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Abstract: The local  structure and thermophysical  behavior  of  Mg–La liquid alloys were in-depth understood using deep potential  mo-
lecular  dynamic (DPMD) simulation driven via  machine learning to promote the development  of  Mg–La alloys.  The robustness  of  the
trained deep potential (DP) model was thoroughly evaluated through several aspects, including root-mean-square errors (RMSEs), energy
and force data, and structural information comparison results; the results indicate the carefully trained DP model is reliable. The compon-
ent and temperature dependence of the local structure in the Mg–La liquid alloy was analyzed. The effect of Mg content in the system on
the first coordination shell of the atomic pairs is the same as that of temperature. The pre-peak demonstrated in the structure factor indic-
ates the presence of a medium-range ordered structure in the Mg–La liquid alloy, which is particularly pronounced in the 80at% Mg sys-
tem and disappears at elevated temperatures. The density, self-diffusion coefficient, and shear viscosity for the Mg–La liquid alloy were
predicted via DPMD simulation, the evolution patterns with Mg content and temperature were subsequently discussed, and a database was
established accordingly. Finally, the mixing enthalpy and elemental activity of the Mg–La liquid alloy at 1200 K were reliably evaluated,
which provides new guidance for related studies.

Keywords: magnesium–lanthanum liquid  alloys; local  structure; macroscopic  properties; thermodynamic  behavior; deep  potential  mo-
lecular dynamic simulation

  

1. Introduction

The  addition  of  lanthanum  (La)  to  magnesium  (Mg)  al-
loys  could  enhance  their  performance,  including  increasing
the Mg alloy’s corrosion resistance [1], regulating their grain
growth,  and  enhancing  their  mechanical  properties [2–3],
etc.,  thus  boosting  the  product  level  of  Mg  alloys  and  im-
proving  their  competitiveness  in  applications  such  as  3C
products [4], the automotive industry [5], and the aerospace
industry [6].

The properties of the melt metal determine the process of
filling the casting and the physical–chemical processes dur-
ing crystallization, and are therefore fundamental to the qual-
ity of castings. The structural, physical, and thermodynamic
behavior of metals in the liquid state are intimately linked to
the structure of their solid state. Thus, without a comprehens-
ive  understanding  of  the  melt,  it  is  impossible  to  achieve
high-quality castings with optimum performance at a minim-
um cost.  On the other hand, thermophysical descriptions of
the Mg–La alloy are essential for revealing its chemical be-
havior and physical properties [7]. Therefore, an in-depth un-
derstanding of the local structure and thermophysical behavi-
or of melt alloys could facilitate the identification of the op-

timum  solidification  process  to  produce  a  well-performing
material,  promoting  the  development  of  related  industries.
Although  metal  melts  have  been  analyzed  by  experimental
techniques such as high-temperature X-ray diffraction [8–9]
and  synchrotron  radiation  experiments [10–11],  the  experi-
mental  investigation  of  melts  encounters  plenty  of  chal-
lenges, such as the complexity of high-temperature tests and
their  high  sensitivity  to  external  perturbations.  Fortunately,
computational simulation sheds light on this dilemma.

