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Abstract: In the realm of proton exchange membrane fuel cells (PEMFCs), the bipolar plates (BPs) are indispensable and serve pivotal
roles in distributing reactant gases, collecting current, facilitating product water removal, and cooling the stack. Metal BPs, characterized
by outstanding manufacturability, cost-effectiveness, higher power density, and mechanical strength, are emerging as viable alternatives to
traditional graphite BPs. The foremost challenge for metal BPs lies in enhancing their corrosion resistance and conductivity under acidic
conditions, necessitating the application of various coatings on their surfaces to ensure superior performance. This review summarizes and
compares recent advancements in the research of eight distinct types of coatings for BPs in PEMFCs, including noble metal, carbide, ni-
tride, and amorphous carbon (a-C)/metal compound composite coatings. The various challenges encountered in the manufacturing and fu-
ture application of these coatings are also delineated.
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1. Introduction

Proton exchange membrane fuel cells (PEMFCs) repres-
ent the forefront of innovation in the quest for sustainable en-
ergy solutions, gaining increasing attention for their high ef-
ficiency  and  minimal  emissions [1–2].  Central  to  the  ad-
vancement of PEMFCs technology are bipolar plates (BPs),
which constitute about 25%–30% of the total cost and 70%
of the weight and volume of PEMFCs [3]. These plates are
crucial,  not  only  for  structural  support  but  also  for  current
collection, heat management,  drainage, isolation, and distri-
bution of reactive gases.

Bipolar plates demand a unique combination of properties:
strong mechanical  strength,  high electrical  conductivity,  ro-
bust  chemical  stability,  and  excellent  air  tightness [4].  The
materials currently used for BPs fall into three primary cat-
egories:  graphite-based [5],  composite [6],  and  metal-based
[7]. Graphite-based plates, though excellent in electrical con-
ductivity and corrosion resistance, are limited by their brittle-
ness,  cost,  and  lengthy  manufacturing  process,  posing
hurdles to widespread commercialization. Meanwhile, com-
posite carbon-based plates, blending polymer resins with car-
bon conductive fillers, have shown improvements in strength
and manufacturability. Yet, they still face critical challenges
in  electrical  conductivity,  mechanical  robustness,  air  tight-
ness, and cost efficiency [8–9].

Metal-based bipolar plates, characterized by high strength,

good conductivity, and low air permeability, have been suc-
cessfully integrated into fuel cell stacks by major automotive
companies such as Toyota, Hyundai, and General Motors [3].
Numerous  alloys  have  been  explored  as  potential  materials
for these plates, including stainless steel (SS) [10–11], titani-
um [12–13], aluminum [14], and nickel alloy [15]. Stainless
steel,  in  particular,  is  favored  for  its  cost-effectiveness,
strength,  and  ease  of  mass  production [13].  However,  the
acidic  environment  (pH:  3–5)  and  operational  temperatures
(60–80°C)  of  PEMFCs  can  lead  to  corrosion  of  the  metal
matrix. The operating conditions such as high cathodic tran-
sient potential induced by SU/SD (start up/shut down), vari-
able loading conditions caused by high loads,  and dynamic
cycling conditions, all of which can accelerate substrate cor-
rosion. Not only does the generated passivation film dimin-
ish the conductivity of the bipolar plates, but also the corro-
sion-derived metal  ions induce catalyst  poisoning,  affecting
both performance and longevity. Therefore, the development
of protective coatings that balance corrosion resistance, elec-
trical efficiency, and cost-effectiveness is crucial for the ad-
vancement of metal bipolar plates in PEMFCs [4,16].

Coatings  and  corresponding  fabrication  techniques  are
widely used on metal bipolar plates such as noble metal, con-
ductive  polymer,  carbide,  nitride,  oxide,  and  pure  carbon
coatings  to  improve  their  corrosion  resistance  and  reduce
their interfacial contact resistance (ICR) [16–17]. In order to
compare the advantages and disadvantages of these coatings, 
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six main performance indexes are compared: corrosion res-
istance,  electrical  conductivity,  adhesion  to  substrate,  long-
term  service  performance  stability,  production  efficiency,
and production cost, as shown in Fig. 1. The results of polar-
ization and conductivity tests for different types of coatings,
scoring  values,  and  criteria  for  quantitative  scoring  can  be
found in Tables S1 and S2 (see the Supplementray informa-
tion).  For  instance,  while  noble  metal  coatings  demonstrate
superior  performance  in  enhancing  the  efficacy,  their  high
cost  remains  a  significant  barrier  to  widespread  adoption.
Oxide  coatings  have  the  potential  to  enhance  the  chemical

stability of the coating, but sacrifice the initial conductivity.
In  summary,  each  of  the  predominant  8  categories  of  coat-
ings exhibits inherent drawbacks that necessitate refinement.
Among these, the amorphous carbon (a-C)/metal compound
composite coatings are deemed the most promising category
for metallic bipolar plate coatings within the existing technic-
al parameters. Besides, internal radar charts for three typical
coatings—nitrides,  metal  compounds,  and  a-C/metal  com-
pound  composite  coatings—are  attached  in  their  respective
sections.
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Fig. 1.    The performance radar diagrams of different coatings for PEMFCs metal bipolar plates.
 

