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Abstract: Given the carbon peak and carbon neutrality era, there is an urgent need to develop high-strength steel with remarkable hydro-
gen embrittlement resistance. This is crucial in enhancing toughness and ensuring the utilization of hydrogen in emerging iron and steel
materials.  Simultaneously,  the  pursuit  of  enhanced metallic  materials  presents  a  cross-disciplinary  scientific  and  engineering  challenge.
Developing high-strength, toughened steel with both enhanced strength and hydrogen embrittlement (HE) resistance holds significant the-
oretical and practical implications.  This ensures secure hydrogen utilization and further carbon neutrality objectives within the iron and
steel  sector.  Based on the design principles of  high-strength steel  HE resistance,  this  review provides a comprehensive overview of re-
search on designing surface HE resistance and employing nanosized precipitates as intragranular hydrogen traps. It also proposes feasible
recommendations and prospects for designing high-strength steel with enhanced HE resistance.
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1. Introduction

In  the  context  of  the  emerging  challenges  posed  by  the
scarcity of nonrenewable resources, the energy crisis, and the
objectives of carbon peak and carbon neutrality, the steel in-
dustry has become a pivotal sector in driving the “dual car-
bon” strategy  [1–4].  The  development  of  high-strength  and
high-toughness steel,  as an inevitable trend toward material
lightweight  optimization  [5–6]  and  energy  efficiency  and
carbon emission reduction, is particularly significant [7–10].
However, the issue of hydrogen embrittlement (HE) in high-
strength  steels,  whether  during  manufacturing  processes
(e.g., smelting, rolling, heat treatment, welding, and electro-
plating)  or  during storage,  transport,  and service,  remains a
critical  bottleneck  hindering  their  application  and  develop-
ment [11–14]. Moreover, the higher the strength of the steel,
the greater its susceptibility to HE, thus intensifying the prob-
lem [15–21].

HE  susceptibility  significantly  affects  a  material’s  per-
formance  in  hydrogen-rich  environments,  primarily  mani-
festing as an increased tendency for brittle fracture upon hy-
drogen exposure. Key indicators for assessing this susceptib-
ility include necking or elongation rate, tensile strength, frac-
ture toughness, reduction of area, slow strain rate testing (SS-
RT),  hydrogen-induced  cracking  (HIC)  phenomena,  hydro-
gen diffusion and trapping characteristics within a material,
and hydrogen permeation rate [22–26]. These indicators are

evaluated by comparing the performance of materials in en-
vironments with and without hydrogen.

Historically, since the first discovery of HE in 1875, nu-
merous  scholars  have  conducted  in-depth  research  on  the
anti-HE  properties  and  service  safety  of  metal  materials,
achieving significant progress [27–28].  This includes estab-
lishing various HE theories and addressing the issue in low-
strength steels. In recent years, with the advancement of the-
oretical calculations [29–30] (e.g., first-principle calculations,
molecular dynamics simulations, and machine learning) and
experimental characterization techniques [31–32] (e.g., three-
dimensional atom probe technology and in-situ transmission
electron microscopy), research into hydrogen traps and anti-
HE properties  in  high-strength steels  has deepened,  provid-
ing robust support for designs against HE.

Despite this, the trend toward higher strength and tough-
ness  in  metal  materials  has  posed  even  more  severe  chal-
lenges for the anti-HE properties of high-strength steel [33].
In the context of this new era, the safe utilization of hydro-
gen energy has become a primary focus for the future devel-
opment of the hydrogen energy industry, with solving the is-
sue of HE being a crucial task. Currently, the primary engin-
eering  methods  for  hydrogen  removal  include  vacuum  de-
gassing and stack cooling. These traditional processes are ef-
fective in removing some diffusible hydrogen produced dur-
ing  manufacturing.  However,  their  impact  is  limited  to  the
substantial  hydrogen  that  enters  a  material  during  service. 
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Therefore,  the development of high-strength steels with ex-
cellent resistance to HE, combined with high toughness and
green,  low-carbon  characteristics,  is  of  significant  practical
and strategic importance for safely utilizing hydrogen energy
and achieving carbon peak and carbon neutrality goals.

This paper systematically reviews the design concepts of
high-strength steel with enhanced HE resistance. It emphas-
izes two crucial approaches: surface design and intragranular
hydrogen  traps  design.  Regarding  surface  design,  ap-
proaches  involving  alloying,  surface  coatings,  and  passiva-
tion are explored.  These techniques aim to establish barrier
layers that hinder hydrogen permeation or limit its entry into
material  interiors,  thereby  effectively  delaying  HE.  In  the
design of intragranular hydrogen traps, the effects of factors
(e.g.,  the  types  of  nanosized  precipitates,  lattice  matching,
and capture sites) on the efficiency of hydrogen traps are ex-
plored. Finally, based on these findings, several prospects are
put forward for the design of high-strength hydrogen-resist-
ant steel. 

2. Design concepts for high-strength hydrogen-
resistant steel

The current mechanisms of HE in high-strength steels in-
clude  the  hydrogen  pressure  mechanism,  hydrogen-en-
hanced  local  plasticity  (HELP)  model,  hydrogen-enhanced
decohesion  mechanism  (HEDE),  adsorption-induced  dislo-
cation  emission  (AIDE),  hydrogen  reduction  of  surface  en-
ergy mechanism, and hydrogen-enhanced strain-induced va-
cancies mechanism (HESIV), among others. The following is
a brief introduction to these mechanisms:

(1) Hydrogen pressure mechanism [34].
After being absorbed by a metal surface, hydrogen atoms

diffuse  inward  and  accumulate  in  microstructural  defects,
such as voids or cracks. This accumulation leads to a signi-
ficant increase in internal pressure within the defect areas, re-
ducing the local strength of the metal and promoting the ex-
pansion of cracks, ultimately resulting in material fracture.

(2) HELP [35–37].
This mechanism proposesthat the interaction between hy-

drogen atoms and dislocations within the metal lattice facilit-
ates  the  movement  of  dislocations,  particularly  in  areas  of
stress concentration (such as crack tips), leading to enhanced
plastic deformation. The increase in localized plastic deform-
ation  promotes  the  initiation  and  propagation  of  cracks,
thereby resulting in the HE of a material.

(3) HEDE [38–40].
The HEDE mechanism, first  proposed in  1926,  suggests

that the accumulation of hydrogen atoms within a metal, par-
ticularly around microstructural defects (e.g., grain boundar-
ies  and  dislocations),  significantly  weakens  the  interatomic
bonding  forces  in  these  areas.  This  weakening  reduces  the
material’s cohesion, increasing the likelihood of crack form-
ation  and  propagation  in  these  weakened  regions.  Con-
sequently, the material may undergo brittle fracture even un-
der relatively low external stresses.

(4) AIDE [41–42].
The AIDE mechanism proposes that the adsorption of hy-

drogen  atoms  reduces  the  binding  energy  of  atoms  on  the
metal  surface,  thereby  facilitating  the  formation  and  emis-
sion of dislocations. These newly generated dislocations en-
hance  the  local  plastic  response  of  the  material.  However,
they may also lead to the formation and expansion of cracks,
consequently causing HE in the material.

