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Abstract: The atmospheric corrosion monitoring (ACM) technique has been widely employed to track the real-time corrosion behavior of
metal materials. However, limited studies have applied ACM to the corrosion protection properties of organic coatings. This study com-
pared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors, both applied on ACM sensors, to observe their corro-
sion protection properties over time. Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet
environments, which allowed for monitoring galvanic corrosion currents in real-time. Throughout the corrosion tests, the ACM currents of
the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating. The trend in ACM current variations
closely matched the results obtained from regular electrochemical tests and surface analysis. This alignment highlights the potential of the
ACM technique in evaluating the corrosion protection capabilities of organic coatings. Compared with the blank epoxy coating, the zinc
phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against
steel corrosion beneath the damaged coating.
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1. Introduction

Organic coatings are among the most efficient and prac-
tical  approaches  for  protecting  metal  materials [1–2].
However,  their  barrier  function  faces  numerous  external
threats, such as complex aging conditions, corrosive media,
or mechanical  harm [3–5].  Once these external  factors des-
troy the organic coating matrix, a corrosive medium will rap-
idly penetrate through coating defects, reaching the underly-
ing metal substrate and sparking corrosion. Persistent corro-
sion on a metal substrate drastically shortens its lifespan, po-
tentially leading to safety hazards [6–7]. To fortify the corro-
sion protection of organic coatings, an effective strategy is to
add corrosion inhibitors into the coating matrix [8–10]. These
inhibitors  form  a  protective  layer  on  the  metal  surface,
shielding it from direct contact with a corrosive medium, thus
endowing  the  coatings  with  passive  protective  properties.
Furthermore,  in  the  event  of  coating  damage,  the  inhibitor
layer  formed  at  the  defects  effectively  curbs  the  corrosion
process.  Consequently,  the  integration  of  corrosion  inhibit-
ors into anti-corrosion coatings has been a focus of the field

of corrosion and protection for decades [11–14].
Although corrosion-resistant coatings incorporating inhib-

itors  have been extensively designed and studied,  assessing
their anti-corrosion properties largely relies on traditional ex-
situ methods,  such  as  electrochemical  characterization
[15–17] or  surface  composition  analysis [18–20].  Although
these methods evaluate the corrosion protection status or fail-
ure behavior of organic coatings at specific times, they can-
not monitor real-time variations in their corrosion protection
performance [21].

Recently,  the  atmospheric  corrosion  monitoring  (ACM)
technique  has  garnered  considerable  interest  for  instantan-
eously monitoring the corrosion resistance of metal materials
[22–24]. ACM captures transient corrosion activities through
an  instantaneous  galvanic  current [25–26],  the  impedance
modulus [27–28],  or electrochemical  noise values [29].  For
example,  Mizuno et al. [30] installed  Fe/Ag  double-elec-
trode  ACM  sensors  on  vehicles  for  a  three-month  atmo-
spheric exposure corrosion test. By comparing galvanic cur-
rent  integral  values  from  ACM  sensors  with  the  corrosion
rate of steel  coupons, they found a strong linear correlation 
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with a coefficient of 0.913. Furthermore, Pei et al. [31] com-
bined the ACM technique with machine learning to investig-
ate the correlation between the corrosion rate and various en-
vironmental  factors,  highlighting  the  substantial  impact  of
rust formation on the corrosion prediction model.

Given the success of ACM in monitoring metal material
corrosion,  we propose using this  technique to  promptly de-
tect  the  corrosion  protection  status  of  organic  coatings.  To
test  our  hypothesis,  we  applied  epoxy  coatings  with  and
without  zinc  phosphate  corrosion  inhibitors  onto  ACM
sensor surfaces. Artificial scratches were introduced onto the
coatings  to  simulate  external  mechanical  damage.  These
sensors with different scratched coatings were exposed to im-
mersion  and  alternating  dry/wet  environments  to  track  the
variation in corrosion protection properties. The morphology
and elemental composition of the steel electrode surface be-
neath  the  scratches  were  analyzed  using  scanning  electron
microscopy  (SEM)  and  energy  dispersive  spectroscopy
(EDS).  Moreover,  electrochemical  impedance  spectroscopy
(EIS) was applied to the various scratched coatings after spe-
cific immersion times to characterize their corrosion protec-
tion  properties,  aiming  to  confirm  the  reliability  of  ACM
technology in monitoring the corrosion protection of organic
coatings. 

