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Abstract: The martensitic transformation temperature is the basis for the application of shape memory alloys (SMAs), and the ability to
quickly and accurately predict the transformation temperature of SMAs has very important practical significance. In this work, machine
learning (ML) methods were utilized to accelerate the search for shape memory alloys with targeted properties (phase transition temperat-
ure). A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored
data. Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys. The
experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression (SVR) model.
The results show that the machine learning model can obtain target materials more efficiently and pertinently, and realize the accurate and
rapid design of shape memory alloys with specific target phase transition temperature. On this basis, the relationship between phase trans-
ition temperature and material descriptors is analyzed, and it is proved that the key factors affecting the phase transition temperature of
shape memory alloys are based on the strength of the bond energy between atoms. This work provides new ideas for the controllable

design and performance optimization of Cu-based shape memory alloys.

Keywords: machine learning; support vector regression; shape memory alloys; martensitic transformation temperature

1. Introduction

Shape memory alloys (SMAs) are a new type of intelli-
gent material based on martensitic transformation (MT) and
reverse transformation, which has the characteristics of shape
memory, superelasticity, damping performance, and vibra-
tion resistance [1-6]. In recent years, Cu-based SMAs have
been widely used in military and civilian applications due to
its low cost (only 1/10 of that of Ni—Ti alloy), excellent shape
memory effect (SME), high superelasticity (SE), and good
mechanical properties including executive components, heat
protection components, pipe joints, environmental protection
refrigerators, and energy conversion devices [7—12]. Most
shape memory alloy-based devices are based on temperature-
induced or stress-induced martensitic phase transformation.
Therefore, the phase transformation temperature determines
the temperature range used by the device and is the basis for
the application of shape memory alloys.

The phase transition temperature of SMAs is very sensit-
ive to the composition, and introducing elements to change
the composition is the most commonly used method to ad-
just its high temperature or low temperature application. For
example, Ni and Fe can increase the transition temperature of
Cu—Al-based shape memory alloys, while Ti and Mn can re-
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duce the transition temperature [13—17]. A small amount of
alloying elements Ti, Mn, and Co can increase the transition
temperature of Cu—Al-Ni SMAs, while Fe, Gr, and Nb will
reduce the transformation temperature [18—19]. In many
cases, the effect of the same element on the transformation
temperature varies for different alloy systems, which add
complexity to alloy design. Meanwhile, the addition of one
alloying element leads to an exponential increase in the size
and complexity of the alloy chemical search space. For
Cu—Al based alloys, if the third element is added at 1wt%, the
number of candidate alloy components can be as high as 10°.
It is difficult to experimentally search alloy compositions for
specific phase transition conditions using traditional trial-
and-error methods or first-principal calculations/density
functional theory (DFT) methods. Therefore, it is crucial to
explore an efficient and accurate method to search the com-
plex composition space to reduce time and cost, and to pre-
dict the phase transition temperature quickly and accurately.
In recent years, the method based on combination of ma-
chine learning with low computing cost and short develop-
ment cycle combined with powerful data processing and per-
formance prediction has gradually entered the field of mater-
ials science and is widely used in characterization, analysis,
and design of materials [20-24]. For example, Zhu et al.
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[25-26] successfully predicted the phase-forming ability, mi-
crostructure, and mechanical properties of high-entropy al-
loys (HEAs) through machine learning (ML), and realized
the composition design of high-entropy alloys. Xue et al.
[27-31] designed a systematic framework to effectively se-
lect the best combination of ML model and element features.
Vecchio et al. [32] achieved successful prediction of crystal
structure and solid solution forming ability by thermody-
namic and chemical features with a random forest machine
learning model. Yang et al. [33-35] utilized 13 descriptors of
the ML model to predict solid solutions, intermetallic phases,
and amorphous phases. Li et al. [36-37] proposed a new
strategy to integrate the clustering formula method into three
ML models to find B-phase-titanium alloys with low Young's
modulus. Chou et al. [38] accelerated the discovery of low-
modulus titanium alloys using the artificial neural network
(ANN) method. Fu et al. [39-41] realized the performance-
oriented composition design of high-performance copper al-
loys by optimizing the ML design system and built three ran-
dom forest (RF) classifiers to accurately distinguish HEA
phase formation. Tu et al. [42] compared various machine
learning methods to search for the optimal configuration and
design the magnetic-thermal properties of Mn—Fe—P—Si com-
pounds. This approach accelerated the design and develop-
ment process of excellent Mn—Fe—P—Si compounds. Raham-
an et al. [43] discovered that on relatively small datasets, en-
semble methods outperformed artificial neural networks. The
above research demonstrates that utilizing cutting-edge al-
gorithms, ML can establish quantitative relationships
between material composition and performance, achieving
effective and intelligent material composition design. There-
fore, the use of machine learning methods is expected to
solve the problem of quickly and accurately obtaining the al-
loy composition at a specific phase transition temperature in a
huge search space, so as to realize the rational design and de-
velopment of new Cu-based shape memory alloys.