Classical  molecular  dynamics  (CMD)  simulations  are
computationally efficient, but their accuracy depends on the
potential model, while ab initio molecular dynamics (AIMD)
is  accurate  but  computationally  intensive.  The  dilemma  of
accuracy and efficiency plagued molecular simulations until
the  advent  of  machine  learning  potentials.  As  a  prominent
representative,  deep potential  molecular  dynamics  (DPMD)
has  been  widely  adopted  since  its  introduction,  involving
various  application  scenarios [12–18].  The  investigation  of
the Mg–Al–Si alloy system [19] has shown that DPMD sim-
ulation is approximately a thousand times faster than AIMD
simulation,  and  its  computational  cost  is  linearly  related  to
the number of atoms in the system. As a result, DPMD simu-
lation has been widely applied to alloy systems. Xu et al. [20] 
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developed the deep potential (DP) model for crystalline and
amorphous Li–Si alloys with different Li/Si ratios, discussed
the structural and kinetic properties, and predicted the densit-
ies, partial radial distribution functions (RDF), and diffusion
coefficients  for  the  systems.  Wang et al. [21] discussed the
structural features and kinetic properties for Nb5Si3 alloys, as
well  as  the  atomic structures  of  normal  and supercooled li-
quid Nb5Si3 using DPMD simulation. Based on the Voronoi
polyhedral analysis, the atomic structure in the melting pro-
cess  was  explored,  and  the  mechanism of  cluster  evolution
was derived. For the Pd82Si18 and Pd75Si25 liquid systems [22],
it was demonstrated that the generated DP model is more ac-
curate  than  embedded  atom  interatomic  potential  based  on
the analysis for RDF of atom pairs at 1600 K. Al-based al-
loys, such as Al–Tb alloy, Ti–Al alloy, and Al–Cu–Ni alloy,
were  thoroughly  explored  by  DPMD  simulation.  Zhai  and
Wang [23] explored  the  local  structure  and  nucleation  pro-
cesses of Ti–Al systems. Moreover, the nucleation mechan-
ism  and  transformation  process  under  high  undercooling
conditions were discussed. Ryltsev and Chtchelkatchev [24]
developed  the  machine-learning  interatomic  potential  for
multicomponent  Al–Cu–Ni melts,  investigated the effect  of
different hyperparameter settings of the neural network, and
obtained the best-performing potential model, after which the
structural and kinetic properties of the system were then dis-
cussed.  Tang et al. presented insights into the Al90Tb10 [25]
and Al90Ce10 [26] alloys and analyzed their short-range order-
ing  and  the  supercooled  liquids.  DPMD  simulations  have
been also applied to the Mg-based alloys. He et al. [27] dis-
cussed the formation energies of various binary magnesium
alloys,  including  Mg–La  alloys.  Wang et al. [28] investig-
ated  in-plane  domain  structures,  interstitial  atomic  trans-
itions, and out-of-plane stacking sequences of the Mg–Zn–Y
ternary alloys. Zhu et al. [19] developed a DP model for the
Mg–Al–Si alloy and discussed the alloy system’s equations
of state, lattice constants, shear modulus, and bulk modulus.
For  the  Al–Cu–Mg  alloy  across  the  entire  concentration
range, Jiang et al. [29] trained a DP model, which describes
the fundamental  energetic  and mechanical  properties  of  the
system with DFT (density functional theory) accuracy. With
the DP model, Wang et al. [30] and Li et al. [31] realized the
prediction of the crystal structures of the Al–Mg system and
Al2CuMg alloys, respectively.

The lack of understanding of the local structure and ther-
mophysical behavior of Mg–La alloys has hindered their de-
velopment.  In  this  work,  the  Mg–La  liquid  alloys  were  in-
depth  understood  using  DPMD  simulation  driven  by  ma-
chine learning, providing theoretical guidance to optimize the
manufacturing process and improve the alloy’s properties. 

2. Methodology

The whole computational procedure is divided into three
parts. The first one is to perform AIMD simulations, whose
results are then used as an initial dataset for the second stage.
The  second  stage  is  devoted  to  exploration,  enriching  the

phase  space  and  constructing  potential  energy  surfaces  that
accurately describe the atomic interaction forces. Finally, the
well-trained  DP  model  has  been  applied  to  simulate  large-
scale Mg–La liquid alloys over a long period of time to ana-
lyze their local structure and thermophysical behavior.

All AIMD simulations were driven by the Vienna Ab Ini-
tio Simulation Package (VASP 5.4.4) [32] with a plane wave
basis at a 400-eV cut-off energy. The interaction between the
nucleus and the inner electrons was handled by the Projector
Augmented  Wave  (PAW) [33].  The  exchange  of  electrons
and  the  description  of  the  associated  interactions  were  de-
scribed  through  the  PBE method  based  on  the  Generalized
Gradient Approximation (GGA) [34]. For the Mg–La liquid
alloy, the wave function of the valence electrons was chosen
to  be  Mg(3s2),  La_s(4p5s26d1).  The  dispersion  correction
term was introduced into the system using Grimme’s DFT-
D3 method [35] with a zero-damping function. A 1 × 1 × 1 k-
point  grid  was  applied,  and  for  the  energy  convergence,  it
was set to 10−5 eV. All the AIMD simulations were conduc-
ted at a temperature of 1800 K for 6 ps with a 2-fs time step.
The Mg–La liquid alloy system was thoroughly understood
via seven components with varying compositions of Mg and
La,  whose detailed information is  shown in Table  1.  Initial
configurations for all samples were constructed based on ex-
perimental  densities  using  the  Materials  Studio  (MS)  soft-
ware package.
 