2. Experimental 

2.1. Materials

Bisphenol A diglycidyl ether (DGEBA), Jeffamine D230
curing agent, and zinc phosphate hydrate were procured from
Aladdin  Chemical  Co.,  Ltd.  Ethanol,  acetone,  and  sodium
chloride (NaCl) were supplied by Sinopharm Chemical Re-
agent. All chemicals and solvents were used in their original
form. To construct galvanic corrosion couples, Q235 carbon
steel and graphite sheets served as the anodes and cathodes,

respectively. The chemical composition of the carbon steel is
found in Table 1.
 
 

Table 1.    Chemical composition of Q235 carbon steel wt%

C Mn Si S Fe
0.15 0.50 0.30 0.05 In balance

  

2.2. Preparation of ACM sensors

A schematic of the ACM sensor, depicted in Fig. 1, com-
prises  seven  sets  of  steel/graphite  galvanic  couples.  Glass
fiber-reinforced  epoxy  composite  boards,  0.1  mm  thick,
provide  electrical  insulation  between  the  carbon  steel  and
galvanic electrodes. Each carbon steel anode of the galvanic
electrode pair exposes an area of 21 mm × 1 mm. When an
electrolyte  film  forms  on  the  sensor  surface,  the  steel  and
graphite  electrodes  link,  initiating  a  galvanic  corrosion cur-
rent. Lead wires connect the ACM sensors to the micro-gal-
vanometer  and  data  logger,  which  monitor  and  record  the
current [31]. 

2.3. Preparation of the zinc phosphate/epoxy coatings

The  ACM  sensors  underwent  sequential  abrasion  using
150-, 240-, and 400-grit sandpapers before use, followed by
ultrasonic cleaning with acetone and ethanol. The epoxy res-
in, comprising DAGBA and Jeffamine D230 at a molar ratio
of  2:1,  was  prepared [32].  Initially,  15wt% zinc  phosphate,
relative to the weight of the epoxy coating matrix, was dis-
persed into DGEBA at 50°C under stirring for 3 h. This mix-
ture was then combined with Jeffamine D230, stirred for an
additional 15 min, and spread over the ACM sensor surface
using a rod applicator. The applied coating, named ZP-15%,
was cured at 55°C for 24 h [33].

Moreover, a reference specimen, the blank epoxy coating
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Fig. 1.    Schematic of the coated steel/graphite ACM sensor.
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without any additive, was prepared and termed ZP-0% coat-
ing.  The  dry  coating  thickness  of  all  specimens  was  meas-
ured at (60 ± 10) μm. 

2.4. Characterization of coatings

Initially, an artificial scratch was made approximately 80
μm wide and 5 mm long across three pairs of steel/graphite
electrode couples on the ZP-0% and ZP-15% coatings. Sub-
sequently,  the  ACM  sensors  with  these  different  coatings
were exposed to immersion and alternating dry/wet environ-
ments to investigate the corrosion protection variations. The
alternating dry/wet experiments were conducted in a home-
designed  EA-08  type  alternating  dry/wet  corrosion  test
chamber.  For  both  environments,  the  electrolyte  was  a
3.5wt%  NaCl  solution.  Each  dry/wet  cycle  comprised
60 min, with 40 min of drying (at 40°C and (60 ± 5)% hu-
midity) followed by 20 min of immersion in the electrolyte
(at  25°C) [34].  The  main  experiments  were  conducted  fol-
lowing GB/T 19746-2018. These coated ACM sensors were
subjected  to  an  alternating  dry/wet  environment  for  9  d.
Micro-galvanometers monitored and recorded corrosion cur-
rents  in  real-time,  reflecting  the  corrosion  behavior  at  the
scratched  areas  of  the  coating,  with  current  values  being
logged every minute.