This work explored a data-driven machine learning ap-
proach by using applied statistical tools to analyze the rela-
tionship between the transformation temperature of shape
memory alloys and material descriptors (Cu-based SMAs
elemental composition or alloying element features). In a
wide range of Cu-based shape memory alloy compositions,
this work reversed design alloy composition to achieve a spe-
cific phase transition temperature by both direct modeling of
elemental composition and elemental feature modeling. By
mapping the relationship between target properties and fea-
tures, the mechanism of key features’ influence on phase
transition temperature was explored. This work will provide
new ideas for the controllable design and performance op-
timization of Cu-based shape memory alloys.

2. Methodology
2.1. Alloy design framework

Two modeling methods were proposed to design shape
memory alloys, including element composition modeling and
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element feature modeling, referred to as composition model-
ing and feature modeling. Design strategies for machine
learning models for compositional modeling include: data
collection—data collation—modeling—alloy design and ex-
perimental verification (Fig. 1). The model uses alloy ele-
ment composition, heat treatment processing technology
(temperature of heat-treatment (7y), holding time of heat-
treatment (), quenching temperature (7)), and differential
scanning calorimetry (DSC) curve test heating/cooling rate
(Rpsc) as input. Alloy martensitic transformation temperature
(martensitic transformation finish temperature (M), martens-
itic transformation start temperature (M), austenite trans-
formation start temperature (4,), and austenite transforma-
tion finish temperature (4;)) are used as output to establish
composition-property relationship: (a) Data collection and
feature extraction. Each data set consists of alloying element
characteristics, heat treatment test process, and measured de-
sired property (martensitic transformation temperature); (b)
Feature screening. The correlation screening, recursive elim-
ination, and exhaustive screening were used to screen the
characteristics of alloy elements and obtain the most influen-
tial element characteristics of alloy properties; (c) Modeling
and alloy prediction. Divide the collected data into training
set data and testing set data, use the training data to learn fea-
ture-property relationships with associated uncertainties to
predict the martensitic transformation temperature; (d) Alloy
selection and experimental verification. Select candidate al-
loys in the unexplored compositional space based on empir-
ical knowledge or performance requirements, measure the
properties of candidate alloys through experiments, and com-
pare the model prediction results with the experimental res-
ults to verify the model accuracy.

2.2. Data selection

A large number of relevant references were identified and
obtained from the database, and the data of 76 Cu-based
shape memory alloys were collected from the literature, in-
cluding alloy composition, heat treatment process, phase
transition temperature test conditions, and corresponding
martensitic phase transition temperatures. The alloys of all
data are processed under certain heat treatment conditions,
and the specific element content and composition range are
shown in Table 1.

2.3. Feature engineering

(1) Feature extraction.

According to the literature, the physical and chemical
characteristics of elements, including atomic weight, melting
temperature, electro-chemical factor, size factor, Mendeleev
number, and lattice constants were extracted and classified.

(2) Feature screening.

The features extracted in the previous step were screened
to select key features that have an important impact on the
prediction model. The mean (f,,) and standard deviation
(f)) of alloy characteristics were calculated according to
Egs. ()~(2). The fi.., and f., represent the average level
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Fig. 1. Design framework of machine learning-assisted Cu-based shape memory alloy (SMAs) based on feature modeling.

Table 1. Alloy parameters in dataset

Alloy elements composition / at%

Heat treatment processing parameters

Cu Al Ni T Mn  Co Gd Tu/K t/min  Ty/K f?lzc'min")
65.58-82.2 13.1526.08 0-424 0-1.14 0-112 0-1.1 055 047 1073-1273 10-1440 —20/020 545

and fluctuation range of element feature values, respectively.

_— YifiXa; )
mean 27:10'.]

