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Abstract: The  elemental  distribution  and  microstructure  near  the  surface  of  high-Mn/Al  austenitic  low-density  steel  were  investigated
after isothermal holding at temperatures of 900–1200°C in different atmospheres, including air, N2, and N2 + CO2. No ferrite was formed
near the surface of the experimental steel during isothermal holding at 900 and 1000°C in air, while ferrite was formed near the steel sur-
face at holding temperatures of 1100 and 1200°C. The ferrite fraction was larger at 1200°C because more C and Mn diffused to the sur-
face, exuded from the steel, and then reacted with N and O to form oxidation products. The thickness of the compound scale increased
owing to the higher diffusion rate at higher temperatures. In addition, after isothermal holding at 1100°C in N2,  the Al content near the
surface slightly decreased, while the C and Mn contents did not change. Therefore, no ferrite was formed near the surface. However, the
near-surface C and Al contents decreased after holding at 1100°C in the N2 + CO2 mixed atmosphere, resulting in the formation of a small
amount of ferrite. The compound scale was thickest in N2, followed by the N2 + CO2 mixed atmosphere, and thinnest in air. Overall, the
element loss and ferrite fraction were largest after holding in air at the same temperature. The differences in element loss and ferrite frac-
tion between in N2 and N2 + CO2 atmospheres were small, but the compound scale formed in N2 was significantly thicker. According to
these results, N2 + CO2 is the ideal heating atmosphere for the industrial production of high-Mn/Al austenitic low-density steel.
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1. Introduction

In  the  1950s,  Fe–Mn–Al–C  steels  were  developed  as  a
substitute  for  Fe–Cr–Ni  stainless  steels [1–2].  These  steels
have garnered significant attention for their potential applica-
tions in the automotive industry,  owing to their  lightweight
nature,  aligning  with  the  global  low-carbon  economy  and
emission  reduction  requirements [3–4].  Fe–Mn–Al–C  low-
density  steels  can  be  classified  into  four  categories:  ferritic
steel, ferrite-based duplex steel, austenite-based duplex steel,
and  austenitic  steel [5].  Among  these,  the  austenitic  steels
show  the  most  promise  in  terms  of  performance  and  pro-
cessing [6–7]. The tensile properties of austenitic steels sub-
jected to solution treatment are similar to those of high-Mn
twinning-induced  plasticity  (TWIP)  steels [6].  The  impact
toughness of these steels is slightly lower than those of Cr–Ni
stainless  steels  but  higher  than  those  of  conventional  high-
strength steels such as quenching & partitioning (Q&P) and
transformation-induced plasticity  (TRIP)  steels [8–9].  Solu-
tion  treatments  are  typically  conducted  at  temperatures  of
800–1200°C [10].  During  solution  treatments,  decarburiza-
tion  and  demanganization  result  in  phase  transitions  on  the

steel surface [11–13].
During heat treatment at high temperatures, the steel sur-

face is oxidized by oxidizing gases such as O2, CO2, and H2O
[14]. This leads to decarburization reactions, resulting in a re-
duction in carbon content or even the absence of carbon near
the  surface [15–18].  Surface  decarburization  is  a  common
defect in the industrial production of medium- and high-car-
bon steels, and it can cause various quality problems such as
insufficient  surface  hardness,  reduced  fatigue  life [19],  and
poor wear resistance [20]. Studies have shown that decarbur-
ization is influenced by factors such as heating temperature
and  time [21],  atmosphere [22],  and  alloying  composition
[23]. Among these factors, the atmosphere in the heating fur-
nace  significantly  influences  decarburization.  The  stronger
the oxidizing atmosphere, the more intense the decarburiza-
tion  of  steel [22].  Therefore,  controlling  the  atmosphere  is
critical for managing the decarburization reaction on the sur-
face of steel [24].