Additionally, EIS measurements were conducted using an
electrochemical  workstation  (PARSTAT  2273,  AMETEK)
to  further  explore  the  corrosion  resistance  of  the  different
scratched  coatings.  The  carbon  steel  electrode  of  the  ACM
sensor  served  as  the  working  electrode,  while  the  graphite
electrode was used as the auxiliary and reference electrodes
[35–36]. EIS measurements encompassed a frequency range
of 105 to 10−2 Hz with a sinusoidal voltage perturbation of 20
mV. The surface morphologies of different coatings were ob-
served using SEM (Regulus SU8100) equipped with EDS. 

3. Results and discussion 

3.1. Real-time  corrosion  monitoring  in  a  NaCl  immer-
sion environment

Fig. 2(a) depicts the instantaneous variation in the galvan-
ic current (IACM-instant) of ACM sensors with different scratched
coatings  over  a  7-d  immersion  period.  Initially,  during  the
immersion  phase,  the  corrosion  medium  swiftly  penetrated
the sensor probe surface through the artificial scratch, initiat-
ing a galvanic current between the carbon steel anode and the
graphite  cathode.  Consequently,  the  ZP-0%  and  ZP-15%
coatings exhibited IACM-instant values of approximately 30 nA.
As  immersion  time  elapsed,  the  scratched  ZP-0%  coating
demonstrated  a  gradual  increase  in IACM-instant,  reaching  ap-
proximately 70 nA after 80 h of immersion, signifying escal-
ated corrosion activity at the scratched area. Conversely, the
IACM-instant of  the  scratched ZP-15% coating decreased to  ap-
proximately 20 nA within 12 h because a zinc phosphate in-
hibition  layer  rapidly  formed  at  the  scratched  coating  area.
Throughout  the  prolonged  immersion,  the IACM-instant of  the
scratched ZP-15% coating consistently remained at ~20 nA,

indicating sustained long-term inhibition performance.
To further quantify the corrosion extent of the carbon steel

electrode  at  the  scratched  areas  of  different  coatings,  the
IACM-instant values were integrated over the immersion period,
generating the electrical quantity output of the ACM sensors
(QACM-instant)  using  Eq.  (1)  for  a  data  acquisition  interval  of
1 min [37].

QACM−instant =
∑n=T

n=1
(I1+ I2+ I3+ · · ·+ In)∆t (1)

∆t
where In is the IACM-instant value at the moment n = t (t = 1, 2,
3, …, T), and  is the time data acquisition interval, which is
1 min in this study.

As depicted in Fig. 2(b), QACM-instant has a lower slope for
the scratched ZP-15% coating than for the scratched ZP-0%
coating, suggesting a lower corrosion degree for the carbon
steel anode coated with ZP-15%. The QACM-instant value of the
scratched  ZP-0%  coating  was  approximately  three  times
higher than that of the ZP-15% coating, primarily due to the
corrosion inhibition effect induced by zinc phosphate. 

3.2. Corrosion  inhibition  mechanism  of  the  ZP-15%
coating

EIS measurements were performed to further validate the
corrosion  inhibition  property  of  zinc  phosphate  within  the
scratched areas  of  the coatings.  As illustrated in Fig.  3,  the
capacitive reactance arcs of the ZP-0% coating were always
smaller than those of the ZP-15% coating during 7 d of im-
mersion in 3.5wt% NaCl solution, indicating the better corro-
sion protection property of  the coating with zinc phosphate
corrosion  inhibitors.  Typically,  the  low-frequency  imped-
ance  modulus  at  0.01  Hz  (|Z|0.01Hz)  indicates  the  corrosion
protection  efficacy  of  coatings [38–39].  During  immersion,
the |Z|0.01Hz values for the scratched ZP-0% coating gradually
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decreased because of the escalating corrosion reaction. Con-
versely, the |Z|0.01Hz values for the scratched ZP-15% coating
progressively increased to approximately 106 Ω·cm2 after 3 d
of immersion and remained consistent during subsequent im-
mersion  periods.  Even  after  7  d  of  immersion,  the  |Z|0.01Hz