. Z;:l(f; - rilean)z X Q; (2)

W Z'jl':la’j

i

where f.., and f!, are alloy factors; f; is alloy elements and
their physical-chemical characteristics, respectively; i and j
are the i-th feature of the element and the j-th element of the
alloy, respectively; «; represents the atomic percent content
of an element.

" eamnand f!, are used as input, and correlation screening,
recursive elimination [44], and exhaustive screening [45] are
used to screen the key alloy factors that have the greatest in-
fluence on the alloy phase transition temperature. First, re-
dundant features are quickly removed by correlation screen-
ing. Pearson correlation coefficient () between two alloying
factors x and y are calculated according to Eq. (3).

2= X 0=yl
VE =50 ) VE Ok =y
where x; and y, are the value of the two alloying factors in the

k-th alloy (k= 1, 2,..., n), and x,, and y,, are the average val-
ues of these two alloying factors in 76 alloys.

(€))

The absolute value of the Pearson correlation coefficient
(Ir] > 0.95) indicates a strong linear correlation between the
two alloy factors x and y, which means that they carry the
same or similar information and thus have the same or simil-
ar influence on the alloy properties [46]. By using these two
alloying factors as input to build a model, the alloying factor
that has a large impact on the model error is eliminated, and
only the factor that has a small impact on the model error is
retained. The recursive elimination method is used to select
one of the n features in turn, and the remaining n — 1 features
are used as input to establish a regression model. Then, the
alloy factor n corresponding to the minimum model error is
removed, and n — 1 alloy factors that minimize the model er-
ror are retained. The elimination is recursively performed un-
til the minimum model error changes from a downtrend to an
uptrend. Finally, exhaustive screening is adopted, and all
possible combinations of the remaining features after screen-
ing are used as input to establish prediction models respect-
ively. Model errors are compared to identify key alloying
factors or subsets that have the most significant impact on al-
loy properties.

2.4. Modeling

This work is to understand the quantitative relationship
between the material properties (Y, transition temperature)
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and the characteristics (X) of the material, that is, ¥ = f{X).
These methods determine how the response martensitic
transformation temperature varies with alloy composition
and key alloying factors. f'is estimated using the support vec-
tor regression (SVR) method based on the radial basis func-
tion as the kernel function. Two hyperparameters of SVR,
cost of making mistakes and gamma controlling the shape of
the segmented hyperplane, are optimized using 10-fold cross-
validation method. Taking the elemental composition and
elemental key alloying factors as input, the relationship or
mathematical model of elemental composition, elemental
characteristics, and martensitic transformation temperature is
established. The model error is determined by averaging the
errors over the 10 validation datasets according to Eq. (4).

d 1 |Px—predict - Px—expen'ment

n P x—experiment

x 100% 4

where d is the error, P, yedicc aNd Py experiment are the predicted
and measured characteristics, respectively [47].

2.5. Alloy prediction

The machine learning (ML) method described above
makes accurate predictions of the target properties, i.e., trans-
formation temperature (M;, M, A,, and 4;) for all unexplored
data, as well as understanding how the transformation tem-
perature (My, M, A,, and Ay) is influenced by the alloy com-
position and key alloying factors. 61 sets of data are ran-
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domly selected from 76 sets of sample data for training, and
the remaining 15 sets of data are used for testing.

2.6. Selection of alloy candidate and validation

To verify the accuracy of the model prediction, a group of
alloy compositions (Cuggs,AlgesMnos, Wt%) with the room
temperature phase transition temperature was selected in the
unexplored range based on empirical knowledge and the ap-
plication temperature range of the samples. Pure copper
(99.9wt%), pure aluminum (99.9wt%), pure manganese
(99.9wt%), and electrolytic nickel (99.5wt%) were used as
raw materials, a cylindrical alloy with a diameter of $60 mm
was prepared by vacuum induction melting in an argon atmo-
sphere. Then, the ingot was subjected to water quenching at
1123 K for 300 min. The transformation temperature (M;, M,
A,, and 4y) of the exothermic/endothermic peaks were meas-
ured by DSC at a cooling/heating rate of 10 K-min™.

3. Results

The direct modeling of composition based on the cross-
validation strategy has satisfactory prediction accuracy, as
shown in Fig. 2. Modeling prediction results show that the er-
rors of the training set and testing set of all composition-
martensitic phase transformation models are below 4.5%.