(5) Hydrogen reduction of surface energy [43].
The adsorption or diffusion of hydrogen atoms on a metal

surface leads to a reduction in surface energy, which in turn
causes  a  continuous  decrease  in  the  critical  stress  required
for  crack  instability  and  expansion,  ultimately  leading  to
cracking.

(6) HESIV [44–45].
During  the  plastic  deformation  of  metals,  vacancies  or

nanoscale voids accumulate. The ingress of hydrogen into the
material promotes the nucleation and growth of these vacan-
cies  or  microvoids.  The  aggregation  of  these  vacancies  or
voids, under the influence of hydrogen, rapidly leads to the
formation  and  expansion  of  cracks,  ultimately  resulting
in HE.

Although  each  of  the  six  mechanisms  reveals  different
pathways and impacts of hydrogen within materials, the oc-
currence  of  HE in  actual  material  applications  often  results
from the combined action of multiple mechanisms [46–47].
Specifically, HELP and HEDE are regarded as key factors in
promoting HE behavior in many high-strength steels. These
mechanisms  do  not  always  act  independently  but  instead,
through interaction and their synergistic effect, jointly affect
a material’s sensitivity to HE. That is, the HELP mechanism
increases  local  plasticity  by  facilitating  dislocation  move-
ment,  which may lead to more areas of plastic deformation
under low-stress conditions. Meanwhile, the HEDE mechan-
ism, by weakening metallic bonds, makes the material more
susceptible to fracturing in these areas of plastic deformation
[48–50].  This  collaborative  effect  results  in  high-strength
metals  potentially  displaying unanticipated brittleness  when
exposed to hydrogen under specific conditions.

Furthermore, beyond the direct synergistic effect of HELP
and HEDE, recent research has introduced the HELP-medi-
ated  HEDE model,  further  deepening  our  understanding  of
the interaction mechanisms of HE. In this model,  hydrogen
initially  boosts  local  plasticity  via  HELP, which,  at  the mi-
croscale, alters the internal stress distribution within the ma-
terial,  thereby  providing  more  favorable  conditions  for  the
HEDE  mechanism.  In  essence,  the  localized  plasticity  en-
hanced by the  HELP mechanism can “mediate” the  HEDE
mechanism, making the otherwise unlikely or weaker deco-
hesion  effects  significantly  more  pronounced  and  thereby
promoting  crack  formation  and expansion  [50–51].  The  in-
troduction of this model not only revealed the complex inter-
actions  among  HE  mechanisms  but  also  offered  new  per-
spectives  and  challenges  for  designing  high-strength  steels
resistant to HE.

Having delved into  the  major  mechanisms of  HE,  let  us
now  pivot  to  discussing  the  countermeasures  against  these
mechanisms,  specifically  critical  design  concepts  for  high-
strength, hydrogen-resistant steels. These mainly include the
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following aspects: reduction of environmental hydrogen ex-
posure,  minimization  of  internal  hydrogen  concentration,
mitigation  of  internal  stress  (especially  in  stress  concentra-
tion  regions),  development  of  hydrogen-blocking  coatings
(e.g.,  face-centered  cubic  metals  and  oxide  protective  coat-
ings),  incorporation  of  hydrogen-resistant  grain  boundaries
design, and implementation of dispersed hydrogen traps. The
design of hydrogen resistance surfaces primarily involves the
controlled accumulation of alloying elements on a material’s
surface. This design aims to achieve the following objectives:
(1) reduce the adsorption energy to inhibit the dissociation of
hydrogen  molecules  (or  water  molecules);  (2)  facilitate  the
recombination of hydrogen atoms into hydrogen molecules,
promoting  their  subsequent  release;  (3)  enhance  the  energy
barrier for hydrogen diffusion from the surface to the interior,
effectively  preventing  hydrogen  ingress  into  the  material’s
core and thus augmenting its resistance to HE.

In  addition  to  designing  hydrogen-resistant  surfaces,  hy-
drogen inevitably permeates into the interior of materials, of-
ten accumulating at defects such as grain boundaries and im-
purities,  thereby  leading  to  HE.  Random  grain  boundaries
serve as deeper hydrogen traps, and the accumulation of hy-
drogen at these boundaries can compromise their strength. To
mitigate hydrogen enrichment at grain boundaries, apart from
indirectly reducing hydrogen concentration (e.g., through in-
tragranular  hydrogen  traps  design),  the  hydrogen-resistant
grain boundaries design strategy can be employed. This ap-
proach  aims  to  decelerate  or  prevent  intergranular  cracking
induced  by  HE.  In  this  regard,  researchers  such  as  Zhong
et al. [52] investigated HE in martensitic stainless steel sub-
jected to constant stress and hydrogen exposure. Their find-
ings  revealed  that  hydrogen-induced  intergranular  cracking
exhibited  selectivity  and  predisposition,  with  high-energy,
low-coincidence,  and  large-angle  grain  boundaries  being
more susceptible to cracking. Conversely, low-energy, high-
coincidence, and low-Σ boundaries can suppress HE cracks.
Furthermore,  refining  the  grain  size  can  enhance  hydrogen
resistance because smaller  grains  reduce the hydrogen con-
centration per unit area of the grain boundaries and minimize
strain localization.

The  following  sections  focus  on  reviewing  the  applica-
tions  of  hydrogen-resistant  surface  design  and  deep  intra-
granular  hydrogen  traps  design  within  the  development  of
high-strength hydrogen-resistant steel. 

3. HE-resistant surface design

Enhancing  material  surfaces  for  HE  resistance  involves
the implementation of surface passivation films or coatings.
By creating hydrogen-blocking layers on or beneath a mater-
ial’s  surface,  hydrogen  ingress  is  prevented  or  minimized,
thus effectively preventing or delaying the occurrence of HE. 

3.1. Introduction of alloying elements

Generally, the introduction of alloying elements to metal
materials can induce changes in surface structures, resulting

in alterations in the kinetics of hydrogen adsorption and oth-
er  surface processes.  When alloying elements preferentially
accumulate at the material surface and form a dense passiva-
tion film, they can effectively hinder the penetration of  hy-
drogen into the material, thus reducing the internal hydrogen
content  and  consequently  improving  HE resistance.  For  in-
stance,  aluminum (Al)  can  form a  dense  oxide  film  on  the
material surface. Park et al. [53] investigated the effect of dif-
ferent  Al  contents  (0–2wt%) on  the  HE resistance  of  twin-
ning-induced plasticity (TWIP) steel. The results showed that
TWIP steel with trace amounts of Al displayed superior HE
resistance.  This  was  mainly  attributed  to  the  significant  re-
duction in the diffusible hydrogen content entering the mater-
ial  interior  after  the  addition  of  Al,  with  higher  Al  content
leading to lower diffusible hydrogen content.  This outcome
stemmed  from  the  existence  of  a  dense  (Fe0.8Mn0.2)O  layer
covered  with α-Al2O3,  which  acted  as  an  effective  barrier
against  hydrogen  penetration  into  the  material  interior.  Al-
though  Al  has  a  significant  impact  on  the  material  surface
structure, its influence on internal precipitation and twinning
microstructures must be accounted for, as these factors con-
tribute to variations in HE performance [54–56] .