Manganese (Mn) volatilization usually occurs during the
smelting  process  of  Mn  steels [25–26].  The  Mn  volatiliza-
tion rate increases with temperature and time [27]. Mn volat-
ilization can occur not only during smelting but also during 
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heat treatment [28]. Wild [12] conducted vacuum annealing
treatment on Fe–18Cr–9Ni–1.2Mn–0.05C–0.45Mo (concen-
trations in  wt% unless  otherwise specified)  austenitic  stain-
less  steel  and  observed  the  escape  of  Mn  from  the  experi-
mental  steel  within  the  temperature  range  of  497–747°C.
Catteau et al. [29] performed thermal expansion experiments
on Fe–0.4C–1Mn–1Cr–0.25Mo steel in a vacuum and repor-
ted that Mn and Cr near the surface evaporated during hold-
ing at 875°C for 20 min, which affected the thermal stability
of  austenite  and  resulted  in  microstructural  heterogeneities.
Kumar  and  Mahobia [30] reported  that  Mn  atoms  diffused
from the center  to  the surface and reacted with O atoms in
Fe–8Cr–21Mn–0.65C austenitic stainless steel while holding
at 500–700°C, leading to a less stable austenite.

Studies have investigated the effects of decarburization or
demanganization  during  high-temperature  heat  treatment.
However,  the  elemental  distributions  near  the  surface  and
their  impacts  on  microstructure  evolution  have  not  been
quantitatively and systematically analyzed. Additionally, the
loss of elements during heat treatment may vary with the at-
mosphere. However, studies have not compared the effects of
different atmospheres on decarburization and demanganiza-
tion. Therefore, the present study investigates the elemental
distribution  and  microstructural  evolution  in  high-Mn/Al
austenitic low-density steel after heat treatment at high tem-
peratures  in  three  atmospheres:  air,  N2,  and CO2 +  N2.  The
goal of this study is to provide theoretical guidance for con-
trolling  the  surface  quality  of  high-Mn/Al  austenitic  low-
density steel in industrial production. 

2. Experimental

The  austenitic  low-density  steel  with  the  chemical  com-
position of Fe–20Mn–6Al–0.6C–0.15Si was melted and cast
in a 50 kg-vacuum induction furnace and then cooled to room
temperature.  The  ingots  were  reheated  to  1250°C  and  held
for 2 h for homogenization. The ingots were then forged into
round bars with a diameter of 60 mm, followed by cooling to
room temperature in a furnace. The starting and finishing for-
ging  temperatures  were  1100  and  950°C,  respectively.  To
study  the  influence  of  temperature  on  the  element  distribu-
tion and microstructure, the experimental steel was heated to
900–1200°C  and  isothermally  held  for  1  h,  followed  by
quenching  to  room  temperature.  The  heat  treatments  were
performed in air. To compare the impact of the atmosphere,
the  steel  was  isothermally  held  at  1100°C  in  100%N2 and
75%N2 +  25%CO2 (All  gas  percentages  below  are  volume
fractions). N2 is usually used as a protective gas. The mixed
atmosphere of  75%N2 + 25%CO2 was used to simulate  the
atmosphere after full combustion of the blast furnace gas in
air, which consists of 72%N2, 23%CO2, and 5%H2O(g). Con-
sidering the small proportion of H2O(g), the atmosphere was
set  to  75%N2 + 25%CO2 to  simulate  the atmosphere in the
heating furnace.

The  microstructure  of  as-forged  steel  was  observed  via
electron  channeling  contrast  imaging  (ECCI)  and  electron

backscatter diffraction (EBSD) on an Apreo S HiVac field-
emission  scanning  electron  microscope.  The  initial  micro-
structure was analyzed using a SmartLab SE X-ray diffracto-
meter with Cu Kα radiation. Additionally, the microstructure
beneath the compound scale of the specimen held at 1200°C
in  air  was  analyzed  via  X-ray  diffraction  (XRD)  after  the
grinding  and  polishing  of  the  compound  scale.  After  heat
treatment, the microstructure of the cross section was mech-
anically ground and polished for microstructure analyses via
scanning electron microscopy (SEM) and EBSD. The distri-
bution  of  elements  near  the  surface  was  quantitatively  ana-
lyzed using an EPMA-8050G field-emission electron probe
microanalyzer equipped with wavelength dispersive spectro-
meters. The equilibrium phase diagrams were calculated us-
ing  Thermo-Calc  2023b.  The  adopted  database  was  TCFE
12: Steels/Fe-Alloys v12.0. 