Fig. 3 shows the correlation coefficient of 58 alloy factors
with strong correlation. After correlation screening, 25 alloy
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Prediction results of component direct modeling: (a) predict error of component—M; model; (b) predict error of

component—M; model; (¢) predict error of component—4; model; (d) predict error of component—4; model. The shaded areas repres-
ent data distribution plots for the X and Y axes, offering more convenient and visual depiction of the data distribution on both axes.
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Fig. 3. Correlation coefficient of correlation screening process for 58 alloy factors.

factors related to transformation temperature (M;, M, A, and
Ay) were obtained.

Fig. 4 shows the results of the recursive elimination of the
alloying factors associated with the transformation temperat-
ure (M;, My, A,, and A;). With the continuous reduction of re-
cursively eliminated features, the error of the support vector
regression model is also gradually reduced, indicating that
the eliminated alloy factor contributes little to the model,
causing a large error in model training. With the continuous
elimination of recursion and the reduction of variable dimen-
sions, the prediction accuracy of the SVR model continues to
increase until the remaining alloy factors are reduced to less
than 8. The alloy factor eliminated later contains important
information and plays an important role in improving the pre-
diction accuracy of the model. At this point, the recursive
elimination screening process is completed. After recursive
elimination, there are 5 main alloying factors affecting M;
and M, and the corresponding model errors are 2.32% and
1.64%, respectively. There are 7 main alloying factors affect-
ing A, and the model error is 2.06%. There are 6 main alloy
factors affecting Ay, and the model error is 1.86%. These
main alloying factors are related to lattice constant, atomic
mass, ionization energy, atomization enthalpy, vacancy en-

thalpy change, melting point, electron size, Mendeleev num-
ber, bulk modulus, and stiffness modulus etc.

Fig. 5 shows the results of exhaustive screening of alloy
factors related to transformation temperature (M;, M;, 4, and
Ay). Many combinations of 2—7 principal alloying factors res-
ult in the same minimum error level. The results show that
the exhaustive method can effectively reduce the variable di-
mension and improve the design efficiency. The M; model
has the smallest correlation error of 2.15% with the combina-
tion of E5.sd, Cl.sd, and M1.sd, and the correlation error of
M, model is the smallest, which is 1.77% for the combination
of A3.sd, E3.sd, C2.sd, M1.sd, and S6.sd, the smallest correl-
ation error of A; model, which is 1.80% can be achieved for
the combination of C3.mean, S2.sd, and Quench, and the
smallest error of 4, model of 1.83% can be obtained with the
combination of C3.mean, C3.sd, and S6.sd. Therefore, E5.sd,
Cl.sd, M1.sd, A3.sd, E3.sd, C2.sd, M1.sd, S6.sd, C3.mean,
C3.sd, S2.sd, and Quench are called key alloying factors, and
the corresponding element characteristics of the 11 factor
combinations are listed in Table 2.

In addition, the interpretable model SHAP for visual ana-
lysis was employed to better express the primary and second-
ary factors affecting material phase transitions, as shown in
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error under the number of alloy factors after elimination.

Fig. 6. The average absolute values of SHAP scores for key
factors influence the phase transition point. Among them, the
average absolute SHAP values for the key factors affecting
the phase transition point M; namely E5.sd, Cl.sd, and
Ml.sd, are 26.52, 36.64, and 31.68, respectively. From the
data, it can be observed that among these three key factors,
Cl.sd has the most significant impact on the M; phase trans-
ition, followed by M1.sd, and lastly, ES.sd. For the phase
transition point M,, the average absolute SHAP values for the
key factors A3.sd, E3.sd, C2.sd, M1.sd, and S6.sd are 9.09,
15.13, 19.86, 13.65, and 35.85, respectively. Hence, it can be
concluded that the most influential factors on the A phase
transition are ranked from highest to lowest impact as fol-
lows: S6.sd, C2.sd, E3.sd, M1.sd, and A3.sd. Regarding the
phase transition point 4,, the average absolute SHAP values
for the key factors C3.mean, S2.sd, and Quench are 35.29,
58.38, and 33.32, respectively. Therefore, it is evident that
the most significant factor influencing the 4 phase transition
is S2.sd, followed by C3.mean, and Quench. Finally, for the
phase transition point 4, the average absolute SHAP values
for the key factors C3.mean, C3.sd, and S6.sd are 26.51,
42.93, and 38.28, respectively. Among these factors, C3.sd
has the most substantial impact on the 4; phase transition, fol-
lowed by S6.sd, while C3.mean has the least impact.