Likewise, the incorporation of silicon (Si) into Fe–18Mn–
0.6C–xSi  TWIP  steel  (0–3wt%)  was  studied  by  Lee et al.
[57]. Si addition was found to partially inhibit the hydrogen
content entering the material interior. This effect was attrib-
uted  to  the  formation  of  a  dual-layer  oxide,  (Fe,Mn)O  and
(Fe,Mn)2SiO4, on the material surface. However, the HE sus-
ceptibility  of  the  Si-added  samples  increased.  This  phe-
nomenon  was  primarily  attributed  to  the  resultant  suppres-
sion of twinning in the steel due to the addition of Si, leading
to the formation of ε-martensite phase transformation. Thus,
although  the  addition  of  microalloy  elements  can  create  an
oxide film on the material surface to hinder hydrogen ingress
into the interior, its influence on the material’s inherent struc-
ture cannot be underestimated. 

3.2. External surface coatings

Besides  incorporating  microalloying  elements  into  the
material  matrix to form surface barrier  layers,  extensive re-
search has shown the application of external surface coatings
for  designing  and  developing  hydrogen-resistant  layers.
These  coatings,  such  as  oxides,  nitrides,  carbon  materials,
metals,  and  alloy  coatings  [35,58–60],  can  slow  down  or
even prevent hydrogen permeation, thereby enhancing a ma-
terial’s resistance to HE. 

3.2.1. Oxide coatings
Oxide  coatings  represent  one  of  the  earliest  studied  cat-

egories  of  hydrogen-resistant  coating  materials.  These  in-
clude  various  oxides,  such  as  Al2O3,  Cr2O3,  Y2O3,  SiO2,
Er2O3,  and  ZrO2.  Some  coatings  have  been  extensively  re-
searched  and  applied  in  the  design  of  high-strength  hydro-
gen-resistant steels.

The formation of an oxide protective layer on the material
surface  can  effectively  enhance  its  HE  resistance.  For  in-
stance,  Ladicicco et al. [61]  developed  a  multifunctional
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Al2O3 coating  that  could  address  tritium  permeation  and
lead–lithium  corrosion  simultaneously.  By  optimizing  the
pulsed laser deposition process, they successfully obtained a
fully  dense  Al2O3 film  with  a  permeation  reduction  factor
(PRF) exceeding 104. Combined with the mechanical effects
obtained in another study [62], the growth of Al2O3 thin film
demonstrated  their  potential  as  protective  coatings  against
HE. Meanwhile, Hatano et al. [63] prepared a 180-nm-thick
ZrO2 coating on a ferritic steel surface using dip-coating and
electrolytic deposition techniques. The coating exhibited ex-
cellent HE resistance, and a thinner 100-nm coating showed
an order of magnitude of improvement in PRF during hydro-
gen permeation testing at 300–500°C.

Lu et al. [64]  developed  a  TiO2/TiCx composite  coating
using a two-step process of carbon ion implantation and ox-
idation under ultralow oxygen partial pressure. As shown in
Fig.  1,  the  TiCx layer  contained  numerous  nanocrystals.
These  high-density  grain  boundaries  could  act  as  hydrogen
traps. The composite coating oxidized at 550°C exhibited the
lowest carrier concentration, indicating a lower defect dens-
ity,  which  could  effectively  reduce  hydrogen  permeation.
The oxide layer maintained high stability in the hydrogen en-
vironment,  serving  as  an  excellent  hydrogen  barrier.  Addi-
tionally,  free  carbon  atoms  in  the  substrate  provided  addi-

tional  hydrogen  capture  sites,  and  the  abundance  of  nano-
crystals in the TiC layer further inhibited hydrogen diffusion. 

3.2.2. Nitride coatings
Nitride coatings belong to a class of HE-resistant materi-

als  with  significant  research  and  application  potential.  Ex-
amples  of  such  coatings  include  TiN,  SiN,  CrN,  and  AlN.
These coatings form a nitride protective layer on the material
surface, significantly enhancing its resistance to HE. In this
regard,  Tamura  and  Eguchi  [65]  investigated  the  hydrogen
permeation  characteristics  of  TiN-coated  stainless  steel  and
measured the grain size of the thin films. In comparison with
the  uncoated  substrate,  the  thin  film  exhibited  a  reduction
in  hydrogen  permeation  rate  by  a  factor  of  100–5000.
Moreover, larger grain sizes within the film corresponded to
higher  hydrogen  permeation  rates.  Furthermore,  as  grain
boundaries can serve as hydrogen traps, a polycrystalline mi-
crostructure with multiple grain boundaries can improve the
hydrogen-blocking effect. Vincenč et al. [66] studied the hy-
drogen  resistance  performance  of  SiN  coatings.  They  pre-
pared SiN coatings on the surface of ferritic stainless steel us-
ing  radiofrequency  magnetron  sputtering  and  evaluated  the
hydrogen resistance performance of the coatings using a gas-
phase  hydrogen  permeation  method.  The  500- and  700-nm
thick  films,  prepared  at  400°C,  exhibited  a  PRF  of  up  to
2000, highlighting their remarkable hydrogen barrier proper-
ties. Nevertheless, inadequate matching was observed to lead
to a decline in PRF to 25 for the SiN coating. This decrease
was attributed to the presence of cracks or voids on the coat-
ing surface, subsequently diminishing its hydrogen-blocking
effectiveness. 

3.2.3. Carbon material coatings
MXene, with its two-dimensional nanosheet structure, can

serve as a physical barrier to resist hydrogen permeation. Pre-
viously, Shi et al. [67] prepared an MXene coating on an X70
pipeline using a simple spin-coating method. The anti-hydro-
gen performance of the coating was evaluated through elec-
trochemical hydrogen permeation testing and slow strain rate
tensile  experiments.  The  results  showed  that  MXene  im-
proved the resistance to HE, with the permeation rate of the
coating  being  one-third  of  the  substrate,  and  the  diffusion
coefficient also decreased.

After  that,  another  study  [68]  prepared  multilayer
graphene on an X70 pipeline steel using the ion implantation
method, as shown in Fig. 2(a). This structure can increase the
diffusion path and time for hydrogen (Fig. 2(b)). Compared
with the base material, the hydrogen diffusion coefficient of
the multilayer graphene is reduced by 123 times, and the hy-
drogen  permeability  is  reduced  by  48  times,  demonstrating
excellent hydrogen resistance.

In  another  study,  Yang et al. [69]  designed  a  novel
graphene oxide (GO)–Al2O3 composite coating as a deuteri-
um  (D)  permeation  barrier  using  the  sol–gel  method.  At
500°C, the PRF of 0.5wt% GO–Al2O3 composite coating was
nine times higher than that of the pure Al2O3 coating. The im-
provement can be attributed to the ability of GO nanosheets
to hinder D diffusion. 
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3.2.4. Metal and alloy coatings
Jeon et al. [70] investigated the influence of Zn coating on

the surface of hot-dip galvanized TWIP (HDG_TWIP) steel
on HE. The Zn-coated steel reduced susceptibility to HE, as
shown in Fig. 3(a). This outcome could be attributed to the
role  of  the η-Zn  layer  and  Fe–Zn  intermetallic  compound
layer  as  effective  hydrogen  traps,  possessing  activation  en-
ergy of approximately 70 kJ/mol and thus effectively imped-
ing hydrogen ingress (Fig. 3(b)). Nevertheless, the presence
of a brittle Fe–Zn intermetallic compound layer led to a slight
reduction in elongation compared with the base material.

