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Abstract: Mn2+ doping has been adopted as  an efficient  approach to regulating the luminescence properties  of  halide perovskite  nano-
crystals (NCs). However, it is still difficult to understand the interplay of Mn2+ luminescence and the matrix self-trapped exciton (STE)
emission  therein.  In  this  study,  Mn2+-doped  CsCdCl3 NCs  are  prepared  by  hot  injection,  in  which  CsCdCl3 is  selected  because  of  its
unique  crystal  structure  suitable  for  STE emission.  The  blue  emission  at  441  nm of  undoped  CsCdCl3 NCs  originates  from the  defect
states in the NCs. Mn2+ doping promotes lattice distortion of CsCdCl3 and generates bright orange-red light emission at 656 nm. The en-
ergy transfer from the STEs of CsCdCl3 to the excited levels of the Mn2+ ion is confirmed to be a significant factor in achieving efficient
luminescence in CsCdCl3:Mn2+ NCs. This work highlights the crucial role of energy transfer from STEs to Mn2+ dopants in Mn2+-doped
halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.
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1. Introduction

Perovskite-type compounds have become known as mul-
tifaceted functional materials, and the luminescence of self-
trapped excitons (STEs) in metal halide perovskites, as an ex-
ample, has garnered increasing attention in light-emitting di-
odes [1], scintillators [2], and sensors [3] due to their advant-
ages  of  high  photoluminescence  quantum  yield  (PLQY),
broadband  emission,  large  Stokes  shift,  and  long  fluores-
cence lifetime. Strong electron–phonon coupling and soft lat-
tice play crucial roles in the generation of STEs [4]. In gener-
al,  STE  emission  occurs  in  low-dimensional  metal  halides
because polyhedral distortions are more likely to occur at low
connectivity [5]. Smith et al. [6] were the first to report typic-
al  Pb-based  low-dimensional  hybrid  metal  halides  with
broadband STE emission from 400 to 800 nm. Morad et al.
[7]  reported  the  fascinating  photoluminescence  in  zero-di-
mensional  (0D)  Sb-based  hybrid  halides.  It  is  also  noticed
that all-inorganic 0D Cs3Cu2I5 displayed efficient broadband
STE emission [8], and the associated synthesis has been ex-
tended  from  microcrystals  to  nanocrystals  (NCs)  [9].
However,  realizing  STE  emission  in  all-inorganic  three-di-
mensional (3D) halides is challenging, except for the repor-
ted Cs2AgInCl6 NCs [1]. This is because octahedra are solidly
connected via shared corners in 3D halides, which makes lat-
tice  distortion difficult  [10].  Interestingly,  the  unique bond-
ing of 3D CsCdCl3 can induce lattice distortion, thus poten-

tially  achieving  STE  emission,  as  reported  elsewhere
[11–12].

Extensive research on Mn2+ ions as dopants in several dif-
ferent metal halide NCs can be found in the recent literature
[13–14].  Octahedrally  coordinated  Mn2+ can  exhibit  long-
lived orange-red emission, originating from the spin-forbid-
den d–d transition. Among various halide NCs, CsPbCl3 NCs
with a suitable band gap have become an ideal host for effi-
cient  energy  transfer  from  excitons  to  Mn2+ ions  [15–16].
CsCdCl3 is structurally similar to CsPbCl3, but the lattice of
CsCdCl3 is easier to distort. Substituting Cd2+ with Mn2+ can
further promote the distortion of the CsCdCl3 lattice and fa-
cilitate the generation of STEs [10]. In addition, Mn2+ doping
can  form  energy  transfer  channels  from  the  host  STEs  to
Mn2+ ions, thus exhibiting efficient orange-red emission [17].
Hence, CsCdCl3 NCs were selected as the host for Mn2+ dop-
ing to investigate STE emission and the role of STEs in Mn2+

luminescence modulation.
In  this  study,  CsCdCl3 NCs are  prepared by a  hot-injec-

tion  method  and  further  doped  with  Mn2+ to  form
CsCdCl3:Mn2+ NCs.  CsCdCl3 NCs  exhibit  blue  emission,
which is ascribed to the defect states of the NCs. Mn2+ dop-
ing  promotes  the  generation  of  STEs  in  CsCdCl3 NCs  and
forms energy transfer channels from STEs to the Mn2+ ion,
giving  rise  to  bright  orange-red  emission  in  CsCdCl3:Mn2+

