on the
anode surface and cause electrode passivation. As an ampho-
teric  metal,  zinc  can  evolve  into  hydrogen  in  acidic  or  al-
kaline electrolytes to produce hydrogen, which increases the
battery  pressure,  leading  to  battery  expansion  and  rupture
[59].

The capacity and lifetime of the zinc anode can be negat-
ively affected by harmful products, such as dendrite growth,
corrosion,  and  hydrogen  evolution.  Despite  the  progress  in
these areas, challenges remain in completely resolving prob-
lems  with  zinc  anodes,  especially  in  the  area  of  dendrite
growth. In the commercialization process, researchers focus
on the volume/mass energy density of the battery,  which is
relevant to the pocket capability of the battery. Most reported
zinc metal utilization is currently limited to less than 5% and
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has a low discharge depth [60]. Thus, most people fail to no-
tice only a weak layer of zinc on the electrode surface parti-
cipates in the electrochemical reaction and releases zinc ions
[41–42,49].

“Rocking chair” ZIBs are developed from “rocking chair”
LIBs, which markedly improved the energy density and sta-
bility  of  batteries  [43].  The construction and mechanism of
“rocking  chair” ZIBs  have  similarities  to  that  of “rocking
chair” LIBs, with a zinc metal-free anode instead of metallic
zinc.  The “rocking  chair” operation  mechanism  of  ZIBs  is
based on the reverse flow of divalent zinc ions between the
zinc  metal-free  anode  and  zinc-rich  cathode.  The  zinc  ions
spread  from  the  electrolyte  and  then  into  the  anode  during
charging.  The  opposite  occurs  during  the  discharge.  Zinc
metal-free anode material must be stabilized and has an ap-
propriate layer structure for normal operation.

The research of “rocking chair” ZIBs is currently expand-
ing, especially the study of zinc-free metal anodes for “rock-
ing chair” ZIBs. Appropriate zinc-free metal anodes provide
a  high  working  potential  over  metallic  zinc  anodes,  which

can  effectively  inhibit  zinc  dendrite  formations,  side  reac-
tions, and hydrogen evolution, leading to enhanced security
and battery cycle life. Only a few zinc-free metal anodes for
“rocking  chair” ZIBs  have  been  reported  due  to  the  short-
term  development  experience.  Therefore,  the  capacity  of
most “rocking chair” ZIBs is still lower than that of conven-
tional zinc anodes. Undoubtedly, zinc-free metal anodes for
“rocking  chair” ZIBs  are  inadequate  considering  energy
density,  failing  to  surpass  zinc  anodes.  Hence,  one  of  the
largest  challenges  for “rocking  chair” ZIBs  with  zinc-free
metal anodes is the low capacity density. The storage mech-
anism of  ZIBs as  a  multiple-valent  ion battery differs  from
that  of  ordinary univalent  ion batteries  and requires  a  com-
prehensive study. Furthermore, studies on the electrolyte of
“rocking chair” ZIBs are few, resulting in limited available
types. The fundamental demands of electrolytes of “rocking
chair” ZIBs include high ion electrical conductivity, wide po-
tential window, and a well-organized eluent–electrode inter-
face. As a new type of battery, the discovery of assembling
technologies  is  insufficient.  The  selection  of  binders,  traps,
and even containers in the battery assembly process remains
challenging.  Consequently, “rocking chair” ZIBs have high
research value as a novel kind of battery that requires consid-
erable specific capacities, high operating voltages, and long
cycle lifetimes. The investigation of the electrolyte or discov-
ery of the battery packaging processes may potentially lead to
a commercial breakthrough for “rocking chair” ZIBs.

 3. Zinc metal-free anode

The use of the intercalation mechanism graphite material
as the anode electrode in LIBs effectively addresses the lithi-
um dendrite problem, increasing the safety of “rocking chair”
LIBs. Building on this successful experience with LIBs, the
fabrication of zinc-free “rocking chair” ZIBs may potentially
disrupt the bottleneck of zinc metal anodes. This study aims
to  discover  suitable  anode  materials  that  can  accommodate
reversible zinc ion plating and stripping. Research has identi-
fied four major types of anode materials for ZIBs: transition
metal  oxides,  transition  metal  sulfides,  MXene  composites,
and organics compounds, which are demonstrated to be ex-
cellent anode materials for ZIBs.

 3.1. Transition metal oxides

Examining the possibility of using new anode materials in
ZIBs is crucial. Replacing the zinc metal plates in ZIBs with
anodes capable of storing zinc ions at low potentials through
an intercalation mechanism is reasonable. MoOx (x = 2, 3) is
an attractive anode material that has been studied in batteries.