Yoo et al. [71] controlled the Al–Si coating and heat treat-
ment  conditions  on  the  surface  of  22MnB5  high-strength
steel  to  tailor  the  microstructure  and  coating  thickness.  By
suppressing the formation of the Fe2Al5 phase and promoting
the body-centered cubic FeAl layer, the hydrogen introduced
during the coating process was rapidly diffused out through
the  coating,  thereby  enhancing  the  high-strength  HE resist-
ance steel.

Cadmium,  tin,  and  nickel  can  also  serve  as  protective
coatings  on  steel  surfaces  [72].The  diffusion  coefficient  of
hydrogen in these coatings is significantly lower than that in
ferrite.  Nickel  coatings have a similar  effect  because of  the

presence  of  hydrogen  traps.  Research  has  also  shown  that,
compared with other elements, Cr more readily forms Cr–H
bonds [73]. Additionally, Cr can provide more valence elec-
trons,  leading to  the  formation of  stable  Cr–H bonds [74]  ,
which  can  enhance  the  hydrogen  resistance  of  the  coating.
However,  the  brittleness  of  pure  Cr  coatings  makes  them
more prone to cracking. Therefore, Cr alloy coatings are typ-
ically used [75]. 

3.2.5. Multilayer structured coatings
Yamabe et al. [76] examined the impact of layered struc-

tures on hydrogen-blocking performance. They prepared two
types  of  Al-based  multilayer  films  using  a  hot-dip-coating
method: a two-layer (Al2O3/Fe–Al) and a three-layer (Al2O3/Al/
Fe–Al) Al-based coating. After exposure to hydrogen gas at
100  MPa  and  270°C  for  200  h,  the  three-layer  coating
demonstrated  superior  resistance  to  hydrogen  permeation.
This enhanced performance was speculated to be due to the
combined effects  of  Al2O3,  Al,  and Fe–Al in  inhibiting hy-
drogen ingress.  In another study,  Zheng et al. [77] success-
fully developed a layered Cr/CrxN coating on a substrate us-
ing an innovative electroplating-based nitridation technique.
This  coating  achieved  a  deuterium  PRF  of  3599  at  500°C,
which is one of the highest values reported so far.
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In addition, Jo et al. [78] designed multilayer structures to
achieve  excellent  HE  resistance  in  high-strength  steel.
Through  a  combination  of  heating,  rolling,  and  heat  treat-
ment,  they  developed  two  sandwich-structured  1.2-GPa-
grade multilayer steels: “martensitic steel–TWIP–martensitic
steel” (MTM) and “TWIP–martensitic steel–TWIP” (TMT).
TMT steel  exhibited significantly superior  resistance to HE
compared with the MTM structure, as shown in Fig. 4(a) and
(b).  Hydrogen  trap  capacities  analysis  unveiled  that  TMT
steel contained lower hydrogen content and higher hydrogen
traps  binding  energy.  Moreover,  fracture  observation  re-
vealed that MTM steel exhibited interfacial delamination and
intergranular  fracture  between  martensitic  steel  and  TWIP
steel,  whereas  TMT  steel  showed  partial  quasi-cleavage
brittle fracture, with the rest being ductile fracture, as shown
in Fig. 4(c)–(e). Although this design approach differed from
the creation of surface passivation films or coatings, the fun-
damental concept remained the same, which was to use hy-
drogen barrier layers to inhibit hydrogen ingress into the ma-
terial. This approach aimed to reduce internal hydrogen con-
tent and immobilize hydrogen through the design of “hydro-
gen  traps”,  curbing  its  rapid  diffusion  and  accumulation,

thereby mitigating HIC.
The design of an anti-HE surface is a complex system that

must consider both blocking hydrogen from entering the ma-
terial from the environment and ensuring rapid hydrogen ef-
fusion during the preparation process. This presents a delic-
ate balance that must be carefully coordinated. From an anti-
HE perspective,  the  fundamental  goal  is  to  avoid  hydrogen
enrichment at grain boundaries, impurities, and other defects,
which can lead to HE. 

4. Design  of  hydrogen  traps  in  high-strength
steels

In high-strength martensitic steels, various defects, includ-
ing point defects (e.g., vacancy and solute atom), line defects
(e.g.,  dislocation),  planar  defects  (e.g.,  phase  and  grain
boundaries), and volumetric defects (e.g., precipitated phase
and impurities), are abundant and can act as hydrogen traps,
thus influencing HE performance [79]. Therefore, systemat-
ically  analyzing and understanding the hydrogen trap capa-
cities  of  different  microstructures  in  martensitic  steels  is  of
crucial  importance  for  studying  their  HE behavior.  In  such
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complex  microstructural  environments,  the  dissolution  and
diffusion behaviors of atomic hydrogen in lattice interstices
are particularly crucial. Atomic hydrogen dissolved in lattice
interstices  can  diffuse  into  hydrogen  traps,  whereas  hydro-
gen captured in these traps can also escape back into the lat-
tice interstices. Upon reaching equilibrium, the following sig-
nificant relationship is established:

K =CT/CL = eEb/RT (1)
where K is the reaction equilibrium constant; CT is the equi-
librium  concentration  of  hydrogen  in  traps,  ppm; CL is  the
equilibrium concentration  of  hydrogen  in  lattice  interstices,
ppm; Eb is the binding energy of hydrogen traps, kJ/mol; R is
the gas constant, 8.314 J·mol−1·K−1; T is the absolute temper-
ature, K.

From Eq. (1), it can be concluded that the binding energy
of hydrogen traps, Eb, is an important parameter of hydrogen
traps,  indicating the  strength  of  the  trap’s  ability  to  capture
hydrogen. Building on this discussion, it must be noted that
experimental measurements generally provide activation en-
ergies, whereas simulation calculations yield binding energy.
The difference between the activation energy and binding en-
ergy is typically in the range of 6.9–8.7 kJ/mol (known as the
saddle-point  energy associated  with  lattice  diffusion activa-
tion energy) [80–81]. For the sake of simplicity and analysis
in the following research and summary, we ignored this dif-
ference and uniformly used the term “hydrogen traps binding
energy” to  represent  both  while  acknowledging  their  exist-
ence. By selecting and analyzing 208 data sets from nearly a
hundred  papers,  which  essentially  cover  all  hydrogen  traps
currently  studied  in  the  research,  we  obtained Fig.  5.  De-
tailed sources of the statistical data on hydrogen traps can be
found  in  previous  studies  [15,18,80,82–100].  The  collected
hydrogen  traps  data  were  categorized  into  eight  types:  va-
cancy,  solute  atom,  dislocation,  phase  boundary,  grain
boundaries, precipitated phase, impurities, and other (such as
tetrahedral  and  octahedral  interstitial  sites).  By  statistically
analyzing  the  hydrogen  trap  capacities  of  different  micro-

structures  and defects  in  martensitic  steels,  a  deeper  under-
standing of their hydrogen-trapping nature can be achieved,
guiding  the  design  and  control  of  hydrogen  traps  to  obtain
high-strength and HE-resistant steels [20].