NCs. This work provides alternative strategies for STE emis-
sion  research  in  3D  metal  halide  NCs  and  optimization  of 
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their luminescence performance. 

2. Experimental 

2.1. Materials

Cesium carbonate (Cs2CO3, 99.9wt%), manganese acetate
tetrahydrate  (Mn(CH3COO)2·4H2O,  analytical  pure),  oleic
acid  (OA,  analytical  pure),  oleylamine  (OLA,  80wt%–
90wt%),  octadecene  (ODE,  >90wt%),  benzoyl  chloride
(BzCl,  98wt%), n-hexane (C6H14,  ≥98wt%),  and ethyl  acet-
ate (C4H8O2, analytical pure) were purchased from Aladdin.
Cadmium acetate dihydrate (Cd(CH3COO)2·2H2O, analytic-
al  pure)  was  purchased  from  Macklin.  All  chemicals  were
used without further purification. 

2.2. Synthesis

Cs2CO3 (0.125 mmol), Cd(CH3COO)2∙2H2O (0.25 mmol),
Mn(CH3COO)2∙4H2O  (0.05  mmol  in  general  experiments,
i.e.,  the  Mn/Cd  precursor  ratio  was  20%.  For  CsCd1−xCl3:
xMn2+ NCs, x = 0.05, 0.10, 0.15, 0.20, and 0.25, and the total
amount  of  Cd(CH3COO)2∙2H2O  and  Mn(CH3COO)2∙4H2O
was 0.25 mmol.), OLA (2 mL), OA (2 mL), and ODE (8 mL)
were placed in a 50 mL three-neck flask. The mixed solution
was heated to 120°C and degassed by alternating vacuum and
N2 for 30 min. Afterward, the mixture was heated to 200°C
under N2. Then, 0.4 mL of BzCl was swiftly injected into the
flask under vigorous stirring. The reaction was quenched in
an ice-water bath after 10 s.  The crude solution was centri-
fuged at 8000 r/min for 5 min. The precipitate fraction was
redispersed  in  10  mL  of n-hexane  and  centrifuged  at  4000
r/min for 3 min, leaving the supernatant. After that, the NCs
were precipitated with 30 mL of ethyl acetate by centrifugat-
ing at  8000 r/min for  5 min.  Finally,  half  of  the precipitate
was dispersed in n-hexane and the other half was dried in an
oven to make into powder for the following use. 

2.3. Characterization

X-ray  diffraction  (XRD)  was  conducted  using  an  Aeris
XRD instrument (PANalytical, Netherlands) at 40 kV and 15
mA with monochromatized Cu Kα radiation (λ = 1.5406 Å)
and linear VANTEC detector. The samples were prepared by
dissolving  the  NCs  in n-hexane  and  dropping  the  concen-
trated  solutions  onto  a  silicon  substrate.  Transmission  elec-