 

Table 1.    Atom number (N) of seven different compositions of
Mg–La liquid alloys employed for AIMD simulations

Sample Mg / at% N(Mg) N(La) Total number
S1 0 0 100 100
S2 20 20 80 100
S3 40 40 60 100
S4 50 50 50 100
S5 60 60 40 100
S6 80 80 20 100
S7 100 100 0 100

 
The exploration of phase space is realized by the Deep Po-

tential  Generator  (DP-GEN)  workflow  framework [36],
which  is  divided  into  three  parts:  training,  exploration,  and
labelling.  The  AIMD  results  were  employed  as  the  initial
dataset for training to generate the initial DP model. This was
implemented  using  the  DeepMD  kit  (2.1.3) [37] driven  by
machine  learning.  The  hyperparameter  settings  during  the
training process were consistent with the reference [17], only
differing in the cut-off radius, which was defined as 6 Å for
the Mg–La alloy system. Four DP models would be gener-
ated for each training procedure based on the different ran-
dom seed numbers.  During the training process,  the atomic
coordinates  are  mapped  to  the  energy  of  the  system  by
encoding  and  fitting  networks.  The  Adam stochastic  gradi-
ent  descent  method  is  employed  to  optimize  the  net-
work weights, minimize the loss function (Eq. (1)), and gen-
erate the DP model. For more detail, please refer to the liter-
ature [38].
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L (pE , pF) = pE∆E2+
pF

3N

∑
i
|∆Fi|2 (1)

pE

where L is the sum of the root mean square errors (RMSE) of
energy and force, i represents the ith atom, F denotes RMSE
in force,  and pF are adjustable prefactors representing en-
ergy (E) and force, respectively, with starting and ending val-
ues (0.02, 1) and (1000, 1).

σmaxF

σmaxF

σmaxF

σmaxF

The exploration process was performed in the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
[39] compiled with the DP module.  The first  few iterations
were conducted in the NVT ensemble as the potential energy
surface  was  not  accurate  enough  in  the  beginning,  after
which the simulation was switched to the NPT ensemble ex-
ploration. The different temperatures, covering 1200 to 1800
K with 200 K intervals, were investigated to explore the tem-
perature evolution of the local structure and thermodynamic
behavior. Four different pressures, including 0, 106, 107, and
108 Pa,  were considered to enrich the phase space.  The ex-
ploration time was initially set at 2 ps and was then increased
and stabilized at  6  ps.  During the exploration,  the  force in-
formation obtained from the four DP models was recorded,
and  the  maximum  force  error  ( )  was  thus  deduced
through Eq. (2), which will be used to determine whether the
corresponding  configuration  is  labeled  for  single-point  en-
ergy calculations. The criterion for evaluation is the predeter-
mined force error range [σlow, σhigh].  If  < σlow,  it  is con-
sidered that the existing DP model could accurately describe
the configuration.  > σhigh implies that the configuration
may be unphysical. These two scenarios do not contribute to
the DP model improvement and are not sent to the labeling
stage for subsequent calculations. When the maximum force
error of the configuration satisfies σlow <  < σhigh, it would
be collected as a candidate. In this work, σlow was set based on
the RMSE of the force in the DP-test results, and σhigh was set
at 0.2 eV/Å.

σmaxF =max
√⟨||Fw,i(Rt)−

⟨
Fw,i(Rt)

⟩ ||2⟩ (2)

⟨
Fw,i (Rt)

⟩
=

1
Nm

∑Nm

j=1
Fw j,i (Rt) (3)

Fw,i(Rt)where  represents the force on the atom indexed i, w
represents  the  parameters  of  the  DP  model, Rt denotes  the
configurations generated during exploration with t denoting a
continuous  or  discrete  operation.  <>  is  the  average  of  the
model prediction, and Nm denotes the number of DP models,
which is 4 in this work.

As for the labeling stage, all collected configurations were
subjected  to  single-point  energy  calculations  via  the  VASP
package, with input parameters similar to those of the AIMD
simulations. The energy and force data calculated for all can-
didate  configurations  were  included in  the  training  data  for
the  next  iteration.  The  DP-GEN task  is  regarded  as  having
converged when the accuracy of three consecutive iterations
in the exploration stage is higher than 99%. All data sets were
then  collected  during  the  iteration  process,  and  1  million
gradient descent training steps were implemented to generate
the final DP model.

The DPMD simulation was performed within LAMMPS,
whose  system  contains  10  times  more  atoms  than  that  of
AIMD,  i.e.,  1000  atoms.  The  Mg–La  liquid  alloy  was  first
run through the NPT ensemble for 1 ns, and the equilibrium
volume was derived from the average results of the last 400
ps, which was used to evaluate the density. The equilibrium
configuration and average volume derived from the NPT en-
semble were then applied to 1 ns of the NVT ensemble simu-
lation. The local structure of the Mg–La alloy was analyzed
from trajectory data with the R.I.N.G.S. code [40].  The en-
ergy data from the NVT ensemble was collected to assess the
thermodynamic behavior. 