Fig. 5 presents a summary of hydrogen traps binding en-
ergy in different microstructures of martensitic steels, where
“Atom” refers to the solute atom. The comparison is presen-
ted  in  box  plot  format  with  upper  whisker,  upper  quartile,
median,  mean,  lower  quartile,  and  lower  whisker  values.
Fig. 5 illustrates significant variations in hydrogen trap capa-
cities  among  different  microstructures  in  martensitic  steels,
and  each  microstructure’s  hydrogen  traps  binding  energy
data  exhibit  considerable  dispersion.  This  indicates  that
factors  such  as  different  microstructural  parameters  and  re-
search methods can influence the hydrogen traps binding en-
ergy.  Particularly,  for  the  precipitated  phase,  its  hydrogen
traps binding energy exhibits significant fluctuations and ran-
domness, ranging from approximately 10 to 150 kJ/mol, and
the  calculated  values  align  well  with  experimental  values.
Because of the diverse types, compositions, and microstruc-
tural parameters (e.g., size and coherency) of the precipitated
phase  in  martensitic  steels,  the  differences  among  various
precipitated  phases  may have  contributed  to  the  fluctuation
and  randomness  observed  in  the  statistical  hydrogen  traps
binding energy. 

4.1. Influence of different types of nanosized precipitates

Because  precipitated  phases  can  act  as  deep  hydrogen
traps  and  are  less  prone  to  HIC,  the  previously  mentioned
nanosized precipitates may serve as excellent hydrogen traps,
thereby achieving the purpose of resisting HE. Therefore, in
this  section,  we  discuss  the  influence  of  various  types  of
nanosized precipitates on the HE susceptibility of martensitic
high-strength steels [101–110].

Martensitic steels contain a wide variety of nanosized pre-
cipitates. In the field of HE research, carbides have been the
most  extensively  studied  and  widely  recognized  nanosized
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precipitates  used  in  designing  resistance  to  HE.  Therefore,
using the same method, we obtained Fig. 6, which represents
the hydrogen traps binding energy data for different types of
nanoprecipitates.  We  selectively  collected,  statistically  ana-
lyzed, and summarized the hydrogen traps binding energy of
dislocation, grain boundaries, VC, TiC, NbC, and other pre-
cipitates,  as  shown  in Fig.  6.  The  category “other  precipit-
ates” mainly includes cementite,  copper nanosized precipit-
ates, and others. The statistical results indicate that VC, TiC,
NbC, and other carbides have been widely studied and that
their  hydrogen  traps  binding  energies  varied,  generally  ex-
ceeding those of grain boundaries. Meanwhile, other nanos-
ized precipitates exhibited relatively lower binding energies,
with some even approaching the binding energy of disloca-
tion. Next, we summarized and discussed the effects of VC,
TiC,  NbC,  and  other  nanosized  precipitates  on  HE  on  the
basis of the current research status. 

4.1.1. VC nanosized precipitates
VC has been widely studied as an effective hydrogen trap.

In recent years, with the development of advanced character-
ization techniques, such as the three-dimensional atom probe
(3DAP),  the  characterization  of  VC’s  resistance  to  HE  has
become more intuitive and has made significant progress in
both  theoretical  calculations  and  experimental  characteriza-
tions.

To investigate the interaction between VC and hydrogen,
Echeverri Restrepo et al. [80] used density functional theory
(DFT) calculations. They compared the solubility of hydro-
gen at different sites and found that, although the perfect in-
terface had weak hydrogen adsorption capability, carbon va-
cancies (both at the interface and within VC) significantly en-
hanced  hydrogen  adsorption,  indicating  a  tendency  for  hy-
drogen to preferentially accumulate at the vanadium carbide
interface. Meanwhile, Shi et al.  [111] achieved an excellent
HE resistance and satisfactory work hardening capability in
high-strength  spring  steel  through  multi-microalloying  with

1.04wt% Cr and 0.14wt% V. This process resulted in the pre-
cipitation of  cementite/VC, which acted as  effective hydro-
gen  traps,  thereby  reducing  the  HE  susceptibility  by  23%.
Dong et al. [112] studied the effect of V and Re microalloy-
ing on the  HE of  Fe–18Mn–0.6C TWIP steel  using a  low-
speed linearly increasing stress test. They found that the VC
precipitate  dispersed  mechanical  twins,  transforming  brittle
cleavage fracture surfaces from flat  and smooth to  tortuous
and  rough.  This  microalloying  technique  increased  the  HE
resistance of TWIP steel by 0.20wt%. Lee et al. [99] conduc-
ted a detailed study on the resistance to HE of VC nanosized
precipitates. They replaced Mo with V in NIMS17 steel and
added  0,  0.20wt%,  0.50wt%,  and  1.01wt%  V  to  the  Fe–
0.60C–2.00Si–0.20Mn–1.00Cr  (wt%)  base  alloy.  The  re-
search results showed that with the increasing V content, the
size  and  quantity  of  VC  precipitated  phase  increased;
however,  when  the  V  content  reached  1.01wt%,  large  un-
solved VC appeared, leading to susceptibility to HE. As the
V content  increased,  a  higher  hydrogen trap  capacities  was
achieved, but 0.20wt% V steel exhibited the best HE resist-
ance among the studied samples.

Takahashi et al.  [113]  and Chen et al.  [114]  used 3DAP
technology to  directly  observe  the  distribution of  D on VC
interfaces  in  experimental  steels  after  D  charging.  Most  D
atoms  were  distributed  on  large  VC  particles  (plate-like
particles  ranging  from  tens  to  a  few  hundred  nanometers)
rather than small VC particles (a few nanometers). Addition-
ally, semicoherent disc VC exhibited stronger hydrogen trap
capabilities. This has allowed the study of VC’s resistance to
HE to enter the stage of atomic-scale direct observation. Re-
garding the  mechanism of  VC’s  HE resistance,  specifically
how VC interacts with hydrogen, hydrogen is believed to en-
rich the carbon vacancy at the (001) interfaces of V4C3 and
the  iron  matrix  [115].  However,  some  researchers  propose
that hydrogen may be associated with defects at the interface
of VC and the matrix [100] or that hydrogen could accumu-

 

120

140

160

100

80

B
in

g
d
in

g
 e

n
er

g
y
 /

 (
k
J·

m
o
l−
1 )

60

40

20

0
Dislocation Grain

boundaries

VC TiC NbC Other

precipitates

Fig. 6.    Summarized chart of hydrogen traps binding energy for dislocation, grain boundaries, VC, TiC, NbC, and other precipit-
ated phases in this study.

Z.Y. Du et al., Review on the design of high-strength and hydrogen-embrittlement-resistant steels 1579



late inside VC [116]. 

4.1.2. TiC nanosized precipitates
Research on the HE resistance of TiC has been conducted

in-depth and thoroughly, including macroscopic, microscop-
ic  characterizations,  and  theoretical  calculations.  Current
studies mainly focus on investigating the hydrogen trap sites
at different interfaces of TiC nanosized precipitates.