3. Results and discussion 

3.1. Effect of temperature in air

The ECCI micrograph and XRD pattern of the initial mi-
crostructure of the experimental steel (Fig. 1(a) and (b)) in-
dicated  that  the  initial  microstructure  was  fully  austenitic.
However, after heat treatment at 1200°C for 1 h in air, ferrite
occurred near the surface, as shown in the EBSD phase map
(Fig. 1(c)). The XRD pattern (Fig. 1(d)) further confirmed the
presence of significant ferrite under the oxidized layer of the
specimen. This unexpected ferrite formation is attributable to
the  reduced stability  of  austenite,  which was  caused by the
loss of alloying elements during heat treatment [31–33]. The
fraction of ferrite was influenced by several factors, includ-
ing isothermal temperature, isothermal time, and atmosphere.

To further investigate the impact of isothermal temperat-
ure  on  the  ferrite  fraction,  the  experimental  steel  was  iso-
thermally held at temperatures of 900–1200°C for 1 h in air,
and their microstructure was analyzed via EBSD. The micro-
graphs are shown in Fig. 2. After isothermal holding at 900°C
and  1000°C,  the  microstructure  remained  fully  austenitic
(Fig. 2(a)). Different fractions of ferrite were formed near the
surface  after  isothermal  holding  at  1100  and  1200°C  (Fig.
2(b)–(d)).

For each condition, the ferrite occurrence depth was meas-
ured  according  to  five  micrographs  (Fig.  3(a)).  The  ferrite
farthest from the surface was used as a standard point. A rect-
angle  region  (dashed  line)  was  obtained  by  drawing  a  line
parallel to the surface from the standard point (Fig. 2).  The
area of  the rectangle was measured and recorded as S.  The
area of  the ferrite  region (S1)  was determined using Image-
Pro  Plus  software.  The  ratio  of S1 to S represents  the  area
fraction of ferrite, which can be considered the volume frac-
tion of ferrite near the surface. The fractions of ferrite after
heat  treatment  at  different  temperatures  are  plotted  in
Fig.  3(b).  Both  the  ferrite  occurrence  depth  and  the  ferrite
fraction significantly increased with increasing holding tem-
perature.

The distributions of C, Mn, and Al near the surface after
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Fig. 1.    (a) ECCI micrograph and (b) XRD pattern of the initial microstructure; (c) EBSD phase map of the microstructure after
isothermal holding at 1200°C for 1 h in air; (d) XRD analysis of the microstructure with a removal of the surface compound scale
after isothermal holding at 1200°C.
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heat treatment were quantitatively analyzed through electron
probe  microanalysis  (EPMA)–wavelength  dispersive  spec-

trometry (WDS) line scanning (Fig. 4).  The C, Al,  and Mn
contents  significantly  fluctuated,  attributable  to  the  ferritic
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solidification mode of the experimental steel. During solidi-
fication,  the  liquid  first  transformed  into δ-ferrite.  At  high
temperatures, alloying elements such as C, Mn, and Al were
rapidly  partitioned  between  the  liquid  and δ-ferrite  phases,
leading  to  significant  differences  in  alloying  content.  Sub-
sequently, both the liquid and δ-ferrite transformed into aus-
tenite  during  the  cooling  process.  According  to Fig.  5(a),
the  newly  formed  austenite  inherited  the  alloying  elements
from the parent liquid and δ-ferrite, thereby resulting in local
segregation.  The  fluctuations  in  C,  Mn,  and  Al  contents
are  attributable  to  the  local  segregation  of  elements  during
peritectic solidification, despite the experimental steel under-