tron  microscopy  (TEM),  high-resolution  TEM  (HRTEM),
and  energy-dispersive  X-ray  spectroscopy (EDS)  were  per-
formed  using  a  JEM-2010  instrument  at  120  kV  and
equipped with an energy-dispersive detector. The samples for
TEM  analysis  were  prepared  by  dropping  dilute  NC  solu-
tions onto 300 mesh copper grids coated with ultrathin car-
bon  film.  Room-temperature  photoluminescence  excitation
(PLE),  photoluminescence  (PL),  and  time-resolved  PL
(TRPL)  spectra  were  collected  using  an  FLS1000  fluores-
cence  spectrophotometer  (Edinburgh  Instruments  Ltd.,
U.K.). Temperature-dependent spectra were recorded on the
same spectrophotometer equipped with the cryogenic liquid
nitrogen  plant  equipment.  PLQYs  were  determined  via  an
absolute  PL  quantum  yield  spectrometer  (Quantaurus-QY
Plus  C13534-11,  Hamamatsu  Photonics).  All  optical  meas-
urements were conducted on NC powders in ambient condi-
tions. 

3. Results and discussion 

3.1. Structure and synthesis

Perovskite-type  CsCdCl3 crystallizes  into  a  hexagonal
structure  (space  group P63/mmc)  with  [Cd2Cl9]5− subunits
sharing corners with [CdCl6]4− octahedra (Fig. 1(a)). The dis-
tinct symmetries of Cd endow the structure with two types of
symmetry,  D3d and  C3v [12,18].  The  dopant  Mn2+ ions  are
supposed  to  substitute  the  octahedral  Cd2+ sites.  As  illus-
trated in Fig. 1(b), Mn2+-doped CsCdCl3 NCs are synthesized
via a modified hot-injection method [19]. As described in the
Experimental Section, precursors (Cs carbonate and Cd, Mn
acetates) are dissolved in ODE with OA and OLA. When the
system is heated to 200°C, rapid injection of BzCl can trig-
ger the nucleation and growth of the NCs. The Mn2+ doping
concentration in CsCdCl3:Mn2+ NCs is  20% (molar ratio of
the precursor), and all analyses are based on the samples with
this  concentration.  The  XRD  pattern  demonstrates  pure-
phase  NCs  (not  easy  to  form  impurities  like  Cs2CdCl4 and
Cs3Cd2Cl7)  (Fig.  1(c)).  After  Mn2+ doping,  the  diffraction
peak at 23.98° shifts slightly toward higher angles, which can
be ascribed to lattice contraction induced by the substitution
of Cd2+ (Radius, r = 0.95 Å; coordination number, CN = 6)

 

Cs

Cd

Cl

c

b

Heating mantle

N2

Hot injection

200℃

(a) (b) (c)

Cs2CO3

Cd(AC)2·2H2O

OA
OLA
ODE

Benzoyl

chloride

20 30 40 50 60

In
te

n
si

ty
 /

 a
.u

.

2θ / (°)

PDF # 70-1615 CsCdCl3

CsCdCl3 NCs

CsCdCl3:Mn2+ NCs

Mn(AC)2·4H2O

Fig. 1.    (a) Crystal structure diagram of CsCdCl3. (b) Synthesis illustration of CsCdCl3:Mn2+ NCs. (c) XRD patterns of CsCdCl3 and
CsCdCl3:Mn2+ NCs.

A.R. Zhang et al., Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+perovskite... 1457



with smaller  Mn2+ (r =  0.83 Å,  CN = 6),  showing the suc-
cessful doping of Mn2+ in the CsCdCl3 lattice. 

3.2. TEM analysis

In  the  TEM  images,  CsCdCl3 and  CsCdCl3:Mn2+ NCs
present distorted square-like morphologies with similar mean
sizes  of  (10.1  ±  1.5)  and  (10.8  ±  1.8)  nm,  respectively
(Fig. 2(a) and (b)). The HRTEM images in Fig. 2(c) and (d)
clearly  show  the  lattice  fringes  of  the  NCs,  verifying  their
high crystallinity. The interplanar spacings (3.66 and 3.63 Å)
correspond to the (110) planes. Further EDS elemental map-
ping of CsCdCl3:Mn2+ NCs reveals the homogeneous distri-
bution of Cs, Cd, Cl, and Mn in the NCs (Fig. 2(e)). 