Wei and Tsuzaki [81] studied the evolution of TiC nanos-
ized precipitates with different degrees of coherency (orient-
ation relationship) with the iron matrix and their interaction
with hydrogen, as shown in Fig. 7. With the increase in tem-
pering temperature,  the orientation relationship between the
TiC nanosized precipitates and the matrix changed from the
Baker–Nutting semicoherent relationship (550°C tempering)
to a noncoherent interface relationship (1000°C tempering),
as  shown  in Fig.  7(a)–(f).  The  size  of  TiC  gradually  in-
creased  to  a  steady-state  value,  and  the  morphology  trans-
formed  from  plate-like  to  spherical,  as  shown  in Fig.  7(g).
TDS  curves  for  different  tempered  samples  are  shown  in
Fig.  7(h).  The  authors  suggested  that  the  TDS  peaks  for
samples tempered at low temperatures (<500°C) mainly oc-
curred at low temperatures (~120°C) and were mainly gener-
ated by dislocation. With the increase in tempering temperat-
ure,  the  TDS peak shifted  to  higher  temperatures  (~230°C)
for samples tempered at  500–550°C. For samples tempered

at temperatures higher than 550°C, the low-temperature peak
split into two, and the TDS peak at 520–60°C was attributed
to noncoherent TiC. In the case of semicoherent TiC, hydro-
gen could only be trapped at the interfaces and could be elec-
trochemically absorbed at room temperature with adsorption
of 1.3 H/nm², and the amount of hydrogen adsorption was re-
lated to the interface area. However, noncoherent TiC could
only trap hydrogen during high-temperature tempering, with
hydrogen  traps  located  inside  the  particles  (tetrahedral  car-
bon vacancy);  it  could  not  trap  hydrogen electrochemically
charged at room temperature. Additionally, the activation en-
ergies  for  hydrogen  traps  in  semicoherent  and  noncoherent
TiC  particles  were  different,  measured  as  55.8  and  68–
137 kJ·mol−¹, respectively.

Fang et al. [117] investigated the impact of TiC precipit-
ates on hydrogen absorption capability, noting that a signific-
ant potential difference existed between the TiC precipitates
and  the  matrix  after  hydrogen  charging,  especially  at  the
phase interface. Consequently, TiC precipitates were proven
to be effective hydrogen capture sites. Depover and Verbek-
en  [98]  conducted  a  series  of  TDS,  SSRT,  and  analyses  in
their study on HE in Ti-containing steel. Under the same con-
ditions  of  electrochemical  hydrogen charging,  the  TiC-con-
taining tempered samples showed higher HE compared with
quenched samples. This was attributed to the higher hydro-
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gen content in the tempered samples under the same hydro-
gen charging conditions. However, after being charged with
the same amount of hydrogen, the tempered samples exhib-
ited  superior  resistance  to  HE.  These  experiments  demon-
strated that TiC nanosized precipitates possess superior res-
istance  to  HE.  In  another  study,  Jun et al.  [118]  used  the
3DAP technique  to  directly  observe  hydrogen  traps  in  TiC
nanosized precipitates at the atomic level. They showed that
hydrogen accumulated at the interfaces of nanoscale TiC pre-
cipitates.  This  observation not  only provided a  new experi-
mental  approach  for  the  three-dimensional  observation  of
TiC nanosized precipitates and their hydrogen traps distribu-
tion but  also  offered a  feasible  means  for  inhibiting HE by
utilizing TiC.

In the first-principle calculations regarding the HE resist-
ance of TiC nanosized precipitates, Di Stefano et al. [101] in-
vestigated the interaction between hydrogen and different in-
terfaces of TiC particles and the iron matrix. These interfaces
included  coherent  interface,  semicoherent  interface,  mis-
matched dislocation, and carbon vacancy. The computation-
al results demonstrated that the most effective hydrogen ad-
sorption site was the carbon vacancy inside the TiC particles,
with  a  binding  energy  exceeding  1  eV  (equivalent  to
96.5  kJ/mol).  However,  because  of  its  high  energy  barrier,
hydrogen traps at carbon vacancies were not feasible at room
temperature.  The  semicoherent  interfaces  between  TiC
particles and the iron matrix were more favorable for hydro-
gen adsorption, with a binding energy of −0.32 eV. The core
of  the  mismatched  dislocation  also  exhibited  a  binding  en-
ergy of −0.50 eV. The presence of a large number of nanos-
ized precipitates reduced the hydrogen content at dislocation
in the matrix, thereby suppressing HE. 

4.1.3. NbC nanosized precipitates
Compared with VC and TiC, there has been relatively less

research on the HE resistance of NbC nanosized precipitates.
However, the application of Nb microalloying has become a
recent research focus, leading to an increased interest in the
study of NbC resistance to HE, which has shifted from mac-
roscopic  performance  experiments  to  more  microscopic  in-
vestigations.

In  this  respect,  Zhang et al.  [119]  explored  the  effect  of
NbC precipitates on the HE of martensitic steel using meth-
ods  such  as  slow  strain  rate  tensile  testing,  hydrogen  per-
meation  experiments,  3DAP,  and  microstructural  examina-
tion.  They  found  that  the  higher  the  content  of  NbC,  the
lower  the  susceptibility  to  HE.  Meanwhile,  Wallaert et al.
[110]  conducted  transmission  electron  microscopy  (TEM)
observations  and  TDS  experiments  to  study  the  hydrogen
trap capabilities of NbC nanosized precipitates under differ-
ent  heat  treatment  conditions.  The  TDS  experiments  were
performed  using  both  electrochemical  hydrogen  charging
and  high-temperature  gas-phase  hydrogen  charging.  Under
electrochemical  hydrogen  charging  conditions,  TDS  curves
exhibited  peaks  in  the  range  of  300–500  K  (27–227°C).
Meanwhile, with high-temperature gas-phase hydrogen char-
ging, because of the presence of large-sized NbC, peaks ap-
peared in the range of 700–900 K (427–627°C). Based on the

TDS fitting results, the activation energy for small-sized NbC
was determined to be in the range of 39–48 kJ/mol, whereas
it was in the range of 63–68 kJ/mol for large-sized NbC.

Ohnuma et al.  [120]  employed  the  small-angle  neutron
scattering (SANS) technique to investigate the SANS curves
of samples containing NbC nanosized precipitates before and
after  hydrogen  charging  and  after  high-temperature  hydro-
gen  annealing.  The  SANS  curve  intensity  was  higher  after
hydrogen  charging,  which  was  different  from  the  states
without hydrogen or after hydrogen removal,  thereby indir-
ectly inferring the trapping effect of NbC on hydrogen.

Chen et al.  [121]  utilized  the  cryo-transfer  3DAP  tech-
nique to directly observe the hydrogen traps by NbC for the
first  time.  In  their  study,  they  charged  D  into  the  experi-
mental  steel  containing  NbC  (Fe–0.23C–0.92Mn–0.24Si–
0.049Nbwt%) and observed the hydrogen enrichment at the
interfaces of ellipsoidal NbC nanoscale particles. Meanwhile,
Shi et al. [122] conducted high-resolution transmission elec-
tron microscopy (HRTEM) observations,  DFT calculations,
and TDS experiments to reveal that the mismatched disloca-
tion  cores  at  the  semicoherent  interfaces  between NbC and
the matrix were the origins of deep hydrogen traps in NbC.
This  finding  provided  a  theoretical  basis  for  further  con-
trolling NbC to achieve high-strength and HE-resistant steels,
as illustrated in Fig. 8.