On the above basis, four effective alloy performance pre-
diction models were established, including M; prediction

model with E5.sd, Cl.sd, and M1.sd as input, M; prediction
model with A3.sd, E3.sd, C2.sd, M1.sd, and S6.sd as input,
A prediction model with C3.mean, S2.sd, and Quench as in-
put, and A; prediction model with C3.mean, C3.sd, and S6.sd
as input. The predicted properties of the four models and the
corresponding experimentally measured properties are
shown in Fig. 7. The results show that all the four models of
M, M, A, and A; have satisfactory prediction accuracy, the
prediction error of the M; model, M, model, 4; model, and A4¢
model is less than 1.7%, 0.8%, 1.5%, and 1.7%, respectively.

As shown in Table 3, comparing the prediction results of
the two modeling methods, feature modeling has smaller pre-
diction errors and higher accuracy than component modeling.
The difference in accuracy than component modeling. The
difference in accuracy between the feature modeling training
set and the testing set is small, resulting in better fitting res-
ults. The component direct modeling contains too much re-
dundant information, resulting in relatively low accuracy in
predicting phase transition temperature, while feature screen-
ing has removed features that have a small impact on phase
transition temperature, obtaining key features that can reas-
onably construct the model, thereby improving model ac-
curacy.

To verify the accuracy of the model prediction, a group of
alloy compositions (Cuggs;AlgesMn;os, Wt%) with the room
temperature phase transition temperature was selected in the
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Fig. 5. [Exhaustive screening process: (a) M; exhaustive screening; (b) M, exhaustive screening; (c) 4; exhaustive screening; (d) 4; ex-

haustive screening.

Table 2. Key alloying factors obtained by exhaustive screening

Main alloy factors affecting My Main alloy factors affecting M; Main alloy factors affecting A4

Main alloy factors affecting Ay

Factors Description Factors Description

Factors Description

Factors Description

Standard deviation Standard deviation

Quenching Standard deviation
h

ES.sd ofthe third ionization ~C2.sd of the enthalpy of Quenc ¢ C3.sd  of'the vacancy
. emperature
energy atomization enthalpy change
Standard deviation _
Ml.sd of the Mendeleev A3.sd S}ar}lldard o hiven C3.mean The}:lvlacanﬁy C3.mean Tklll ¢ vacancy enthalpy
number of the atomic mass enthalpy change change

Standard deviation
E3.sd of the first ionization
energy

Cl.sd Standard deviation
: of the melting point

S2.sd of the valence electron  S6.sd

Standard deviation Standard deviation

distance of the lattice constant

Standard deviation
Ml.sd of the Mendeleev
number

Standard deviation

o o S6.sd of the lattice constant

unexplored range. The phase transition temperature of the al-
loy was obtained by DSC test, and compared with the results
of component modeling and feature modeling. The experi-
mental results were found to be in good agreement with the
predictions of the ML model, suggesting that ML can enable
efficient design of SMAs (Table 4).

4. Discussion

Compared with the element feature modeling process, the

composition modeling is simple and does not require domain
knowledge, experience, and the process of element feature
extraction and screening [48]. However, the composition
modeling contains too much redundant information [37,49],
resulting in slightly lower alloy prediction accuracy than fea-
ture modeling (Table 4). Feature modeling can establish ac-
curate models even when the amount of data is small, and the
model has a certain degree of generalization ability [37].
However, feature modeling requires feature extraction and
screening, with complex processes and high equipment re-
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model.
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quirements [50]. In addition, using features for modeling can model, but also clarify the relationship between performance
not only avoid the influence of components on the prediction and features. Therefore, feature modeling can be used to bet-
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Table 3. Comparison of prediction results between component modeling and feature modeling

Phase transition temperature /

Prediction error of component modeling

Prediction error of feature modeling

Training dataset / Testing dataset /

Training dataset / Testing dataset /

K o % Aerror / % % % Aerror / %
M; 1.90 341 1.51 1.24 1.62 0.38
M 1.09 2.57 1.55 0.60 0.74 0.14
Ay 1.97 3.58 1.61 1.10 1.48 0.38
As 3.96 4.49 0.53 1.11 1.64 0.53

Table 4. Comparison between modeling prediction results and experimental results

Phase transition Experimental

Component modeling

Feature modeling

Predicted Prediction error of Predicted Prediction error of
temperature / K temperature / K
temperature / K alloy / % temperature / K alloy / %
M; 246.96 237.60 -3.79 238.96 —3.24
M 251.16 250.31 -0.34 253.49 -0.93
A 257.25 262.21 +1.93 257.15 —0.038
Ag 260.64 275.59 +5.74 260.54 —0.038

Notes: A positive error indicates that the predicted value is higher than the measured value, and a negative error indicates that the

predicted value is lower than the measured value.

ter show the connection between material properties and
characteristics, so as to continuously realize the transition of
machine learning from scratch, i.e., transition from black box
to gray box, and then to transparent box.