value for the scratched ZP-15% coating was nearly one order
of magnitude higher than that of the scratched ZP-0% coat-
ing, showcasing the robust corrosion protection capability of
the ZP-15% coating.  From the phase angle plots,  the phase
angle values at high frequencies reflect the barrier property of
coatings. The ZP-15% coating exhibited higher phase angles
at 105 Hz, indicating its better corrosion protection property
[40–42].

Figs. 4(a) and (b) showcase the SEM images capturing the
carbon steel surface beneath the scratches of ZP-0% and ZP-
15%  coatings,  respectively.  Substantial  loose  corrosion
products  are  evident  in  the  image  for  the  ZP-0%  coating,
contrasting  with  the  noticeably  reduced  and  more  densely
packed corrosion products beneath the scratch of the ZP-15%
coating. In addition, Fig. 4(c) illustrates the elemental com-
position of the corrosion products at the scratch of ZP-15%

coating, indicating the presence of Zn and P. These EDS res-
ult  demonstrates  that  zinc  phosphate  effectively  suppressed
corrosion  product  accumulation  and  prevented  coating-
failure [43–44].

Upon  comparing  the  real-time  monitoring  outcomes  of
ACM sensors with the results from electrochemical analysis
and corrosion morphology examination, a similar trend in the
corrosion  degrees  in  the  scratched  areas  is  observed  using
both methods. This comparison indicates the viability of the
ACM technique for assessing the corrosion protection effic-
acy  and  failure  behavior  of  organic  coatings.  In  the  sub-
sequent  section,  the  ACM  sensors  with  various  scratched
coatings  were  subjected  to  an  alternating  dry/wet  environ-
ment  to  further  evaluate  the  corrosion  protection  perform-
ance of epoxy coatings integrated with zinc phosphate. 

3.3. Real-time  corrosion  monitoring  in  an  alternating
dry/wet environment

Fig.  5 illustrates  the IACM-instant of  ACM  sensors  with
scratched ZP-0% coatings during alternating dry/wet tests. In
Fig.  5(a),  the IACM-instant variation  for  the  scratched  ZP-0%
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coating exhibits periodic behavior with a gradually increas-
ing amplitude. This periodicity corresponds to the cycles of
alternating wet and dry environments.  Further delineated in
Fig. 5(c)–(e) is the IACM-instant variations for the scratched ZP-
0% coating at  specific  intervals.  The amplitude of IACM-instant

variation  increases  from approximately  10  nA on Day 4  to
more than 40 nA on Day 8, indicating an escalation of corro-
sion activity.

In contrast, the IACM-instant of the scratched ZP-15% coating
displays  minimal  evident  cyclical  fluctuations,  consistently
remaining at ~25 nA throughout the alternating dry/wet test
(seen in Fig. 5(b)). This stability can be attributed to the early
formation of a relatively steadfast corrosion inhibitor film by
zinc phosphate on the scratch of the coating during the initial
phase of the alternating dry/wet test. Despite the cyclic shift
in environmental conditions from wet to dry, the infiltration
of  the  corrosive  medium  was  effectively  suppressed,  pre-
venting further deterioration of the corrosion process.