Hexagonal MoO3 with a discharging potential  of 0.36 V
vs.  zinc  ions/zinc  was  studied  as  the  anode  for  ZIBs
(Fig. 3(a)) [51]. Ions are highly likely to transfer and diffuse
through  the  channels,  cavities,  and  grain  boundaries  in  the
hexagonal  MoO3 (h-MoO3)  skeleton  (Fig.  3(b)),  leading  to
superior stability and fast transfer dynamics. Equipped with
an h-MoO3 anode and a Zn0.2MnO2 cathode, a full cell named
h-MoO3//Zn0.2MnO2 was assembled. The cycling behavior of
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h-MoO3//Zn0.2MnO2 cells  was  investigated  by  constant  cur-
rent  charge–discharge  measurements  at  1  A⋅g−1.  The  cell
demonstrates remarkable stability for maintaining over 100%
of its initial capacity at 1000 cycles (Fig. 3(c)). The insertion
of protons in layered MoO3 can cause serious structural dam-
age during cycling, hindering its use in diluted acidic electro-
lytes. The electrochemical conduct of MoO3 anodes in elec-
trolytes containing ZnCl2 was improved to enhance the sta-
bilities of proton storage in acidic media (Fig. 3(d)) [61]. X-
ray diffraction (XRD) results showed that the synthesized α-
MoO3 has  a  stable  layered  orthorhombic  structure  with  a

space group of Pbnm (JCPDS No. 35-0609). Thermodynam-
ically,  the  stable  MoO3 morphology  comprises  a  bilayer  of
MoO6 octahedra (Fig. 3(e)). The electrochemical proton stor-
age behavior was significantly improved using MoO3 anode
in 20 M ZnCl2 + 1 M HCl electrolyte. Combined with the Ni-
PBA cathode, the rate performance of the cell was investig-
ated. The discharge capacity at 1 A⋅g−1 is 47.9 mAh⋅g−1, and
after resetting to 1 A⋅g−1, the discharge capacity is 76.1% of
its original capacity, indicating a well-cycled performance of
99.5% coulombic efficiency (CE) after 400 cycles (Fig. 3(f)).

 
 

(f)

Cycle number

0
10

0
0

50

100

150

200

250

300

5

0.05
0.1

0.2
0.5 1

2
5

0.1

Unit: A·g−1

10 15 20 25 30 35 40
0

20

40

60

80

100

Charge

Unit: A·g−1

1 A·g−1

0.5

0.8
1.0

2.0
3.0

5.0

8.0

1.0

Discharge

Coulumbic efficiency

20 30 40
0

20

40

60

80

100

120

C
ap

ac
it

y
 /

 (
m

A
h
·g

−1
)

20

40

60

80

C
o
u
lo

m
b
ic

 e
ff

ic
ie

n
cy

 /
 %

(a)

(d)

(g)

(b) (c)

– +

h-MoO3

MoO3

H+

Zn2+
Zn2+

KNiHCFCharge

Discharge

Zn2+

Zn0.2MnO2

Zn2+

Zn2+

Zn2+
H2O

H2O, SO4
2−,

Zn2+

H2O2, 

SO4
2−, Zn2+

Zn-NVPOF

C
at

h
o
d
e

A
n
o
d
e

Discharge

Charge

Zn2+

MoO2@NC

10 μm

1 μm

5 nm

40

30

20

10

0
0 200 400

Cycle number
600 800 1000

0

20

40

60

80

100

C
ap

ac
it

y
 /

 (
m

A
h
·g

−1
)

C
o
u
lo

m
b
ic

 e
ff

ic
ie

n
cy

 /
 %

(e)

2θ / (°)

In
te

n
si

ty
 /

 a
.u

.

10 20 30 40

0
5
0

0
2
1

1
1

0

0
4

0

0
2

0

50 60 70

JCPDS No.35-0609

d = 0.342 nm
MoO2 (111)

(i)

Cycle number

C
ap

ac
it

y
 /

 (
m

A
h
·g

−1
)

C
o
u
lo

m
b
ic

 e
ff

ic
ie

n
cy

 /
 %

(h)

MoO2@NC
MoO2−

Fig. 3.    (a) Schematic of the h-MoO3//Zn0.2MnO2 battery; (b) scanning electron microscopy (SEM) of as-prepared h-MoO3; (c) cyc-
ling performance of h-MoO3//Zn0.2MnO2 battery; (d) schematic of the rocking chair aqueous hydrogen-ion battery; (e) XRD and typ-
ical crystal structure of as-prepared MoO3; (f) rate performance of aqueous hydrogen-ion battery; (g) high resolution transmission
electron  microscope  (HRTEM) images  of  MoO2@NC; (h)  schematic  of  MoO2@NC//Zn-NVPOF cell;  (i)  rate  capability  at  various
current densities. (a–c) Reproduced from Ref. [51] with permission from the Royal Society of Chemistry. (d–f) Reproduced from Ref.
[61] with permission from the Royal Society of Chemistry. (g–i) B. Wang, J.P. Yan, Y.F. Zhang, M.H. Ye, Y. Yang, and C.C. Li, Adv.
Funct. Mater., vol. 31, art. No. 2102827 (2021) [48]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
 