There were many previous studies on phase transition
temperature, and researchers have summarized the relation-
ship between phase transition points and alloy compositions
[51]. In many empirical formulas, there appears to be a relat-
ively simple linear correlation between the phase transition
points of SMAs and their compositions under the same con-
ditions, as shown in Egs. (5)—(6).

M, =706-32.3A1-20.7Fe + 41.5Mn - 26.3Ni %)

M, = 179+7.2e,/a (©)

where e, /a is the valence electron concentration.

The regression analysis statistical data for Eq. (5) were ob-
tained as follows: S = 38.3851; R-Sq = 87.96% and
R-Sq(adj) = 81.93%. The regression analysis statistical data
for Eq. (6) were obtained as follows: S = 94.2735; R—Sq =
0.11% and R—Sq(adj) = 0.00% [51]. In the regression equa-
tion, S represents the sum of squared residuals, which is used
to measure the degree of fit of the model and the magnitude
of prediction errors. The smaller the sum of squared resid-
uals for a set of data, the better the fit. R—Sq, or the coeffi-
cient of determination, is an indicator used to measure how
well the regression model fits the observed data. An R—Sq
close to 1 indicates that the model can explain a significant
portion of the variability in the dependent variable, indicat-
ing a good fit. On the other hand, an R—Sq close to 0 suggests
that the model fails to effectively explain the variability in the
dependent variable, indicating a poor fit. R—Sq(adj), known
as the adjusted coefficient of determination, is a correction to
R-Sq designed to more accurately reflect the model's fit. A
higher R—Sq(adj) value, closer to 1, indicates a better fit of the
model to the observed data.

However, using this simple linear empirical formula to

predict the alloy’s phase transition may result in significant
errors, as shown in Table 5.

The average prediction error of empirical equations is
17.91%. By comparing the two methods, it can be observed
that the accuracy of machine learning predictions for phase
transition points is significantly higher than that of empirical
formulas. Moreover, empirical formulas mainly focus on
predicting the M point, while the machine learning approach
in this paper predicts all four phase transition points of
SMAs.

It is well known that the martensitic phase transformation
of alloys is produced by the shear displacement of atoms in
the alloy, accompanied by the breaking and bonding of atom-
ic bonds. Therefore, the difficulty of martensitic transforma-
tion essentially depends on the strength of the bond between

Table 5. Error for predicting alloy phase transition temper-
atures using empirical equation [51]

Experimental Equation

Alloy composition / value of predicted value Prediction
wt% error / %
M,/ K of Mg/ K

Cugs j9Aljg2Fess 581 553.997 4.65
Cugy1Alyy 17Feq40 528 526.715 0.24
Cugs g¢Aly; s6Fessg 505 510.806 1.15
Cugz 47Al1191Fessr 476 498.673 4.76
CugsssAlinssFess 539 519.169 3.68
Cugg 1AljpssFers, 523 545.342 4.27
Cugs0Alj6Fey 1 532 528.343 0.69
Cugs osAljp6Fesss 408 481.975 18.13
Cug, 77Al12.06Nig07 422 448.091 6.18
Cugs 6Alj315Niz 05 410 468.78 14.34
Cug, sAly3 sNiy 335 437.75 30.67
Cugy 3Al137Niy 301 431.29 43.29
Cug »Aly3gNiy 284 428.06 50.73
Cug,Al14Niy 251 421.6 67.97
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atoms, while the strength of the atomic bond is closely re-
lated to the valence electrons in the atom.

Ionization energy (/) refers to the energy required for elec-
trons to move from atoms to vacuum when alloy atoms lose
electrons [52-54]. The higher the third ionization energy of
the element, the more energy is required for the martensitic
transformation to occur, and the lower the martensitic trans-
formation finish temperature M; is. The smaller the standard
deviation factor ES.sd of the third ionization energy of the al-
loy is, the closer the third ionization energy of each element
in the alloy is, and the ability of atoms to provide electrons is
similar, the lower the martensitic phase transition finish tem-
perature M.