going thermomechanical treatments such as forging and ho-
mogenization  (1250°C  for  2  h) [34–36].  To  confirm  this
possibility, additional EPMA–WDS analysis was conducted
to investigate the element distribution in a region away from
the specimen surface (Fig. 5(b)), where no element loss oc-
curred  during  the  heating  treatment.  However,  the  Mn
content  largely  fluctuated  (Fig.  5(c)).  Therefore,  the  fluctu-
ation in alloying elements is attributable to the local segrega-
tion induced by peritectic solidification. Additionally, alloy-
ing  elements  tend  to  accumulate  at  grain  boundaries [37].
This  also  possibly  contributed  to  the  fluctuation  in  element
contents.
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air; (c) distribution of Mn intensity. L: liquid; bcc: body centred cube; fcc: face centre cube.
 

The concentrations of alloying elements almost remained
relatively constant at the isothermal holding temperatures of
900  and  1000°C  (Fig.  4(a)  and  (b)).  The  fluctuation  was
likely  due  to  peritectic  segregation  and  grain  boundary  se-
gregation. However, at higher holding temperatures of 1100
and 1200°C, the Al and Mn contents notably decreased, with
a slight decrease in the C content near the surface, disregard-
ing  segregation  and  element  partition  between  ferrite  and
austenite. According to the EPMA–WDS line scanning res-
ults, the percentage of element loss can be approximately us-
ing Eq. (1):

P = S/ (S +S 1)×100% (1)
where P represents the percentage of element loss, and S and
S1 are  the  areas  of  the  corresponding  regions  illustrated  in
Fig. 4(d). The estimation results (Fig. 6) indicate that the loss
of Mn, C, and Al near the surface became more pronounced
at higher temperatures.

Mn, C, and Al atoms diffused to the surface and reacted
with the gas in the environment,  resulting in a  reduction in
the Mn, C, and Al contents near the surface. The loss of al-
loying elements is  primarily influenced by their  initial  con-
tents and diffusion rates [12,28−29]. Fig. 7 shows the diffu-
sion rates of Mn, C, and Al in austenitic lattice simulated us-
ing Thermo-Calc software. As the temperature increased, the
diffusion  rates  of  the  elements  also  increased,  leading  to  a
more significant exudation of Mn, C, and Al at higher tem-
peratures.

According to Huang et al. [38], Al, as the primary oxygen-
getter, underwent initial oxidation to form a loose Al2O3 film,
which facilitated the diffusion of Mn and C atoms. Owing to

the high content of Mn (20wt%) in the experimental steel, the
relative percentage of Mn loss was significantly higher than
those  of  Al  and  C.  However,  the  diffusion  rate  of  C  was
much higher than those of Mn and Al, which contradicts the
observation  that  C  loss  was  the  smallest  (Fig.  7).  Duh  and
Wang [39] reported that decarburization played a major role
in  the  initial  oxidation  stage  in  Fe–30Mn–9Al–0.87C  low-
density  steel.  However,  as  oxidation  progressed,  it  was
primarily  controlled  by  metal  elements  such  as  Mn and  Al
once decarburization reached a steady state. As a result, the
losses of Mn and Al were larger than that of C.

The exudation of C and Mn, commonly accepted as aus-
tenite stabilizers, resulted in a decrease in the thermal stabil-
ity of austenite near the surface. The depletion of C and Mn
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may explain the presence of ferrite near the surface after iso-
thermal  holding  at  high  temperatures.  The  Thermo-Calc
equilibrium phase diagrams (Fig. 8) indicated that the ferrite
fraction  increased  with  the  decrease  in  the  Mn  and  C  con-
tents. Therefore, the decrease in Mn and C contents near the
surface, which became more pronounced at higher temperat-
ures, explains the formation of ferrite near the surface, with
additional ferrite forming after  isothermal holding at  higher
temperatures (Fig. 3). Despite the loss of some Al at the sur-
face,  which  would  normally  inhibits  ferritic  transformation
(Fig. 8(c)), ferrite was still formed. Additionally, Si was pos-
sibly lost during heating treatments. The effect of the Si con-
tent on the transformation of the experimental steel is illus-

trated in Fig. 8(d). The variation in the Si content had little in-
fluence on the transformation. However, Si combined with O
and  Fe  during  heating  treatment  and  formed  oxidation
products  such  as  SiO2 and  Fe2SiO4 [40].  Given  the  low  Si
content  and its  minimal impact,  the effect  of  Si  loss on the
transformation and compound scale can be disregarded.