(1̄11)

The MoO2 materials, with their metallic characteristics of
high  theoretical  capacity,  a  narrow  band  gap,  and  low  res-
istivity, as well as new 1D tunnels for fast ion transport, can
potentially be used as an anode for ZIB. However, the struc-
ture  degradation  and  inherent  kinetics  during  ion  intercala-
tion–deintercalation hinder its electrochemical performance.
Therefore,  a  new  nitrogen-doped  carbon-embedded  MoO2

(MoO2@NC)  material  with  an  interlayer  structure  was  de-
veloped using a combined interlayer process and in situ car-
bonization  of  aniline  [48].  The  apparent  lattice  stripe  of
MoO2@NC  can  be  observed  under  HRTEM  (Fig.  3(g)),
demonstrating a d-spacing measurement of 0.342 nm, which
agrees with the  plane of monoclinic MoO2 crystals. An

apparently  selective  electron  diffraction  pattern  of
MoO2@NC confirms  its  high  crystallinity.  The  rocker-type
zinc  ion  full  cell  comprised  a  zinc  pre-inserted  layer
Na3V2(PO4)2O2F  anode  (Fig.  3(h)),  and  the  laminated
MoO2@NC  also  exhibits  superior  rate  performance  com-
pared to pure MoO2 (Fig. 3(i)). The capacity of the reversible
discharge can be quickly returned to 147 mAh⋅g−1 when the
current density is shifted back to 0.1 A⋅g−1, indicating that the
MoO2@NC  electrode  maintains  good  cycling  reversibility
after operating at high current densities. The long cycle sta-
bilization is also an index in the merit evaluation of ZIB an-
ode materials. The MoO2@NC electrode can sustain a capab-
ility of 43 mAh⋅g−1 after 3000 cycles at 5 A⋅g−1.
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The  tunnel-shaped  electrodes  with  large  interlayer  dis-
tances are highly suitable for storing zinc ions. The suitabil-
ity of these electrodes can be attributed to their capability to
accommodate the large radius of hydrated zinc ions (4.30 Å)
and  overcome  the  strong  electrostatic  interactions  between
zinc ions and laminated structures. As a layered structure ma-
terial with a large (110) layer spacing of 5.3 Å, WO3 is a good
candidate  as  an  intercalation  anode  in  rocking  chair  ZIBs.
The properties  of  ion diffusion,  conductivity,  and structural
stability can be improved through proper material coupling,
which  enhances  the  electrochemical  plating/stripping
behavior.

(1̄10)The (001) surface of WO3 and  surface of WC were
well-matched,  forming  a  WO3/WC  heterojunction  that  was
used as the intercalation anode (Fig. 4(a)) [47]. The prepared
WO3/WC  has  a  flower-like  morphology  with  uniform  ele-
ment distribution of W, O, and C (Fig. 4(b)). The stacked and
evanescent WO3 nanosheets have a large number of reactive
sites and a wide range of oxidation states to store zinc ions.

Meanwhile,  studies  showed that  the  coupled WO3 and WC
can  markedly  increase  ionic  conductivity,  facilitating  the
formation of thermodynamically steady interfaces. In the dis-
charged  process,  two  W5+ signals  are  observed  in  the  W4+

spectrum while W6+ is decreasing (Fig. 4(c)),  indicating the
partial  reduction of  W6+ to  W5+.  Benefiting from the  favor-
able interfacial energy and electronic coupling as well as the
significant charge transfer between WO3 and WC, the elec-
trochemical  mechanism  of  zinc  ion  storage  is  shown  in
Fig. 4(d). WO3/WC has the capacity of 164 mAh⋅g−1 and cyc-
lability  of  90.2%.  h-WO3/3DG was  researched  as  an  insert
anode  for  ZIBs  [60].  The  large  surface  area  and  electronic
conductivity of porous graphene effectively contribute to the
wetting  of  the  electrolyte  and  increase  the  electrochemical
dynamics of  h-WO3.  The zinc-free metal  full  cell  was con-
structed with h-WO3/3DG as the anode and ZnMn2O4/CB as
the  cathode  (Fig.  4(e)),  showing  a  high  capacity  of  66.8
mAh⋅g−1 at 0.1 A⋅g−1.