The melting point of the alloy represents the bonding
strength between the atoms of the alloy [53]. A high melting
point indicates that the bonding between atoms is strong, and
the more energy required for atoms to undergo shear trans-
formation, the less likely it is to undergo phase transforma-
tion, thus requiring more heat energy to promote phase trans-
formation. Therefore, the finish temperature of the martensit-
ic transformation corresponding to the alloy is higher. The
smaller the melting point standard deviation Cl.sd is, the
smaller the melting point difference of each alloy element is,
the smaller the bonding force between atoms is, correspond-
ingly, the relatively lower melting point and lower martensit-
ic transformation finish temperature M; the obtained alloy
has, and vice versa.

The Mendeleev number (M1) of an element is defined by
the Pauling electronegativity y and atomic radius R, of the
element at any pressure, that is, the regression line of the
Pauling electronegativity y and atomic radius R, in 2D space
projects the element sequence number [27,53]. Among them,
the Pauling electronegativity y is the scale of the ability of
two different element atoms to attract electrons when they
form a chemical bond in a compound, which can be estim-
ated by ionization energy and electron affinity, that is, the av-
erage value of ionization energy (/) and electron affinity en-

ergy (4) [55].
%= 5 (1+1AD ™

where / is the ionization energy, which is the energy required
to move electrons from the atom to the vacuum, 4 is the elec-
tron affinity energy, which is the energy released by the atom
when it gets an electron. The greater the electronegativity
value of an element, the more energy the atom needs/releases
to lose/gain electrons, and the ability of its atoms to
provide/attract electrons in the alloy is weak, that is, when
different element atoms form an alloy, the atom contributes
little to the free electron density and requires less external en-
ergy, and the phase transition temperature is low. Besides, the
atomic radius is related to two factors, the electron configura-
tion outside the nucleus and the number of nuclear charges.
That is, when the atomic radius is small, the number of elec-
tron shells is small or the number of nuclear charges is large.
This situation leads to a large attraction of the nucleus to the
electrons outside the nucleus, so that the atom needs more en-
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ergy to form an alloy with other atoms, and the phase trans-
ition temperature is high.

The atomic mass of an atom can also be used for evaluat-
ing the valence electrons of an element. The larger the stand-
ard deviation A3.sd of the atomic mass of the element is, the
stronger the ability of each atom to gain or lose electrons, the
greater the bonding strength between the formed alloy atoms,
and the greater the resistance of the alloy to martensitic phase
transformation, resulting in higher martensitic phase trans-
ition temperature, and vice versa. The larger the atomic radi-
us, the larger the atomic bond length, the smaller the bond en-
ergy, and the easier it is to lose electrons. The less energy re-
quired for alloy phase transformation, the lower the martens-
itic transformation temperature.

The enthalpy of atomization is the change in enthalpy of
an elemental gas atom that produces 1 mole of the elemental
substance. The metal element has low atomization enthalpy
and ionization energy, and the melting point of the alloy is
low. For elemental metals, the smaller the atomization en-
thalpy of elements is, the smaller the strength of metal bonds
between atoms is, the smaller the energy required for metal
phase transformation is, and the less external heat is required
for phase transformation, so the alloy phase transformation
temperature is relatively lower, that is, the martensitic trans-
formation start temperature M, is lower. It can be proposed
that the larger the standard deviation of the atomic enthalpy
of each element in the alloy is, the greater the fluctuation of
the atomic enthalpy of each element in the alloy is, and the
greater the metal bonding energy between atoms is. The more
energy required for the phase transformation of the alloy, the
greater the temperature difference required for the phase
transformation of the alloy, and the higher the martensitic
transformation start temperature M.

The lattice constant a represents the side length of a single
unit cell in the alloy. In general (with a special note that this
does not apply to porous materials and isotopically labeled
crystalline materials), the distance between atoms in a metal
is proportional to the lattice constant a. The larger the lattice
constant a, the lower lattice density, the greater the distance
between atoms, the weaker the bonding force between atoms,
and less energy is required for phase transition. At this time,
only a low temperature difference is required to complete the
martensitic transformation, resulting in a relatively low
martensitic transformation start temperature M,. The smaller
the standard deviation of the lattice constant a of alloy atoms,
the closer the atomic distance of each element in the alloy is
to the average value of the atomic distance. In this case, the
bonding energy between the atoms of the alloy formed is
small, resulting in a smaller driving force required for the al-
loy phase transformation, so that the martensitic transforma-
tion start temperature M, is low.