After oxidization, a compound scale layer occurred on the
surface  of  the  experimental  steel  (Fig.  9(a)–(d)).  The  mean
thickness of this scale was estimated and plotted (Fig. 9(e)).
Fig. 9(e) shows an increase in thickness with increasing iso-
thermal temperature. The composition of the compound scale
after holding at 1100°C was analyzed via EPMA–WDS line
scanning (Fig. 10). The compound scale primarily consisted
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of  chemical  components  originating  from  the  experimental
steel, including C, Al, Mn, and Fe, along with N and O from
the atmosphere. According to the literatures [38–39,41], the
compound  scale  of  Fe–Mn–Al–C  steels  likely  contained
Mn2O3,  Fe2O3,  Mn3O4,  MnFe2O4,  (Mn,Fe)O,  and MnAl2O4.
During the initial oxidation stages, Al was the first element to
be  oxidized,  forming  discontinuous  Al2O3 structures [42].
This allowed for the infiltration of N2 and O2 into the matrix.
AlN may form before the oxidation by O2 because the forma-
tion rate of Al2O3 was low, and N2 could easily permeate into
the matrix [43]. Other elements, such as C, Mn, and Fe, re-
acted with O2 to form oxidation products [44]. Additionally,

at higher temperatures, the diffusion rate increased, allowing
for more alloying elements to reach the surface and undergo
oxidation. This explains the thicker compound scale at high-
er temperatures. 

3.2. Effect of atmosphere at 1100°C

Fig. 11 presents the EBSD analysis near the surface after
isothermal  holding at  1100°C in N2 and N2 +  CO2.  As dis-
cussed  earlier,  the  formation  of  ferrite  after  holding  in  air
(Fig. 2(c)) was due to the exudation of Mn and C. The near-
surface microstructure  (Fig.  11(a))  indicated the  absence of
ferrite  after  isothermal  holding  in  N2.  However,  a  small
amount of ferrite was formed near the surface of the experi-
mental  steel  after  holding  in  a  N2 +  CO2 atmosphere  (Fig.
11(b)).  The  depth  and  fraction  of  ferrite  in  different  atmo-
spheres  are  plotted  in Fig.  12.  The  degree  of  ferritic  trans-
formation after isothermal holding was highest in air but low-
est in the N2 atmosphere.

The distributions of C, Al, and Mn near the surface of the
samples  treated  in  N2 and  in  N2 +  CO2 were  analyzed  via
EPMA–WDS line scanning (Fig. 13). Similar to the samples
treated in air (Fig. 4(c)), the contents of alloying elements C,
Mn, and Al in the samples treated in N2 still  fluctuated. As
explained in Section 3.1, the fluctuations in element content
were caused by local segregation due to peritectic solidifica-
tion  and  accumulation  at  grain  boundaries.  These  fluctu-
ations  were  not  affected  by  the  heating  atmosphere.  The
samples treated in air exhibited a decrease in the C, Mn, and
Al  contents  near  the  surface  (Fig.  4(c)).  However,  for  the
sample treated in N2, the C, Mn, and Al contents near the sur-
face were similar to those at the inner part (Fig. 13(a)). Ac-
cordingly, ferrite was absent from the surface after holding in
N2. Only a small amount of ferrite was formed near the sur-
face after  isothermal holding in the N2 + CO2 mixed atmo-
sphere (Fig. 13(b)). The ferrite fraction was significantly less
than  that  in  the  specimen  treated  in  air.  According  to  the
EPMA–WDS line  scanning results  (Fig.  13(b)),  the  C con-
tent decreased near the surface. This indicates that decarbur-
ization occurred on the surface during isothermal holding in
N2 +  CO2,  but  no  demanganization  reaction  was  observed.
According to the EPMA–WDS line scanning results for the
specimens subjected to isothermal holding in different atmo-
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spheres (Figs. 4(c) and 13), the degree of decarburization re-
action in different atmospheres was in the following order: air
> N2 + CO2 > N2, and the demanganization degree was in the
order: air > N2 = N2 + CO2.