A novel microwave-assisted chemical insertion technique
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was adopted to solve the problems of zinc dendrites in ZIBs.
Zinc ions were inserted into the open tunnel oxide matrix to
form  a  high-performance  plug-in  zinc  composite  anode
ZnxMo2.5+yVO9+z [41].  Ultrafine  chemical  insertion  of  zinc
was obtained using diethylene glycol  and Zn(CH3COO)2 in
an environmental atmosphere for 30 min. STEM and energy
dispersive X-ray spectroscopy (EDS) analysis  were used to
assess the single particles of ZnxMo2.5+yVO9+z (x = 1). Zn, Mo,
V, and O are found to be uniformly distributed over the en-
tire particle with a low-surface zinc concentration. This find-
ing  proves  that  zinc  ions  are  inserted  into  the  Mo2.5+yVO9+z

channel (Fig. 4(f)). The results showed that the crystal mor-
phology and crystallinity of the zinc intercalation remain un-
changed. Unit cell swelling associated with zinc content was
observed. As an insertion anode, ZnxMo2.5+yVO9+z (x = 1) can
be successfully applied in aqueous and non-aqueous electro-
lytes with excellent electrochemical properties. The develop-
ment of high capacity intercalated anode is the key to driving
the  development  of  ZIBs  [49].  The  interlayer  distance  and
low zinc ion diffusion barrier obtained by density functional
theory (DFT) are considered to be promising for electrodes,
and a stand-alone BiOI nanopaper was designed (Fig. 4(g)).
DFT shows that the diffusion potential resistance of zinc ions
in BiOI (0.57 eV) is smaller than that of BiOCl and BiOBr
(Fig. 4(h)). When the same number of zinc ions was inserted
into BiOX, the interlayer distance of BiOI changes the least,
indicating that  BiOI has excellent  structural  stability during
the insertion–deinsertion process of zinc ions. These experi-
mental results manifest that the battery has a high initial ca-
pacity when combined with the Mn3O4 cathode.

 3.2. Transition metal sulfides

Intercalation anodes are a promising solution to overcome
the challenges associated with conventional ZIBs. However,
only  a  few host  materials  exhibit  electrochemical  intercala-
tion of zinc ions. MxMo6T8 (M = metal, and T = S, Se, or Te)
is one of the most attractive electrochemical multivalent ion
intercalation host materials due to its strong chemical inter-
calation capability for metals, such as Mg, Ca, Ba, and Zn.

The ZnxMo6S8 (x = 0, 1, 2) phase has received attention as
a  potential  electrode  material  for  ZIBs  because  Mo6S8 is
known to  intercalate  zinc  ions  electrochemically.  ZnxMo6S8

was prepared by inserting zinc ions, and its crystal structure
was  characterized  [42].  A  six-membered  ring  is  formed  by
the  symmetrically  generated  Zn1  position  (Fig.  5(a)–(b)).
The interatomic distances of Zn1–Zn1 are 1.076, 1.838, and
2.130 Å, which are all excessively short for the metal–metal
distance.  If  any position is  filled at  a  given time,  then only
one of the six positions should be occupied, limiting the max-
imum occupancy to 1/6. Fig. 5(c) shows the average Mo–Mo
interatomic  distances.  A  large  portion  of  the  inserted  zinc
ions was trapped in the Zn1 site,  yielding a first-cycle irre-
versible capacity of 134 mAh⋅g−1 at 0.05C of approximately
46 mAh⋅g−1. Synthetic Mo6S8 can be used as an anode mater-
ial  for  ZIBs  (Fig.  5(d))  [62].  The  resulting  Mo6S8 particles
have  defined  cubic  shapes  with  an  average  size  of  100  nm

(Fig.  5(e)).  The  full  cell  is  assembled  by  integrating  the
Mo6S8 electrode with a cathode based on poly (zinc iodide).
The I−/I3− has a standard potential of 0.536 V for standard hy-
drogen electrode (SHE), which has a strong potential for real
applications. The full cell was assigned as a static h-cell us-
ing a cation exchange membrane (CEM) due to the distinct-
ive electrochemical properties of the cathode electrolyte (Fig.
5(f)).  The  cathode  uses  the  ZnI2 and  I2,  and  the  electrolyte
uses ZnSO4 on the anode side. Furthermore, the anode reac-
tion of this filled cell occurs at a charge–discharge plateau of
0.35 V.

Instead  of  metallic  zinc  anode,  samples  with  different
charge  states  were  analyzed by taking an  intercalation  type
anode material to determine the zinc content in zinc hexacy-
anoferrate Kx(H2O)0.22Zn3[Fe(CN)6]2 (named as ZPB) during
the  insertion–deinsertion  process  [63].  The  analysis  results
were consistent with the zinc content calculated on the basis
of the discharge–charge capacity. Additionally, the electrode
mapping for complete discharge showed a uniform distribu-
tion  of  zinc  atoms  in  the  particles  (Fig.  5(g)).  The  crystal
structure of Zn0.72ZPB was defined and improved by crystal-
lographic  techniques,  specifically  inserting  the  position  and
environment  of  the  zinc  ion  (Fig.  5(h)).  The  cell  uses
Zn2Mo6S8 as  the  anode  and  ZPB  as  the  cathode  in  ZnSO4

electrolyte  (Fig.  5(i)).  The demonstration cell  was designed
with  a  cathode  limited  with  a  negative/positive  (N/P)  mass
ratio of 5.5:1, minimizing the impact of the anode material.
The  assembled  full  cell  exhibits  a  cycle  capacity  of  62.3
mAh⋅g−1 and an average discharge voltage of 1.40 V.