The vacancy formation is due to the thermal movement of
the atom, which makes the energy of an atom high enough to
overcome the energy barrier to break the bonds between an
atom inside the crystal and its nearest neighbor atoms, and
the atom leaves its equilibrium position. The formation of va-
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cancies causes lattice distortion, accompanied by the break-
ing of atomic bonds. Therefore, the formation of vacancies
requires energy, that is, vacancy formation energy. The
martensitic transformation is carried out in the form of atom-
ic shear, accompanied by the continuous generation of va-
cancies. The vacancy enthalpy change is the enthalpy change
value generated when vacancies are formed in the alloy, and
it is proportional to the vacancy formation energy. The great-
er the enthalpy change of vacancies, the more energy is re-
quired to form vacancies, and thus the greater the thermal en-
ergy difference required for the alloy phase transition, the
higher the alloy phase transition temperature.

The valence electron distance is the distance from the
valence electrons of an atom to the nucleus [56]. The greater
the distance between the valence electrons of atoms, the
greater the bonding force between atoms, the more energy re-
quired for phase transformation, and the higher the austenite
transformation start temperature 4, and vice versa. The lar-
ger the standard deviation S2.sd of the atomic valence elec-
tron distance, the stronger the ability of each atom to lose or
gain electrons, and the greater the interaction force between
atoms after forming an alloy. Correspondingly, more energy
is required for alloy atomic shear, and the austenite trans-
formation start temperature A, of the alloy is higher.

The quenching temperature directly affects the phase
transformation process and structure of the alloy, thereby af-
fecting the phase transformation temperature of the alloy. For
CuAlINi alloy, the phase transition temperature decreases first
and then increases with the increase of quenching temperat-
ure; while for NiTiNb alloy, the higher the quenching tem-
perature, the higher the phase transition temperature. This in-
dicates that the quenching temperature has a great influence
on the phase transition temperature of the alloy.
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Through the interpretable model’s SHAP visualization
analysis of individual prediction points (Fig. 8), the more
intuitive understanding of the impact of key factors on the
distribution of material phase transition points for each
data point was obtained. From Fig. 8(a), the SHAP value dis-
tribution of Cl.sd is predominantly concentrated within the
range of less than —20 and greater than or equal to 40. In con-
trast, ES.sd’s SHAP values are mostly distributed within
the range of 0 to 40, while M1.sd’s SHAP values exhibit a re-
latively uniform distribution. Consequently, Cl.sd yields
the highest average absolute SHAP value, signifying its
most substantial contribution to the model. Hence, C1.sd is
identified as the foremost key factor influencing M;. Simil-
arly, as observed from Fig. 8(b), the SHAP values of S6.sd
for each data point are primarily situated at higher values, un-
derscoring S6.sd's substantial contribution to the M, model
and, by extension, establishing it as the most pivotal key
factor influencing M,. The remaining four key factors pre-
dominantly exhibit SHAP value distributions within lower
ranges, suggesting relatively minor contributions to the M
model. In Fig. 8(c), the SHAP values of S2.sd for each data
point exhibit some elevated values, indicating that specific
S2.sd values exert a noteworthy influence on the 4, model’s
output. This ultimately designates S2.sd as the most signific-
ant key factor impacting A4, with an impressively high aver-
age SHAP absolute value of 53.38. Conversely, C3.mean and
Quench predominantly manifest SHAP values within lower
value ranges, thereby signifying a secondary impact on 4.
Fig. 8(d) illustrates that C3.sd possesses some prominent
SHAP values, leading to its highest average value. Con-
sequently, C3.sd contributes more significantly to the A
model than the other two factors, emerging as the preemin-
ent factor influencing 4.
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5. Conclusions

The phase transition temperature of Cu-based shape
memory alloys has been successfully predicted by composi-
tion modeling and element feature modeling. Both models
have achieved satisfactory prediction accuracy, the predic-
tion accuracy of the composition model has reached more
than 95.5%, and the prediction accuracy of the element fea-
ture model is over 98.3%. The experimental results are con-
sistent with the predictions of the ML model, suggesting that
ML is an effective tool for designing SMAs. On the basis of
the analysis above, several key features related to phase
transition temperature were determined by using this method,
and the mechanism of the influence of key features on phase
transition temperature was analyzed. This work may provide
a new understanding of the factors that affecting phase trans-
formation temperature and guide the efficiently design of Cu-
based shape memory alloys according to the material applic-
ation temperature domain.
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