3. Results and discussion 

3.1. DP model performance

The  accuracy  of  the  trained  DP  model  was  evaluated
through several aspects, including RMSEs, energy and force
data, and structural information comparison results. Table 2
shows the RMSEs for all compositions of the Mg–La liquid
alloy. It is shown that the maximum RMSEs of energy is 6.70
meV/atom, while for force, it is 0.14 eV/Å. The RMSE res-
ults  for  each  Mg–La  system  illustrate  that  the  trained  DP
model predicts energy and force better for Mg-rich systems
(e.g., S6 and S7) than for La-rich systems (e.g., S1 and S2).
This phenomenon shows that the trained DP model outper-
forms La in predicting energy and force for Mg. The RMSEs
for  the  Mg–La  alloy  are  close  to  those  for  the  Li–Si [20],
Ti–Al [23], and Al–Tb [25] systems, indicating that the DP
model is reliable.
 
 

Table 2.    RMSEs for all compositions of Mg–La liquid alloys

Sample RMSE-energy /
(meV·atom−1)

RMSE-force /
(eV·Å−1)

S1 6.70 0.14
S2 5.27 0.13
S3 5.30 0.12
S4 4.71 0.12
S5 4.54 0.11
S6 2.86 0.08
S7 2.89 0.07

 
Fig. 1 shows the comparison results of energy and force in

a random pickup from the test sets of the S4 system. The ho-
rizontal  coordinate  represents  the  energy  and  force  calcu-
lated  based  on  the  DFT  framework,  while  the  vertical  co-
ordinate  represents  the  corresponding  energy  and  force  in-
formation predicted by the trained DP model. It is found that
the  test  results  for  energy  and  force  are  evenly  distributed
along the diagonal. The RMSE of energy and force in the S4
system is 4.71 meV/atom and 0.12 eV/Å, respectively, sug-
gesting that the well-trained DP model could provide a good
description of energy and force.

The RDF and the partial structure factor obtained from the
DPMD simulation were compared with those reported in the
publication. These comparison results were employed to fur-
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ther  demonstrate  the  robustness  of  the  trained  DP  model.
Fig. 2 shows the comparison of the RDF and structure factor
(S(q))  obtained  for  the  S1  and  S7  samples  at  1200  K  with
those  obtained  by  Dalgic et al. [41] and  Wax et al. [42] at
1243 K and 953 K, respectively. For the S1 system, the RDF
and S(q) agree well with Dalgic et al.’s results [41] obtained
from  class  molecular  dynamic  simulation,  both  in  peak
height and position. As for the S7 system, the RDF and S(q)
derived  from  the  DPMD  simulation  at  1200  K  were  com-
pared with the report of Wax et al. [42] using an analytic pair
potential  simulation.  The  overall  trend  and  peak  positions
match well, with a little difference in peak heights. This is at-

tributed to  the differences in  the temperatures  studied,  with
higher  peak  intensities  at  lower  temperature,  which  will  be
explained in the subsequent discussion. All these comparis-
ons suggest that the well-trained DP model is sufficient to un-
derstand the local  structure and thermophysical  behavior of
Mg–La liquid alloys. 

3.2. Local structure analysis
 

3.2.1. Partial radial distribution function
The local structure of the Mg–La liquid alloy was evalu-

ated by the RDF, whose mathematical expression is shown in
Eq. (4) [43].
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Fig. 1.    Comparison of (a) energy (E) and (b) (F) force predicted by the DP model with the DFT result.
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gαβ(r) =
1

4πρβr2

dNαβ(r)
dr

(4)

where ρβ is the number density of β atoms, Nαβ(r) is the aver-
age number of β atoms with the α ions in the center,  and r
represents the distance from the reference particle.

Fig.  3 demonstrates  the  progression  of  the  RDF  for
Mg–Mg, Mg–La, and La–La with the Mg content in the sys-
tem at 1200 K. All RDFs display a significant first peak, fol-
lowed  by  decreasing  fluctuations,  finally  converging  to  1.
With increasing Mg content in the system, the first peak posi-
tion in the RDF of atom pairs changes negligibly,  while its
heights show a decreasing trend, suggesting that the atomic
interaction is  weaker  for  the  Mg-rich  system.  For  the  other
peaks, the variations for Mg–La and La–La are slight, while
Mg–Mg exhibits fluctuations.