Research efforts have focused on the development of in-
tercalation  anodes  that  can  reversibly  and  rapidly  accom-
modate divalent zinc ions. One effective strategy is the use of
anode materials with reasonable tunnel structure or large in-
terlayer distance. As a typical layered material, a new type of
pre-precipitated TiS2 is proposed and used as an intercalation
anode [43]. The XRD spectrum of TiS2 (Fig. 6(a)) confirms
the  synthesis  of  pure  TiS2 with  no  impurities  because  all
peaks are effectively indexed to TiS2.  The inset in Fig. 6(a)
shows the typical crystal structure of TiS2 along the (100) dir-
ection.  The  full  cell  was  developed  using  Na0.14TiS2 and
ZnMn2O4 as the cathode and anode, respectively (Fig. 6(b)).
Fig. 6(c) depicts the rate capacity of Na0.14TiS2 in the current
density  range  from  0.05  to  2  A⋅g−1.  The  capacity  of  the
Na0.14TiS2 electrode is 140 mAh⋅g−1 at a low current density
of 0.05 A⋅g−1, and the capacity is maintained at 120, 103, 84,
70, and 58 mAh⋅g−1 at 0.1, 0.2, 0.5, 1, and 2 A⋅g−1, respect-
ively,  indicating  its  promising  fast  charge–discharge
capability.

The development of intercalated anodes is a promising ap-
proach to overcome the limitations of conventional zinc an-
odes. However, their application is hampered by the low ca-
pacity due to the limited number of electrons transferred by
the intercalation reaction. Cu+-based materials are proven ef-
fective for conversion reactions. These materials have a large
capacity  and  can  improve  energy  density.  The  cetyltri-
methylammonium bromide (CTMAB) pre-inserted CuS with
increased interlayer spacing (CuS@CTMAB) as high capa-
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city anode material [64]. The insertion of zinc ions into Cu
forms  multiple  electron  aggregation  regions  near  Cu  and  S
atoms, which could be local internal electric fields for Cu and
S  atoms  and  promote  the  atoms  for  rapid  charge  transport
(Fig. 6(d)). Various characterizations were also performed to
further  investigate  the  storage  mechanism  of  zinc  ions  in
CuS@CTMAB  during  electrochemical  charge  and  dis-
charge. The uniform distribution of zinc elements in the map-
ping  of  fully  discharged  Cu@CTMAB  electrodes  visually
verifies the successful insertion of zinc ions (Fig. 6(g)). The
CuS@CTMAB as the anode is used to establish the cell sys-
tem. The actual capacity of the CuS@CTMAB//ZMO cell is
201.9 mAh⋅g−1 (Fig. 6(e)), and the capacity is limited by the
CuS anode. The CuS@CTMAB anode can provide a high re-
versible capacity of 211.1 mAh⋅g−1 after 100 cycles with an
average CE of 99.3%. Furthermore, the CuS@CTMAB elec-
trodes demonstrated long-term cycling stability, maintaining
61.1% capacity after 3000 cycles (Fig. 6(f)).

The unique properties of mixed-valence Cu2−xSe, such as
its rigid bulk structure, rich electron cation sites, and excel-

lent conductivity, increase its effectiveness as an anode ma-
terial  for  ZIBs.  Long-lasting  zinc-free  metal  rocker  ZIBs
were constructed using mixed-valence Cu2−xSe as the anode
[45]. The charge storage mechanism must be understood to
explain  the  electrochemical  performance  of  mixed-valence
Cu2−xSe over CuSe. The DFT showed that the introduction of
low-valent  Cu not  only  changes  the  active  site  for  zinc  ion
storage  but  also  optimizes  the  electronic  interaction,  result-
ing in an intercalation formation energy of −0.68 eV and a
low  diffusion  potential  barrier  (Fig.  7(a)).  The  ZIBs  using
mixed-valence Cu2−xSe anode and a commercial MnO2 cath-
ode were investigated. The Cu2−xSe nanorod anode has a cu-
bic structure that promotes fast electron transport, which en-
hances  the  electrode  kinetics  with  high  capacity,  CE,  and
stable  electrochemical  cycling.  The  fabricated  ZnxMnO2//
Cu2−xSe  full  cell  exhibits  remarkable  electrochemical  per-
formance  (Fig.  7(b)),  including  a  long  cycle  life  of  over
20000 cycles at a current density of 2 A⋅g−1.