The  ferritic  transformation  degree  after  isothermal  hold-
ing in air, N2, and N2 + CO2 was in the following order: air >

N2 + CO2 > N2. This trend was due to the simultaneous oc-
currence of decarburization and demanganization, which res-
ulted in isothermal holding in air, yielding the highest degree
of ferritic transformation. Only considerable decarburization
occurred during holding in N2 + CO2;  therefore,  the ferritic
transformation degree was lower  than that  in  air.  Addition-
ally, no ferrite was formed during isothermal holding in N2,
as neither decarburization nor demanganization reactions oc-
curred.

After the samples were held at a constant temperature in
N2 or  N2 +  CO2 mixed  atmosphere,  the  compound  scales
were more likely to have a uniform thickness compared with
those  formed  in  air.  The  thickness  of  the  compound  scale
formed in air was ~24 μm, while the thickness of that formed
in N2 reached 144 μm. With heat treatment in N2 + CO2, the
estimated thickness was ~93 μm. Fig. 14 shows the SEM mi-
crographs  and  corresponding  EPMA–WDS  line  scanning
results  of  compound  scales  after  isothermal  holding  in  N2,
and N2 + CO2 atmospheres.

 

 

(a) (b)

Austenite

Austenite

Ferrite

200 μm 200 μm

Fig. 11.    EBSD analysis after isothermal holding at 1100°C in
different  atmospheres:  (a)  N2;  (b)  N2 +  CO2.  Ferrite  is  high-
lighted in orange.

 

N2 N2 + CO2 Air
0

100

200

300

400

500

600

700

800
(a) (b)

Atmosphere

N2 N2 + CO2 Air

Atmosphere

D
ep

th
 / 

μm

F
ra

ct
io

n
 o

f 
fe

rr
it

e 
/ 

%

0

2

4

6

8

10

Fig. 12.    (a) Ferrite occurrence depth and (b) fraction of ferrite of samples after isothermal holding at different atmospheres. The
shadow represents the standard deviation.
 

0 100 200 300
21000

24000

27000

15000

18000

1250

2500

3750
C

Al

Mn

Distance / μm

In
te

n
si

ty
 /

 c
o
u
n
ts

100 μm

(a) N2

100 μm

(b) N2 + CO2

0 100 200 300 400

21000

24500

17500

15000

20000
1000

1500

2000

2500

C

Al

Mn

Distance / μm

In
te

n
si

ty
 /

 c
o
u
n
ts

Fig. 13.    SEM micrographs of the matrix and corresponding EPMA–WDS line scanning results after isothermal holding at 1100°C
for 1 h in different atmospheres: (a) N2; (b) N2 + CO2.

Q. Zhang et al., Effects of heating temperature and atmosphere on element distribution and microstructure in ... 2677



 

25000
50000

30000
60000

30000
60000

75000
150000

15000
30000

0 20 40 60 80 100 120
0

25000
50000

C

N

O

Al
Mn

Fe

In
te

n
si

ty
 /

 c
o
u
n
ts

Distance / μm

Compound scale     Matrix

10000
20000

60000
30000

27000
75000

150000

13500

0 50 100 150
0

25000
50000

C

N

Al

Mn

Fe

In
te

n
si

ty
 /

 c
o
u
n
ts

Distance / μm

Compound scale          Matrix

25 μm 20 μm

(a) (b)N2 N2 + CO2

Fig. 14.    SEM micrographs of the compound scale and corresponding WDS line scanning results after isothermal holding at 1100°C
in (a) N2; (b) N2 + CO2.
 