Fig. 4 shows the progression of RDF of Mg–Mg, Mg–La,
and La–La versus temperature (T), which ranges from 1200
to 1800 K for the S4 sample. The shift of the first peak posi-
tions  of  Mg–Mg,  Mg–La,  and  La–La  with  temperature  is
negligible, and the detailed data are shown in Table 3, indic-
ating that  the temperature effect  on the first  shell  coordina-
tion distances of the Mg–La system is slight, as is the change
in coordination number. As the temperature increases, all the
first  peak  intensities  decay,  which  is  attributed  to  the  in-
creased thermal motion of the atoms at high temperatures and
the weakening of the atomic interaction forces. 

3.2.2. Structure factor
The intermediate range order of Mg–La liquid alloy was

investigated through the structure factor, which could be ex-
pressed as Eq. (5) [44].

S αβ (q) = 1+4π
w ∞

0
r2 sinqr

qr
[
gαβ
(
r)−1]dr (5)

where q is the wave vector.
Fig. 5(a) illustrates the structure factor of the Mg–La sys-

tem at 1200 K with different Mg contents. The start position
of  horizontal  coordinates  is  0.8  Å−1,  which  avoids  spurious
signals due to truncation errors [45]. A distinct first peak is
exhibited among all components, implying the presence of a
short-range ordered structure in the system. As the Mg con-
tent  increases,  the  intensity  of  the  first  peak  weakens  and
shifts to the right, and the distance between the atoms in real
space  decreases,  which  could  be  attributed  to  the  smaller
atomic  radius  of  Mg.  Furthermore,  there  is  a  small  peak
around  1.30  Å−1 observed  in Fig.  5 (inset),  indicating  the
presence  of  an  intermediate-range  ordered  structure  within
the melt, which is particularly pronounced in the S6 sample.
This indicates that 80at% of the Mg in the system may prefer
to form compounds or atom clusters [46].

To  discuss  the  temperature  relationship  of  the  structure
factor in the Mg–La liquid alloy, Fig. 5(b) depicts the evolu-
tion  of  the  structure  factor  over  temperature  for  the  S6
sample. The intensity of the first peak decreases as the tem-
perature  increases,  suggesting  that  the  short-range  order  is
decreasing. Meanwhile, the peak position of the first peak is
shifted to the left,  demonstrating that  the thermal motion is
intensified at high temperatures, which is reflected in the lar-
ger spacing between the atoms in real space compared to low
temperatures.  Furthermore,  the  pre-peak  intensity  is
weakened, becoming slight at 1400 K and negligible at 1600
K. This indicates that the increase in temperature yields the
disappearance of the intermediate range ordered in the melt,
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and  the  Mg–La  liquid  alloy  exhibits  only  the  short-range
ordered at high temperatures. 

3.3. Macroscopic properties
 

3.3.1. Density
The density of the liquid metal is required for calculating

the conservation of mass during refinement operations, and it

is also used as a key input parameter for deriving other ther-
mophysical behavior in the casting and solidifying processes.
The density of all samples was evaluated by Eq. (6) [43].

ρ =
∑

i NiMi

VENA
(6)

where ρ is the density of the sample, Ni represents the atomic
number, Mi denotes  the  molar  mass  of  the  corresponding

 

Table 3.    Position of the first peak (rmax),  its height (hmax),  and coordination number (Nαβ) of Mg–Mg, Mg–La, and La–La for all
samples in the Mg–La liquid alloy system from 1200 to 1800 K with 200 K intervals

System T / K
Mg–Mg Mg–La La–La
rmax / Å hmax Nαβ rmax / Å hmax Nαβ rmax / Å hmax Nαβ

S1

1200 3.57 2.22 13.93
1400 3.58 2.11 13.79
1600 3.57 2.02 13.91
1800 3.53 1.94 13.61

S2

1200 3.01 2.66 1.80 3.41 2.89 10.47 3.57 2.18 11.41
1400 3.00 2.56 1.86 3.37 2.66 10.28 3.56 2.06 11.43
1600 3.01 2.44 1.97 3.41 2.50 10.30 3.58 1.97 11.44
1800 2.98 2.38 1.96 3.38 2.38 10.24 3.54 1.89 11.33

S3

1200 3.00 2.64 4.07 3.41 2.76 8.12 3.60 2.07 9.00
1400 3.02 2.48 4.12 3.41 2.59 8.06 3.57 1.97 9.09
1600 3.01 2.39 4.18 3.40 2.42 7.97 3.56 1.90 8.96
1800 3.02 2.27 4.12 3.39 2.31 7.87 3.56 1.84 9.21