TiSe2 has a large interlayer spacing (0.601 nm) and high
electronic  conductivity,  enabling  fast  ion  (de)intercalation
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and electron transport [65]. The layered structure of TiSe2 in-
creases its suitability as an anode in ZIBs (Fig. 7(c)). The in-
terlayer spacing is 0.601 nm in the TEM image (Fig. 7(d)),
corresponding to the (001) side of TiSe2. The mapping of the
randomly selected region in Fig. 7(e) shows a uniform distri-
bution  of  Ti  and  Se  elements.  The  ZIBs  full  cell  prepared
from  TiSe2 anode  and  VO2 cathode  has  a  capacity  of  44.3
mAh⋅g−1 at  0.20 A⋅g−1. In situ electrochemical  activation of
Cu2−xTe  proved  its  potential  as  an  anode  material  for  ZIBs
[46]. The Cu2−xTe//Na3V2(PO4)3 cell is validated owing to the
dendrite-free  anode,  the  suitable  potential,  and  the  robust
structure of Cu2−xTe (Fig. 7(f)). The electrochemical synthes-
is of Cu2−xTe is shown in Fig. 7(g). The energy density is 58
Wh⋅kg−1, the average voltage is 0.98 V, and 92% capacity is
maintained after 1000 cycles of C/2. Layered TiTe2 prepared
by a one-step vacuum sintering technique was used as a zinc
metal-free  anode  for  ZIBs,  solving  the  existing  problem of
zinc  metal  [66].  DFT  and ab  initio molecular  dynamics
(AIMD)  simulations,  which  predicted  the  layered  TiTe2,
were  also  used  as  a  zinc  metal-free  anode,  demonstrating
high thermodynamic stability and good ion migration kinet-
ics. The half-cell with a working electrode of TiTe2 has 225

mAh⋅g−1 at 0.1 A⋅g−1 and excellent cycling stability.

 3.3. MXene composite material

MXene,  a  2D transition metal  carbide,  has  gained signi-
ficant  attention  due  to  its  excellent  mechanical  strength,
metallic conductivity, and ion adsorption capability. MXene
has the formula Mn+1XnTx (n = 1,2,3), where M is the trans-
ition metal, X is C or N, and Tx is the surface terminus (–OH,
–O, or –F). MXene is a promising candidate for anode mater-
ials for ZIBs due to its excellent electronegativity, metal con-
ductivity, and stable cycling behavior.

The ultrathin NHVO nanoribbons (approximately 14 nm)
effectively  contact  Ti3C2Tx substrates  and  act  as  a  fast  ion
transport  nanosheet  interlayer,  which  prevents  Ti3C2Tx ag-
gregation  [50].  A  schematic  describing  the  charge  storage
mechanism of the NHVO@Ti3C2Tx hybrid membrane elec-
trode  for  zinc  ions  is  shown  in Fig.  8(a).  The  NHVO@
Ti3C2Tx hybrid membrane electrode demonstrates the poten-
tial  for  reversible  embedding/de-embedding  of  zinc  ions  in
the  NHVO  host  and  appearance/disappearance  of  the  new
phase (ZVOH) during the discharging/charging cycles.  The
cell  capacitance  of  the  NHVO@Ti3C2Tx hybrid  membrane
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electrode  was  investigated  using  NHVO@Ti3C2Tx and
ZnMn2O4 as  the  anode  and  the  cathode,  respectively  (Fig.
8(c)). Different cyclic voltammetry (CV) curves were taken
to research the type of stored charge, and the peak of the CV
curves gradually widened and the peak position slightly shif-
ted (Fig. 8(b)).

The ZIBs were developed by combining an MXene-TiS2

(de)intercalation  anode,  a  multiwalled  carbon  nanotube-va-
nadium  dioxide  cathode,  and  a  zinc  sulfate-polyacrylamide
hydrogel  electrolyte  [67].  The  lateral  size  and  thickness  of
TiS2 were  reduced  through  grinding  in  N-Methyl
pyrrolidone, as demonstrated in TEM images before and after
the process (Fig. 8(d)). The resistance of the cell cathode and
anode  at  different  locations  was  tested  to  avoid  short  and
open  circuits  (Fig.  8(e)),  and  the  ZIBs  demonstrated  excel-
lent cycle life, retaining 99.7% of its initial capacity after 500
cycles.

 3.4. Organic compounds

Organic molecular materials are attracting attention due to

their potential to store divalent cations attributed to their in-
herent ductility and soft lattice, which allows for easy ion in-
tercalation through molecular reorientation. These character-
istics  make  organic  molecules  a  viable  alternative  to  tradi-
tional inorganic electrode materials.