As discussed previously, during isothermal holding in air,
(Fig.  10)  the  alloying elements  such as  Mn,  Al,  and Fe  re-
acted with N2 and O2 to form products of oxidation. During
isothermal  holding  in  N2,  nitrogen easily  dissolved into  the
matrix  and  formed  lamellar  AlN  (Fig.  14(a)).  This  phe-
nomenon is similar to the findings of Park et al. [41]. In addi-
tion, according to morphology analysis and the EPMA–WDS
line scanning results (Fig. 14(b)), the compound scale formed
in the N2 + CO2 atmosphere consisted of two layers. The in-
ner layer was mainly composed of nitrides such as AlN and
the outer layer contained oxides (MxOy). Initially, Al reacted
with N to form AlN [43], and then some AlN was oxidized
by CO2.  Other  alloying elements  in  the  matrix,  such as  Fe,
Mn, and C, were also oxidized by CO2 to form correspond-
ing  oxidation  products.  The  formation  of  AlN  explains  the
slight reduction in Al content near the surface (Fig. 13(a) and
(b)).

The compound scale formed in N2 was the thickest, while
the loss of Al was not very significant. The loss of elements
mainly  depended  on  the  oxidation  properties  of  the  atmo-
sphere rather than the thickness of the compound scale. Air
exhibited  the  strongest  oxidation  capability  owing  to  the
presence of O2. CO2 had a weaker oxidation capability. The
oxidation capability of N2 was weaker than those of O2 and
CO2.  Therefore,  air  had  the  strongest  oxidation  capability,
while N2 had the weakest. The oxidation capability of N2 +
CO2 mixed atmosphere was intermediate. Consequently, the
dealuminification degree was as follows: air >> N2 + CO2 >
N2.  Moreover,  the  compound scale  formed in  N2 was  AlN,
with  a  density  of  only  3.26  g/cm³.  The  oxidation  products
formed in air and N2 + CO2 consisted of AlN and oxides of
Fe, Mn, and Al. Among these, AlN had the lowest density,
which  explains  the  formation  of  a  thicker  compound  scale
in N2. 

4. Conclusions

The austenitic  low-density  steel  with  the  composition  of
Fe–20Mn–6Al–0.6C–0.15Si  was  isothermally  held  at  tem-
peratures  ranging from 900 to  1200°C in  air,  N2,  and N2 +
CO2 atmospheres.  The  elemental  distribution  and  micro-
structure  near  the  surface  were  analyzed  via  SEM,  XRD,
EBSD, and EPMA. The following conclusions can be drawn.

(1) No ferrite was formed near the surface of the experi-
mental steel during isothermal holding at 900°C and 1000°C
in  air.  However,  when  the  isothermal  temperature  reached
1100°C, some ferrite was formed near the surface, and more
ferrite was formed as the temperature was further increased
to 1200°C. This is attributed to the exudation of austenite sta-
bilizers C and Mn during holding at higher temperatures.

(2)  During  isothermal  holding  in  air,  the  alloying  ele-
ments diffused to the surface and reacted with N and O from
the  air,  forming  products  of  oxidation  on  the  surface.  The
thickness  of  the  compound  scale  increased  with  the  iso-
thermal temperature owing to the increased diffusion rate of
the alloying elements.

(3) After isothermal holding at 1100°C in N2, the near-sur-
face Al content slightly decreased, while the C and Mn con-
tents remained unchanged. Therefore, no ferrite was formed
near  the  surface.  However,  after  holding  in  the  N2 +  CO2

mixed atmosphere, the C and Al contents near the surface de-
creased, leading to the formation of a small amount of ferrite.

(4) A comparison of isothermal holding in the three atmo-
spheres at the same temperature revealed that holding in air
yielded both the highest element loss and ferrite fraction. The
differences  in  element  loss  and  ferrite  fraction  between  N2

and N2 + CO2 mixed atmospheres were small, but the com-
pound scale formed in N2 + CO2 was much thinner. There-
fore, N2 + CO2 is the ideal heating atmosphere for the indus-
trial production of high-Mn/Al austenitic low-density steel. 
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