S4

1200 3.04 2.61 5.25 3.42 2.78 7.06 3.58 2.05 7.59
1400 3.03 2.45 5.21 3.42 2.60 6.97 3.57 1.95 7.60
1600 3.02 2.33 5.23 3.41 2.44 7.02 3.57 1.88 7.70
1800 3.04 2.23 5.34 3.43 2.31 6.86 3.52 1.81 7.48

S5

1200 3.04 2.54 6.39 3.42 2.85 5.88 3.57 1.89 5.96
1400 3.04 2.39 6.43 3.42 2.64 5.81 3.57 1.82 6.06
1600 3.03 2.28 6.27 3.39 2.47 5.69 3.55 1.76 6.11
1800 3.05 2.19 6.35 3.41 2.33 5.73 3.57 1.72 6.09

S6

1200 3.06 2.45 9.58 3.43 2.66 3.15 3.63 1.83 3.37
1400 3.04 2.30 9.50 3.41 2.47 3.14 3.63 1.78 3.31
1600 3.06 2.18 9.40 3.42 2.32 3.03 3.55 1.75 3.33
1800 3.04 2.10 9.20 3.42 2.28 2.99 3.55 1.59 3.05

S7

1200 3.06 2.34 12.67
1400 3.10 2.20 12.47
1600 3.03 2.09 12.54
1800 3.05 2.01 12.64
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atom, VE is  the  equilibrium volume,  and NA is  Avogadro’s
constant.

Fig. 6 shows the densities derived from the DPMD simu-
lations as well as the experimental values for S1 [47] and S7
[48],  and  the  presented  values  for  S2  to  S6  were  deduced
based on the densities of Mg and La, which were calculated
by ignoring the volume changes during the mixing process.
The maximum relative density error is 6.32% for S1 at 1800
K,  which  is  higher  in  the  La-rich  system  due  to  the  larger
RMSEs  shown  in  Section  3.1  when  testing  the  trained  DP
model. Overall, this is acceptable for the Mg–La liquid alloy.
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As the temperature increases, owing to the higher average
kinetic energy of its atoms, the interaction between them is
weakened,  resulting  in  an  increase  in  the  atomic  distance,

leading to a decrease in the atomic number of the unit volume
and a decrease in the density of the system. With increasing
magnesium  content,  the  density  of  the  Mg–La  liquid  alloy
decreases because the density of Mg is much lower than that
of La. As a result, the density database of the Mg–La system,
containing different  Mg content from 1200 to 1800 K, was
constructed. 

3.3.2. Self-diffusion coefficient
In this  work,  the self-diffusion coefficient  of  the Mg–La

alloy system is derived from the DPMD simulation based on
the  Einstein-Smoluchowski  equation [43],  as  shown  in  Eq.
(7).

D =
1
6
lim
t→∞

d(MSD)
dt

=
1
6
lim
t→∞

d
(

1
N

⟨∑
i |ri(t)− ri(0)|2

⟩)
dt

(7)

where MSD is the mean square displacement, ri(t) is the dis-
placement of the i atom at time t.

For sample S4, the dependence between the self-diffusion
coefficients  of  Mg and La with temperature  is  displayed in
Fig. 7(a). It is shown that the self-diffusion coefficients of Mg
and La increase with increasing temperature. The self-diffu-
sion coefficients of Mg are larger than those of La. The self-
diffusion  coefficient  increases  from 4.33  ×  10−5 to  10.74  ×
10−5 cm2/s for Mg from 1200 to 1800 K, while for La, it  is
from 3.26 × 10−5 to 10.11 × 10−5 cm2/s. Moreover, the evolu-
tion of the natural logarithm of the self-diffusion coefficient
with the temperature inverse for S4 is shown in Fig. 7(b), and
their relationship is linearly expressed as Eqs. (8-1) and (8-2),
where R represents the gas constant. The corresponding dif-
fusion activation energies are obtained. For Mg, Ea is 28.31
kJ/mol, while for La, it is 33.12 kJ/mol.
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lnDMg = −7.23−28305.56/ (RT ) (8-1)

lnDLa = −7.03−33120.42/ (RT ) (8-2)
The  self-diffusion  coefficients  of  the  other  systems  are

presented  in Fig.  8.  The  self-diffusion  coefficients  of  both
Mg and La show an increasing trend with increasing Mg con-
tent in the system due to the smaller atomic size of Mg, which
contributes  to  a  lower resistance to  spatial  motion.  Further-
more,  the  self-diffusion  coefficient  of  Mg reported  by  S.D.