Dendritic-free ZIBs have been developed by using organ-
ic  quinone  instead  of  metal  zinc  as  anode  materials.  A
schematic of the full cell, which comprises ball-milled 9,10-
Anthraquinone  (AQ)  as  the  anode  and  spinel  ZnMn2O4

(ZMO) as the cathode, is shown in Fig. 9(a) [44]. The equa-
tion of the electrode redox reaction is shown in the middle of
the inset. The rate capability and cycling stability of the full
cell were evaluated at different current densities ranging from
0.2 to 6.4 A⋅g−1 (Fig. 9(b)). Dendrite-free organic anodes of
perylene-3,4,9,10-tetracarboxylic  diimide  (PTCDI)  were
used  to  polymerize  the  surface  of  reduced  graphene  oxide
(PTCDI/rGO)  [68].  The  synthesized  PTCDI/rGO  electrode
not only overcomes the problem of zinc stripping/plating in-
homogeneity  and improves  the  stability  of  ZIBs (Fig.  9(c))
but also shows superior rate capability. The lowest unoccu-
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pied molecular orbital (LUMO) energy was calculated by ap-
plying DFT (Fig. 9(d)) to understand why this electrode po-
tential  is  different  from  other  conventional  organic  elec-
trodes effectively,  indicating that the redox potential  is  cor-
related with  the  LUMO energy level.  PTCDI was found to
have the highest  LUMO energy level,  corresponding to the
lowest discharge potential.

Compared  to  other  candidate  materials,  H2Ti3O7⋅xH2O
film (HTOF) can significantly increase the working voltage
level  for  its  ultralow  potential  in  ZIBs  [69].  The  apparent
phenomenon  between  the  HTOF  and  Na2Ti3O7 electrodes
suggests that the large lattice spacing between the layers and
the crystal water is the key factor in stimulating the insertion
of zinc ions into the low potential H2Ti3O7⋅xH2O (Fig. 9(e)).
The  enlarged  lattice  spacing  and  interlayer  crystal  water
stimulate the co-insertion and extraction of zinc ions and H+

at the H2Ti3O7⋅xH2O anode. The low potential H2Ti3O7⋅xH2O

anode exhibits attractive cycle performance and CE assisted
by  interlayer  crystal  water.  An  aqueous  phase  zinc  ion  full
cell  was successfully formed using ZMO and HTOF as the
anode  and  cathode,  respectively  (Fig.  9(f)),  and  the
ZnxMnO2//H2Ti3O7⋅xH2O  cell  demonstrated  good  electro-
chemical performance (Fig. 9(g)).

 3.5. Other zinc metal-free anodes

The zinc anode in ZIBs is a hostless electrode where zinc
ions  are  plating/stripping  at  the  electrode–electrolyte  inter-
face, resulting in the formation of segregated metal zinc dur-
ing cycling and low cycling efficiencies. This process leads
to the growth of zinc dendrites, causing unpredictable short
circuits in the cell. Various methods, such as epitaxial elec-
trodeposition, high salt concentration, and zinc surface coat-
ing, have been investigated to improve the cycling stability of
ZIBs. ZIBs with activated carbon, bromobenzene, and inact-

 

(a)

(b)

(d) (e)

(c)

Anode Cathode

Zn2+

Zn2+

(NH4)2V10O25·8H2O

0.2

−2

−1C
u
rr

en
t 

/ 
m

A

0

1

2

Peak 2

Peak 3
Peak 4

Peak 1

0.4 0.6

Potential / V vs. Zn2+/Zn

0.8 1.0

0.6 mV⋅s−1

0.1 mV⋅s−1

0.2 mV⋅s−1

0.4 mV⋅s−1

0.8 mV⋅s−1

1 mV⋅s−1

1.2

Zn2+

deintercalation

Zn2+

Intercalation

Zn
x
(NH4)2V10O25·mH2O ZVOH

100 nm

Fig.  8.     (a)  Storage  mechanism  diagram  of  zinc  ions;  (b)  CV  curves  of  the  NHVO@Ti3C2Tx;  (c)  schematic  of  NHVO@
Ti3C2Tx//ZnMn2O4 full  battery; (d) TEM image of the ground TiS2; (e) resistance of the finger-like electrode at different positions.
(a–c) X. Wang, Y.M. Wang, Y.P. Jiang, et al., Adv. Funct. Mater., vol. 31, art. No. 2103210 (2021) [50]. Copyright Wiley-VCH Verlag
GmbH & Co. KGaA. Reproduced with permission. (d, e) Reprinted from J. Power Sources, 504, B.T. Zhao, S.L. Wang, Q.T. Yu, et
al.,  A flexible, heat-resistant and self-healable “rocking-chair” zinc ion microbattery based on MXene-TiS2 (de)intercalation anode,
art. No. 230076, Copyright 2021, with permission from Elsevier [67].

42 Int. J. Miner. Metall. Mater. , Vol. 31 , No. 1 , Jan. 2024



ive materials (such as Cu foil) as anodes have shown prom-
ise in effectively controlling the growth of zinc dendrites.

The performance of bromobenzene as an anode for ZIBs
was investigated using first-principles calculations [70]. Cor-
onene,  which  is  an  analog  of  graphene,  has  been  demon-
strated to be an ideal anode for Ca, Mg, Na, and Li ion batter-
ies.  Calculations  show that  the  binding energy between the
coronene substrate and zinc ions was approximately 0.79 eV,
with the binding energy decreasing with an increase in zinc
content.  The  storage  capacity  of  bromobenzene  sheets  for
ZIBs was found to be up to 433 mAh⋅g−1,  which highlights
the importance of zinc storage performance for ZIBs. The ad-
sorption behavior of zinc atoms on bromobenzene sheets was
also systematically investigated. Fig. 10(a)–(b) shows the op-
timized  geometry  of  10  zinc  atoms  adsorbed  on  the  bro-
mobenzene sheet, which were organized into two layers after
relaxation.