To  determine  the  variation  in IACM-instant of  ACM  sensors
coated with different coatings in the alternating dry/wet en-
vironment, the change rate of IACM-instant was calculated by dif-
ferentiation, termed as I'ACM-instant. As depicted in Fig. 6(a), the
I'ACM-instant values of the scratched ZP-0% coating sharply fluc-
tuated  around  zero  throughout  the  alternating  dry/wet  test.
This volatility arises primarily from the unprotected exposed
steel surface at the scratch of the ZP-0% coating, causing ab-
rupt changes in corrosion activity with the shift between wet
and dry environments. In contrast, the I'ACM-instant values of the
scratched ZP-15% coating consistently approached zero, in-
dicating a relatively stable IACM-instant value during the alternat-
ing  dry/wet  test,  attributed  to  the  inhibition  effect  of  zinc
phosphate.

To  eliminate  the  influence  of  periodic  changes  in  the
IACM-instant value, the daily average value of IACM-instant (denoted
as ĪACM) was calculated to analyze the trend in the variation in
galvanic  corrosion  current  values  for  different  scratched
coatings [45].  As depicted in Fig.  6(b),  over  9 d of  testing,
ĪACM increased from ~33 to ~77 nA for the scratched ZP-0%
coating  and  slowly  increased  from  ~23  to  ~25  nA  for  the
scratched ZP-15% coating.

Furthermore,  the  corrosion  progression  of  ACM sensors
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coated with various scratched coatings during the alternating
dry/wet test was assessed through the variation in QACM-instant,
as illustrated in Fig. 7. Notably, the slope of QACM-instant for the
scratched ZP-15% coating was observed to be considerably
lower than that of the scratched ZP-0% coating, similar to the
results  observed  in  the  immersion  environment.  This  com-
parison  suggests  that  zinc  phosphate  provides  ample  corro-
sion inhibition even in alternating dry and wet environments
for damaged coatings.

Fig.  8 displays  the  morphology  of  ACM  sensors  coated
with  different  scratched  coatings  during  the  alternating
dry/wet test. Following a day of testing, some corrosion rust
was visible at the scratches of ZP-0% and ZP-15% coatings.
With increasing test  duration,  rust  formation increased sub-
stantially,  notably  more  pronounced  and  expansive  in  the
case  of  the  scratched  ZP-0% coating.  The  accumulation  of

corrosion  products  delaminated  the  coating  scratch  and
severely  corroded  the  metal  electrode [46–47].  Conversely,
fewer corrosion products were observed on the ZP-15% coat-
ing, further substantiating the corrosion protection attributes
conferred by zinc phosphate to the steel substrate.

  

ZP-0%

coating

ZP-15%

coating

1 day 4 days 6 days 8 days

5 mm

5 mm

Fig. 8.    Optical pictures of the ACM sensors coated with different scratched coatings throughout the alternating dry/wet test.
  
4. Conclusion

In  summary,  a  steel/graphite  ACM  sensor  was  used  to
monitor the instantaneous variation in the galvanic current of
a steel electrode beneath a coating scratch, assessing the cor-
rosion protection efficacy of zinc phosphate/epoxy coatings.
Throughout the immersion, the ACM current consistently re-
mained substantially lower for the scratched ZP-15% coating
than  for  the  scratched  ZP-0%  coating.  EIS  measurements
highlighted that the scratched ZP-15% coating surpassed the
scratched ZP-0% coating in the |Z|0.01Hz value by nearly one
order of magnitude after 7 d of immersion. Furthermore, the
steel  electrode  surface  beneath  the  scratch  of  the  ZP-15%
coating displayed fewer  corrosion products,  reaffirming the
corrosion inhibition potential  of  zinc phosphate.  During the
alternating dry/wet test, the scratched ZP-15% coating exhib-
ited  notably  lower  and  more  stable  ACM  values  than  the
scratched ZP-0% coating, confirming the superior corrosion
protection  performance  of  the  ZP-15%  coating.  Con-
sequently,  the  ACM  technique  demonstrates  considerable

promise  in  evaluating  the  corrosion  protection  attributes  of
organic coatings in real-time.
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