Korkmaz and Ş. Korkmaz is 6.64 × 10−5 cm2/s at 953 K [49].
In  this  work,  based  on  the  temperature  dependence  of  the
self-diffusion coefficient in Fig. 8(f), the self-diffusion coef-
ficient of Mg at 953 K is predicted to be 5.69 × 10−5 cm2/s us-
ing the Arrhenius law. This value is close to the reference, in-
dicating the reliability of our calculations. 

3.3.3. Shear viscosity
The shear viscosity is derived from the self-diffusion coef-

ficient based on the Stokes-Einstein equation [50], as shown
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in Eq. (9).

ηSE =
kBT

2π DRs

(9)

D
where kB is the Boltzmann constant taken as 1.38×10−23 J/K,
and  is the arithmetic average of DMg and DLa. Rs is the sol-
vodynamic  mean  radius  of  the  system,  the  detailed  expres-
sion of which, referring to the combination rule reported in
the literature [51], is shown in Eq. (10), Eq. (11), and Eq. (12)
for  the S1 system, S2–S6 systems,  and S7 system, respect-
ively.

For S1 system:

Rs = dLa–La (10)
For S2–S6 system:

Rs =
dMg–Mg+dLa–La+2dMg–La

4
(11)

For S7 system:

Rs = dMg–Mg (12)
The dMg–Mg and dLa–La in Eqs. (10), (11), and (12) represent

the effective atomic diameter, considered as the first peak po-
sition of the RDF as listed in Table 3. Fig. 9 presents the pro-
gression  of  shear  viscosity  with  temperature  from  1200  to
1800 K for all samples in Mg–La liquid alloy. It is shown that
the viscosity of each sample decreases with increasing tem-
perature. This phenomenon is due to enhanced atom motion
and weakened atomic interactions, thus reducing the mutual
obstruction  between  atoms.  For  S1,  the  shear  viscosity  de-
creased from 1.97 to 1.34 mPa·s, which is slightly lower than
the value reported by Patel et al. [52] (2.58 mPa·s). While for
S7, it decreases from 0.78 to 0.50 mPa·s from 1200 to 1800
K. The viscosity at 953 K is deduced from its temperature de-
pendence  to  be  1.09  mPa·s,  which  agrees  well  with  1.25

mPa·s at 953 K reported by Yokoyama and Tsuchiya [53] for
liquid Mg. Although the change pattern in the shear viscosity
is not pronounced for the La-rich system, the viscosity gener-
ally exhibits  a decreasing trend with increasing Mg content
over the whole concentration range. This observation could
be attributed to greater motion resistance due to stronger in-
teraction in the La-rich system.
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3.4. Thermodynamic behavior analysis

This work assessed the mixing enthalpy of the Mg–La li-
quid alloy system at 1200 K via Eq. (13) [54]. The results for
all the samples are shown in Fig. 10(a). All the enthalpies of
mixing  from S2  to  S6  are  negative,  indicating  that  the  Mg
and La atoms are attracted to each other and the alloy is fully
mixed in the liquid state. The mixing enthalpy decreases with
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∆Hmix

increasing Mg content in the Mg–La system and reaches its
minimum  at xMg =  0.6  (mole  ratio),  after  which  in-
creases  with  increasing  Mg  content.  The  mixing  enthalpy
curves show an asymmetry, with the minimum value favor-
ing the Mg side, and the overall trend of the evolution of the
mixing enthalpy with xMg agrees well with that reported in the
literature. In detail, the predicted mixing enthalpies from S2
to  S5  by  the  DP model  agrees  well  with  those  reported  by
Berche et al. [55] at 1031 K and Guo and Du [7] at 1060 K.
However, for S6, i.e., 80at% Mg in the Mg–La system, there
is some deviation between the predicted and literature values.

∆Hmix = Ex−
[
xEMg+ (1− x)ELa

]
(13)

∆Hmixwhere  is the mixing enthalpy, Ex represents the energy
value of the Mg–La alloy system when the Mg mole ratio is
x, EMg represents the energy of Mg in the same state, and ELa

is the energy of the corresponding La.