Current  zinc-based  battery  anodes  all  use  excess  zinc,
which reduces the energy density  of  the battery.  Therefore,
the anode-free zinc designed by a nanocarbon nucleation lay-
er has been studied, and its electrochemistry has been proven
to have high efficiency and stability in a certain current dens-

ity and plating capacity range [52] (Fig. 10(c)). Metallic zinc
has  high  theoretical  capacity  and  energy  density.  Thus,  the
anode-free design of AZIBs can significantly increase the en-
ergy density of the entire battery. The nucleation layer of car-
bon nanosheets is coated on a Cu foil. Copper foil is also used
as a  collector  due to  its  stability  in  various electrolytes  and
reasonable cost.  This nucleation layer aims to promote uni-
form galvanization and reduce the energy barrier  of  forma-
tion.  The  anode-free  Zn–MnO2 cell  comprises  Cu  foil  and
Zn(CF3SO3)2 as  the  collector  fluid  and  the  electrolyte,  re-
spectively  (Fig.  10(d)).  Compared  to  the  large-scale  zinc
dendrites  formed  on  the  Cu  substrate,  the  zinc  deposits  on
C/Cu electrodes are arrays of neatly arranged nanosheets.

 4. Summary and perspectives

ZIBs  that  utilize  zinc  metal-free  anodes  are  one  of  the
latest  prospective  energy  storage  equipment,  which  ad-
dresses the challenges of zinc dendrite formation and side re-
actions on zinc metal anodes. The development and optimiz-
ation mechanism of zinc metal-free anodes are reviewed in
this paper, and their comprehensive performance in ZIBs is
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illustrated.  Four  main  categories  of  zinc  metal-free  anodes
are as follows: transition metal oxides, transition metal sulf-
ides,  MXene  composite  material,  and  organic  compounds.
Other applications of zinc metal-free anodes in ZIBs, such as
copper–carbon substrates and activated carbon materials, are

also described. Although zinc metal-free anodes hold consid-
erable  promise  in  ZIBs,  further  research  is  needed  to  im-
prove the material properties and commercialization process.
Herein, the authors provide some suggestions for advancing
the development of zinc metal-free anodes in ZIBs (Fig. 11).
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(1)  Exploration  of  new  materials  as  zinc  metal-free  an-
odes. Research on metal-free zinc anodes remains in the be-
ginning stages, and thus, exploring new materials is crucial.
Some efforts have been provided in zinc metal-free anode re-
search,  including  transition  metal  oxides,  transition  metal
sulfides,  MXene  composites,  and  organic  compounds.
However,  additional  research  is  necessary  before  the  com-
mercialization of these materials. Further exploration of zinc-
free metal anode materials is necessary to improve the anode
performance.

(2)  Rational  optimization  of  existing  materials.  The  op-

timization of zinc metal-free anode performance can be en-
hanced by combining existing materials with other compon-
ents. Existing materials are more or less deficient in their per-
formance,  which  affects  their  commercialization,  and  the
compounding of existing materials with other materials can
enhance  these  defects.  For  example,  adding  a  conductive
agent component can improve the charge transfer rate of an-
odes.  Researchers  should  focus  on  optimizing  the  existing
zinc metal-free anode materials based on the existing studies.

(3) Exploration of matched cathodes and electrolytes. The
main  challenge  of  the “rocking  chair” ZIBs  with  a  low
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voltage window lies in the effect of the resultant depassiva-
tion  and  hydrogen  evolution  on  the  performance  of  battery
electrode materials. A certain electrolyte possessing thermal
stability,  mechanical  rigidity,  and  chemical  stability  should
be  investigated  to  overcome  the  aforementioned  limitation.
Different combinations of cathodes and anodes have varying
requirements for the performance of the electrolyte due to the
different  redox  potentials  and  energy  storage  mechanisms.
Hence,  exploring  the  most  compatible  cathode  and  electro-
lyte  for  commercialization  and  experimentation  on  ZIBs  is
crucial.

(4)  Extension  of  anode-free  strategy.  The  low  capacity
density of ZIBs is among their largest drawbacks due to the
excessive mass of the zinc anode. Researchers have focused
on electrolyte engineering to address this challenge by creat-
ing a stable mesophase that could adjust the zinc ion defini-
tion and guarantee a balanced deposition/solution of zinc at
the  collector  interface.  Therefore,  anode-free  ZIBs  have
emerged as promising candidates in energy storage applica-
tions  owing  to  their  high  energy  density,  inherent  security,
low cost, and simplified manufacturing techniques.
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