3.3. PL spectra analysis

The  optical  properties  of  undoped  CsCdCl3 and  Mn2+-
doped  CsCdCl3 NCs  were  studied  as  a  comparison.  In
Fig.  3(a),  when  excited  at  365  nm  (λex),  CsCdCl3 NCs
display  blue  emission  at  441  nm  (λem)  with  a  PLQY  of
8.6%.  Given  the  asymmetric  emission  band  and  the  fact
that  no  such  blue  emission  has  been  observed  in  reported

CsCdCl3 crystals [20–21], we propose the emission is not in-
herent  to  CsCdCl3.  The  decay  behavior  of  the  441  nm
emission can be well fitted by a single exponential function
with  a  short  lifetime (τ)  of  5.78  ns.  Based  on  these  results,
the  blue  emission  can  be  assigned  to  the  defect  states  or
surface  states  of  CsCdCl3 NCs  [22–24].  Besides  the  above
blue  emission,  when  excited  at  265  nm,  CsCdCl3:Mn2+

NCs display orange-red emission at 656 nm with full width
at  half-maximum  (FWHM)  of  113  nm  and  PLQY  of
11.1% (Fig.  3(b)).  Combined  with  the  excitation  spectrum,
the  main  peak  of  this  emission  can  be  attributed  to  the
Mn2+ d–d transition (4T1 → 6A1) [25]. It is noted that this or-
ange-red  emission  peak  has  a  relatively  large  FWHM  and
imperfect symmetry, implying the possible presence of addi-
tional emission centers. In Fig. 3(c) below, the decay curve of
the  emission  can  be  well  fitted  by  a  biexponential  function
with  a  short  lifetime  of  0.24  ms  and  a  long  lifetime  of
0.94  ms.  The  fast  decay  indicates  STE  emission  resulting
from lattice distortion after Mn2+ doping, which will be dis-
cussed in detail later. The slow component indicates the spin-
forbidden transition of Mn2+ (4T1 → 6A1),  as found in other
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systems [26–27].
To  further  elucidate  the  luminescence  mechanism  of

CsCdCl3:Mn2+ NCs, temperature-dependent steady-state and
transient-state  PL  spectra  were  recorded  and  compared.
CsCdCl3 NCs exhibit blue emission at 80 K when excited at
365  nm,  which  arises  from the  previously  discussed  defect
states or surface states of NCs. Notably, under 265 nm excit-
ation  at  80  K,  CsCdCl3 NCs  show  broadband  emission
(FWHM = 155 nm) in the 400–700 nm range, which agrees
with  the  attributes  of  STE  emission  (Fig.  3(d)).  As  stated
above,  the octahedron with C3v symmetry is  slightly distor-
ted,  leading  to  STE  emission  [10,28].  The  emission  in  the
NCs is not as pronounced as that in the crystals at room tem-
perature [29] but can be easily observed at low temperatures
[30].  Mn2+ doping  further  promotes  CsCdCl3 lattice  distor-
tion, allowing the observation of STE emission from low to
room temperature.  In Fig.  3(e),  the PL peak is  asymmetric,
with a tail in the 500–600 nm range. Moreover, the improved
PL intensity and prolonged PL lifetime with decreasing tem-
perature  can  be  ascirbed  to  suppressed  nonradiative  relaxa-
tion (Fig. 3(e) and (f)).

The PLE spectra of CsCd1−xCl3:xMn2+ NCs (x = 0.05, 0.10,
0.15,  0.20,  and  0.25)  under  various  optimum  emission
wavelengths are displayed in Fig. 4(a). The excitation peaks
in  the  250–270  nm  range  are  associated  with  the  charge
transfer band (CTB) of Cl− → Mn2+.  The narrow excitation
bands in the 330–450 nm range are assigned to the d–d trans-
itions  of  the  Mn2+ ion.  Specifically,  the  peaks  at  330,  360,
380,  and  420  nm  correspond  to  the 6A1 → 4T1(4P), 6A1 →
4E(4D), 6A1 → 4T2(4D), and 6A1 → 4A1(4G)/4E(4G) transitions