Furthermore,  Wei et al.  [123]  conducted  a  comparative
study on the hydrogen trap capabilities and structure differ-
ences of NbC, TiC, and VC nanosized precipitates. In experi-
mental  steels  containing  the  same  molar  fractions  of  NbC,
TiC,  and VC subjected to  the  same heat  treatment  process,
the hydrogen trap capabilities followed the order NbC > TiC
> VC. Furthermore, through the characterization of the struc-
tures of NbC, TiC, and VC nanosized precipitates under the
same  heat  treatment  conditions,  it  was  found  that  they  had
differences  in  size  and  structure.  These  results  suggest  that
the mismatch degree varied among the three nanosized pre-
cipitates.  Therefore,  NbC  nanosized  precipitates  exhibited
stronger  hydrogen  trap  capabilities.  However,  at  present,
there is no direct and conclusive evidence to accurately de-
termine the hydrogen trap sites of NbC. 

4.1.4. Other nanosized precipitates
In  addition  to  the  studies  on  VC,  TiC,  NbC,  and  other

nanosized precipitates mentioned above, there have been re-
search investigations on the HE resistance of other nanosized
precipitates, such as (Ti,Mo)C [15,124], NbN [110], and ce-
mentite [124–126]. Furthermore, studies have been conduc-
ted  on  the  HE  resistance  of  retained  austenite  or  reverse
transformation austenite in martensitic steels [127]. These re-
search  efforts  collectively  contribute  to  the  study  of  hydro-
gen traps and play a crucial role in the design of high-strength
and  HE-resistant  steels  by  controlling  internal  microstruc-
tures to prevent hydrogen accumulation within a material. 

4.2. Influence of hydrogen trap sites in nanosized precip-
itates

The coherency of nanosized precipitates has a significant
impact on hydrogen traps, mainly because of the variations in
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hydrogen  trap  sites.  To  better  understand  and  comprehend
the hydrogen trap sites of nanosized precipitates at different
coherency levels and consequently utilize this knowledge for
designing  nanosized  precipitates  to  enhance  the  HE  resist-
ance of martensitic high-strength steels, this section explores
the physical nature of hydrogen trap sites in nanosized pre-

cipitates using statistical results from relevant literature.
First,  we conducted a  statistical  analysis  of  the most  ex-

tensively  studied  nanosized  precipitates,  including  coherent
interfaces, interface carbon vacancy/mismatched dislocation,
and  internal  carbon  vacancy,  as  referenced  previously
[50,115,128–133]. The results of this analysis, which demon-
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strated  the  influence  of  these  nanosized  precipitates  phase
trapping  sites  on  hydrogen  trap  energy,  are  presented  in
Fig.  9.  This  figure  was  created  by  comprehensively  pro-
cessing and analyzing the collected data, illustrating the spe-
cific effects of different nanoprecipitates phase trapping sites
on hydrogen traps binding energy. The statistical results re-
vealed  that  the  hydrogen  trap  energy  at  coherent  interfaces
was very low (averaging 27 kJ/mol), even lower than that of
dislocation (averaging 29 kJ/mol). The leading hydrogen trap
sites at coherent interfaces were in tetrahedral interstitial pos-
itions [134], originating from the elastic strain fields caused
by phase  mismatch.  For  interface  carbon vacancy and mis-
matched dislocation, their hydrogen trap energies was higher
(averaging  53  kJ/mol),  surpassing  that  at  grain  boundaries
(averaging  45  kJ/mol).  However,  for  internal  carbon  va-
cancy,  the hydrogen trap energies  were significantly higher
(averaging 97 kJ/mol).

Moreover,  Di  Stefano et al.  [101]  conducted  first-prin-
ciple calculations to systematically investigate hydrogen trap
sites and their binding energies at different interfaces of TiC
nanosized precipitates. Although coherent nanosized precip-
itates  contribute  to  precipitation  strengthening  while  main-
taining plasticity, they are not suitable for designing deep in-
ternal hydrogen traps within nanosized precipitates to devel-
op  high-strength,  HE-resistant  steels  as  their  hydrogen  trap
energies are too low to effectively capture hydrogen. There-
fore,  coherent  interfaces  are  not  suitable  as  deep  hydrogen
traps  within  nanosized  precipitates  when  designing  high-
strength, HE-resistant steels.

In  the  following  discussion,  we  focus  on  the  interaction
between  hydrogen  and  interface  carbon  vacancy/mis-
matched  dislocation,  as  well  as  internal  carbon  vacancy,
which act  as  potential  deep internal  hydrogen traps.  Distin-
guishing different hydrogen trap sites from an energetic per-
spective requires considering both the hydrogen traps bind-
ing energy and the energy barrier. On the one hand, in terms

of  binding  energy,  the  internal  carbon  vacancy  has  higher
binding  energy  than  the  interface  carbon  vacancy/mis-
matched dislocation. On the other hand, from the viewpoint
of  energy  barriers  (saddle  point  energy),  hydrogen  must
overcome a certain energy barrier to be trapped by the trap
sites. However, different hydrogen traps may have different
energy barriers; thus, the role of energy barriers in hydrogen
traps  must  be  considered.  As  shown in Fig.  10,  the  energy
barrier  for  hydrogen  diffusion  to  interface  carbon
vacancy/mismatched  dislocation  is  equivalent  to  the  diffu-
sion  energy  barrier  within  the  iron  lattice  [81]  and  is  only
0.09 eV (8.7 kJ/mol) [101] . Therefore, hydrogen can be eas-
ily captured by interface carbon vacancy/mismatched dislo-
cation through lattice diffusion at room temperature or under
conditions  like  electrochemical  hydrogen  charging.  Mean-
while, the energy barrier for hydrogen to enter internal car-
bon vacancy is much higher, reaching 1.61 eV (155 kJ/mol).
Consequently, internal carbon vacancy cannot efficiently trap
hydrogen  at  room  temperature  (e.g.,  under  electrochemical
hydrogen  charging  conditions)  but  can  only  capture  hydro-
gen during high-temperature heat treatment [81]. Although a
continuous network of carbon vacancy connecting from the
precipitated phase interface to the interior phase can possess
both high binding energy and relatively low energy barriers,
the probability of forming such a carbon vacancy network is
low,  resulting  in  a  very  low  hydrogen  trap  densities
(10−10–10−9 mol/mm3), whereas the hydrogen trap densities of
interface  carbon  vacancy  is  generally  in  the  range  of
10−9–10−7 mol/mm3 [131,135].

In summary, although internal carbon vacancies in nanos-
ized precipitates have high binding energy, their trapping en-
ergy barrier for hydrogen is also very high, making it diffi-
cult  for  hydrogen  to  enter  the  internal  carbon  vacancies  at
room temperature. As high-strength steels are typically used
and operated at room temperature, the use of internal carbon
vacancy  presents  challenges  in  engineering  practices  to  en-

 

120

140

160

100

80

B
in

g
d
in

g
 e

n
er

g
y
 /

 (
k
J·

m
o
l−
1 )

60

40

20

0
Dislocation Grain boundaries Coherent

interface

Interface carbon

vacancy/Mismatched

dislocation

Internal carbon

vacancy

Fig. 9.    Influence of hydrogen trap sites of nanosized precipitate phase on hydrogen traps binding energy as observed in this study.

Z.Y. Du et al., Review on the design of high-strength and hydrogen-embrittlement-resistant steels 1583



hance  HE  resistance.  Meanwhile,  carbon  vacancy/mis-
matched dislocation at the interfaces between nanosized pre-
cipitates and the matrix can balance both the binding energy
and  energy  barrier  requirements.  Therefore,  controlling  the
carbon vacancy/mismatched dislocation in nanosized precip-
itates can be effective as deep hydrogen traps to improve HE
resistance.