∆Hmix

The activity reflects the effective concentration of the sys-
tem, which is the product of the concentration and the activ-
ity  coefficient  and  is  of  great  importance  in  metallurgy.  In
this work, the activities of Mg and La in the Mg–La liquid al-
loy system were determined according to Eqs. (14) and (15),
derived from . The dependence of the activities (a) on
the Mg content in the Mg–La system is demonstrated in Fig.
10(b). It is observed that the downward concave shape devi-
ates from Raoul’s law and forms a negative deviation, indic-
ating  that  the  force  of  different  atoms  in  the  Mg–La  liquid
system is stronger than that of the same atoms. The activity
data have been compared with the results by Agarwal et al. at
1133  K [56] using  calorimetric  measurements.  The  overall
trend in the variation of activity with xMg is consistent, with
slight deviations in the individual components. Overall, it is
acceptable.

lnγMg =
1−0.1×T × (1/Tm-Mg+1/Tm-La)

RT
×[

∆Hmix+ (1− xMg)
∂∆Hmix

∂xMg

]
(14)

lnγLa =
1−0.1×T × (1/Tm-Mg+1/Tm-La)

RT
×[

∆Hmix+ (1− xLa)
∂∆Hmix

∂xLa

]
(15)

where γMg and γLa represent  the  activity  coefficients  of  Mg
and La, respectively; T is the temperature of the study; R is
the ideal gas constant; Tm-La is the melting point of La, and Tm-Mg

is  the  melting  point  of  Mg; xMg and xLa represent  the  mole
fractions of Mg and La in the liquid alloy, respectively.

Due to the challenges of determining activity data at high
temperatures,  researchers  have  attempted  to  establish  activ-
ity  predictions  by  coupling  statistical  thermodynamics
through  structural  modeling  of  the  components  with  each
other,  but these are often limited in their  applicability.  This
reliable work suggests that the application of DPMD simula-
tion driven by machine learning may provide new ideas and
guidance for the rapid and accurate establishment of activity
expression relationships for alloy systems. 

4. Conclusions

The Mg–La liquid alloy was thoroughly understood from
local  structure,  macroscopic properties,  and thermodynamic
behavior.

Firstly,  the accuracy of the trained DP model was valid-
ated by RMSEs, for energy, it  is 6.70 meV/atom, while for
force,  it  is  0.14  eV/Å.  The  comparison  results  of  RDF and
partial structure factor further illustrated that the DP model is
well-trained.

Secondly,  the  dependence  of  the  local  structure  of  the
Mg–La liquid alloy on temperature and composition changes
was systematically investigated, and it was confirmed that the
system is not only short-range ordered but also intermediate-
range ordered, particularly pronounced in the S6 (80at% Mg)
sample. The temperature evolution of the first peak intensity
of RDF is consistent with that of the Mg content in the sys-
tem.  At  high  temperatures,  the  Mg–La  liquid  alloy  shows
only short-range ordering.

Subsequently,  the  macroscopic  properties  of  the  system
were discussed, and the corresponding property database of
the Mg–La liquid alloy with different Mg contents from 1200
to 1800 K was constructed. Their temperature and compon-
ent dependencies were elucidated. The self-diffusion coeffi-
cients  of  Mg  and  La  at  different  temperatures  follow  the
Arrhenius formula, and the diffusion activation energies for
the S4 sample are then derived; for Mg, Ea is 28.31 kJ/mol,

 

0 0.2 0.4 0.6 0.8 1.0
−12

−9

−6

−3

0

 Guo and Du

 Berche et al.

 This work

∆H
m

ix
 /

 (
k
J·

m
o
l−

1 )

xMg

0 0.2 0.4 0.6 0.8 1.0

xMg

(a)

0

0.2

0.4

0.6

0.8

1.0

a
M

g

 aMg-DPMD

 aMg-Agarwal et al.

(b)

0

0.2

0.4

0.6

0.8

1.0

 aLa-DPMD

 aLa-Agarwal et al.

a
L

a

Fig. 10.    (a) Evolution of the mixing enthalpy for the Mg–La liquid alloy system; (b) activity of Mg and La in Mg–La liquid alloy.

J. Zhao et al., Understanding the local structure and thermophysical behavior of Mg–La liquid alloys via machine ... 447



while for La, it is 33.12 kJ/mol.
Finally, the thermodynamic behavior of the Mg–La alloy

was evaluated at 1200 K. The mixing enthalpies for S2 to S6
are negative, indicating that the Mg and La atoms are attrac-
ted  to  each  other  and  the  alloy  is  fully  mixed  in  the  liquid
state. The dependence of the Mg and La activities on the Mg
content shows a downward concave shape that deviates from
Raoul’s  law and forms a  negative  deviation.  Moreover,  the
reliable results demonstrate that DPMD simulation could of-
fer new guidance for related studies. 
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