of the Mn2+ ion, respectively [29]. With increasing Mn2+ con-
centration, the CTB shows a slight blue shift, and the intens-
ity of Mn2+-related excitation peaks increases. As depicted in
Fig. 4(b),  the PL spectra of CsCd1−xCl3:xMn2+ NCs with in-
creasing Mn2+ concentration show that  the STE emission is
gradually  weakened,  and  the  emission  mainly  manifests  as
the characteristic emission of Mn2+ ions. On the other hand,
the  emission peaks  display a  red shift  from 650 to  667 nm
with narrow FWHMs. Given that both STE and Mn2+ emis-
sions are excited at 265 nm, the bright orange-red emission of
the Mn2+-doped NCs most likely originates from an efficient
energy transfer from STEs to the energy levels of the Mn2+

ion,  which  is  consistent  with  other  studies  [10,12,31].  Not-
ably, the STE emission band is more easily observed at low
doping concentrations. In Fig. 4(c), two Gaussian peaks can
be well fitted to the spectral profile. The 577 nm peak can be
assigned to STE emission, while the 657 nm peak can be as-
signed to Mn2+ d–d transition. These results imply that there
are two luminescence mechanisms in CsCdCl3:Mn2+ NCs, as
illustrated in Fig. 4(d). Excitons under 265 nm excitation are
trapped by shallow defects proximal to the conduction band.
These  excitons,  due  to  thermal  perturbations,  can  be
rereleased  and  subsequently  undergo  recombination  (STE
emission  at  577  nm)  or  be  captured  by  Mn2+ dopants.  The
captured excitons will relax to the lowest excited state (4T1)
and then undergo the radiative transition from 4T1 to 6A1, res-
ulting in  bright  orange-red emission at  657 nm. In the pro-
cess,  Mn2+ doping  promotes  CsCdCl3 lattice  distortion  and
the  generation  of  STEs.  The  energy  transfer  from  STEs  to
Mn2+ enables efficient luminescence of Mn2+ ions and large
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Fig. 3.    (a) PLE, PL, and TRPL spectra of CsCdCl3 NCs. (b) PLE and PL spectra of CsCdCl3:Mn2+ NCs under different emission
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trum of CsCdCl3:Mn2+ NCs at 80 K.
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Fig. 4.    (a) PLE (λem = 650, 657, 659, 663, and 667 nm) and (b) PL spectra (λex = 265 nm) of CsCd1−xCl3:xMn2+ NCs with different
Mn2+ concentrations (x = 0.05, 0.10, 0.15, 0.20, and 0.25). (c) PL spectra and Gaussian fitting curves of CsCd0.95Cl3:0.05Mn2+ NCs ex-
cited at 265 nm. (d) Schematic of the energy transfer mechanism from STEs to Mn2+ d–d transition in the CsCdCl3:Mn2+ NCs (CB:
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4. Conclusion

In summary, CsCdCl3:Mn2+ NCs are successfully synthes-
ized via a hot-injection method. The blue emission at 441 nm
of undoped CsCdCl3 NCs can be assigned to the defect states
of  the  NCs.  Mn2+ doping  further  promotes  CsCdCl3 lattice
distortion,  facilitating  the  generation  of  STEs.  Mn2+-doped
CsCdCl3 NCs display bright orange-red emission at 656 nm.
The  obtained  results  revealed  that  the  energy  transfer  from
the STEs of CsCdCl3 to the energy levels of the Mn2+ ion is a
significant  factor  in  realizing  efficient  luminescence  in
CsCdCl3:Mn2+ NCs. This work extends the research on STE
emission  in  3D  metal  halide  NCs  and  provides  useful  ap-
proaches  to  improving  the  luminescence  performance  of
metal halide NCs. 
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