Regarding  carbon  vacancy  in  nanosized  precipitates,
Takahashi et al. [115] directly observed hydrogen traps at the
(001) coherent interface of the V4C3 nanosized precipitate us-
ing 3DAP. They determined the V4C3 nanosized precipitate
to have a V/C atomic ratio of 4:3 from the 3DAP data, indic-
ating the presence of sufficient carbon vacancy in the V4C3

precipitate. Additionally, they observed D atoms localized at
the  (001)  coherent  interface  of  the  nanosized  precipitates,
confirming the carbon vacancy at the interface as hydrogen
trap sites. Furthermore, HRTEM was employed to investig-
ate V4C3 precipitates, and very few mismatched dislocations
in V4C3 were found. The limited presence of mismatched dis-
location,  especially in long V4C3 precipitates with only two
mismatched dislocations,  ruled  out  the  contribution  of  mis-
matched dislocation at the interface as hydrogen trap sites, ul-
timately  confirming  that  carbon  vacancy  at  the  interface  of
V4C3 nanosized precipitate acted as hydrogen trap sites.

Although  interface  carbon  vacancies  have  been  con-
firmed as the leading hydrogen trap sites in V4C3 nanosized
precipitates,  as  observed using 3DAP,  the  situation may be
different  for  TiC  and  NbC.  Unlike  V4C3,  TiC  and  NbC
nanosized precipitates do not contain a significant number of
carbon vacancies based on the ratio of metal atoms to carbon
atoms. Therefore, interface carbon vacancies may not be the
essence  of  their  hydrogen  traps.  Although  Wei et al.  [136]
observed interface mismatched dislocation in TiC nanosized
precipitates,  a  systematic  study  on  the  nature  of  hydrogen
traps at the interface mismatched dislocation in TiC and NbC
nanosized precipitate is still lacking and remains a subject for
further investigation. 

4.3. Others

In the previous summary and discussion, we primarily fo-

cused  on  hydrogen  traps  in  nanosized  precipitates  with  co-
herent, semicoherent, and incoherent orientations to the mat-
rix. However, when the steel contains a high content of mi-
croalloying elements,  undergoes longer tempering times,  or
is tempered at higher temperatures, the formation of large un-
dissolved  particles  or  the  coarsening  of  nanosized  precipit-
ates may occur [99]. These particles can reach sizes of sever-
al  hundred  nanometers  or  even  micrometers  and  may  have
adverse effects on HE resistance.

In recent years, research on the nature of hydrogen traps in
nanosized precipitates within grains and the mechanisms of
HE resistance have been continuously deepening and broad-
ening. Particularly, studies on hydrogen trap sites,  contents,
and HE resistance of single carbides in steel have made signi-
ficant  progress.  The  nature  of  hydrogen  traps  in  single
carbides is now well understood as mainly originating from
defects  in  nanosized  precipitates,  such  as  interface  mis-
matched dislocation and interface carbon vacancy. However,
our current understanding and characterization of the nature
of hydrogen traps and HE resistance mechanisms in complex
nanosized  precipitates  in  steel  is  still  not  comprehensive
enough  and  remains  at  the  basic  level,  focusing  on  single
nanosized precipitates.

Recent research efforts have started to address this limita-
tion. For example, Lin et al. [137] achieved a significant im-
provement in hydrogen traps by co-precipitating Cu and TiC
through  alloying  treatments.  Meanwhile,  Zhao et al.  [138]
showed that  multiphase  nanosized  precipitates  in  7xxx alu-
minum  alloys  can  effectively  mitigate  HE,  but  different
nanosized precipitates had different hydrogen trap capabilit-
ies. Therefore, by leveraging the coupling effects of microal-
loying elements  (e.g.,  Nb,  Ti,  V,  and Mo),  which are more
conducive to forming hydrogen traps more readily, compos-
ite  nanosized  precipitates  can  be  designed  and  regulated  as
excellent hydrogen traps, thus leading to effective strategies
for HE resistance design [20]. 

5. Conclusion and outlook

Amidst  the  rapid  technological  advancements  and  the
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pressing  imperative  for  carbon  neutrality  within  our  global
society,  the  deployment  of  metallic  materials,  especially
steel,  has  gained paramount  importance  across  various  sec-
tors,  including  aerospace,  marine  engineering,  offshore  re-
source exploration, and the pursuit of lightweight automotive
designs. These application fields have put forward an urgent
need for  high-strength and high-toughness  materials,  which
has  promoted  the  development  of  high-strength,  HE-resist-
ant  steel  in  the  scientific  and  engineering  fields.  However,
HE in high-strength steels has emerged as a global challenge
in the development of high-strength steels. To develop steels
that  are  both  high-strength  and  resistant  to  HE,  a  scientific
understanding and in-depth comprehension of  the nature of
HE is imperative. This understanding should enable the tar-
geted  proposal  of  design  concepts  and  implementation
strategies to combat HE.

This article systematically reviewed various mechanisms
of HE that have been proposed, including the hydrogen pres-
sure mechanism, HELP, HEDE, AIDE, hydrogen reduction
of surface energy, and HESIV. Although these mechanisms
may  seem  contradictory,  they  emphasize  different  aspects,
each with its own conditions and limitations. Frequently, in
varying  external  environments  and  material  systems,  one
mechanism may dominate, or several mechanisms may oper-
ate in conjunction. Fundamentally, the essence of HE is the
reduction  of  atomic  bonding  strength  by  hydrogen.  During
service, the stress is within the elastic range, typically lead-
ing to intergranular cracking due to the continuous distribu-
tion of  hydrogen at  grain boundaries.  Therefore,  the design
against  HE  can  focus  on  preventing  hydrogen  ingress  into
materials,  namely,  through the design of  hydrogen-resistant
surfaces  or  by  inhibiting  the  accumulation  of  hydrogen  at
grain boundaries, thereby reducing hydrogen concentrations
at these critical locations to mitigate embrittlement. This dis-
course  also  delved  into  the  two  main  directions  in  anti-HE
designs: surface design for HE resistance and the current state
of research on nanoprecipitates as internal hydrogen traps. In
terms of surface design for HE resistance, it  covers various
types of coatings, including oxide coatings, nitride coatings,
carbon material coatings, metal and alloy coatings, and mul-
tilayered coatings. Oxide coatings have been widely studied
for their  high barrier  properties,  whereas multilayered coat-
ings are notable for effectively extending the hydrogen per-
meation path, among others. In the study of nanoprecipitates
as internal hydrogen traps, attention was paid to the role of
different types of nanoprecipitates and their  capture sites in
HE  resistance,  revealing  the  interaction  between  nanoscale
structures and hydrogen, which is significant for the develop-
ment of new high-performance materials.

In summary, the design against HE constitutes a compre-
hensive  engineering  endeavor  that  demands  an  understand-
ing  and  formulation  from  various  perspectives.  It  necessit-
ates  not  only  a  thorough consideration  of  all  contradictions
but also adherence to scientific principles underlying HE res-
istance. Ultimately, this approach aims to achieve an optim-
ization of overall performance enhancements. 
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