In  this  review,  the  performance  of  eight  coatings  was
compared  from  multiple  angles,  especially  the  balance
between electrical conductivity and corrosion resistance over
long  durations.  These  typical  coatings  were  explored  from
aspects,  such  as  coating  composition,  structure,  preparation
parameters, and performance evaluation methods. The main
challenges and development foreground of BPs coatings are
also  identified,  providing  reference  and  guidance  for  the
widespread application of BPs in PEMFCs. 

2. Materials and coatings 

2.1. Polymer coatings

Conductive polymers, notably polypyrrole (PPY) [18–23],
polyaniline (PANI) [22,24–28], along with their derivatives,
have gained significant attention in the field of metal bipolar
plate  coatings  due  to  their  excellent  chemical  and  physical
stability. Recent years have seen a surge in studies exploring
these materials.

A  notable  study  by  Akula et al. [21] electrosynthesized
poly  (2-amino-5-mercapto-1,3,4-thiadiazole)/polypyrrole
(PAMT/PPY) bilayer polymer composite coating (Fig. 2(a1)
and (a2)), showing a dense and compact surface morphology.
Potentiodynamic polarization studies  indicated that  the  cor-

rosion current densities (Icorr) of PAMT on PPY increased to
25 μA·cm−2 (Fig. 2(b)). Fig. 2(c) shows the potentiostatic po-
larization curves at  0.6 V vs.  SCE (Saturated calomel elec-
trode) of PAMT on PPY and PPY on PAMT composite coat-
ings.  Although this  performance surpasses  that  of  uncoated
SS316L,  it  still  falls  short  of  the  fundamental  requirements
for bipolar plate coatings. To further provide corrosion pro-
tection  of  coating  through  enhanced  physical  barrier  effect
and  anodic  passivation  effect,  a  Nb-doped  TiO2 (Nb–TiO2)
nano-powder modified polyaniline (TNO-PANI) coating was
applied  on  SS316.  The  tests  results  showed  that  the Icorr of
Nb–TiO2 nanofiber/PANI  composite  coating  decreased  to
about 2.75 μA⋅cm−2 in the simulated cathodic environment.
However, the current densities at PEMFCs working potential
exceeded 1 μA⋅cm−2, falling short of meeting the DOE (De-
partment of Energy) 2025 technical requirements (Table S3)
[24–25].

Liu et al. [19] prepared a 6 μm thick polypyrrole (PPY)/
graphene (G) composite coating on SS304 surface by cyclic
voltammetry  to  enhance  conductivity.  The  ICR  of  single
PPY  and  composite  PPY/G  coatings  were  41  mΩ∙cm2 and
19 mΩ∙cm2 at 1.4 MPa pressure, respectively. Despite the de-
crease  in  ICR  attributed  to  the  outstanding  conductivity  of
graphene and the layered structure of the composite coating,
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it still did not meet the DOE’s technical benchmarks. Simil-
arly, Jiang et al. [18] incorporated graphene oxide (GO) into
a polypyrrole (PPY) substrate using in-situ electrodeposition
on SS304 to prepare PPY/GO composite coatings with dif-
ferent GO content. As depicted in Fig. 2(d1) and (d2), the in-
terface  of  the  PPY/GO-1  composite  coating  exhibited  min-
imal corrosion, suggesting that this coating provided effect-
ive protection to the substrate. Furthermore, the polarization
current  density  of  304  SS  coated  with  PPY/GO-1  was  the
lowest among the samples, suggesting the most effective and
consistent  corrosion  protection  for  the  304  SS  substrate
(Fig. 2(e)–(g)). The coatings prepared by functionalizing car-
bon  powder  with  polydopamine  (PDA)  were  also  investig-
ated for their protective effects on the substrate (Fig. 2(h1)–

(k)).  After  720  h  immersion,  the  PPY/C-PDA  coating  ap-
peared  more  intact  than  PPY/C  coating,  featuring  distinct
spherical structural particles on its surface. Notably, as shown
in Fig. 2(j), the stable ICR values of PPY/C-PDA-coated 304
SS  initially  were  10  mΩ·cm²  and  increased  to  17  mΩ∙cm²
after  30  d  of  immersion,  suggesting  strong  potential  for
PEMFCs applications [20].

In summary, while various conductive polymer coatings,
including  PPY,  PANI,  and  their  composites,  have  shown
promise in providing corrosion resistance, challenges remain
in achieving the desired electrical conductivity and meeting
DOE targets. The preparation of these coatings often neces-
sitates  the  addition  of  other  materials  to  create  composites,
which  could  lower  polymerization  efficiency  and  increase
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costs. Continued innovation and research are essential to de-
velop more efficient and cost-effective polymer coatings for
PEMFCs applications. 

2.2. Noble metal coatings

Noble metals, notably Ag, Au, and Pt, have been a focal
point of research for augmenting the performance of bipolar
plates through coating applications [10,29–33]. These metals
exhibit remarkable electrical conductivity and corrosion res-
istance.

Yan et al. [30] applied a 0.28 μm Au coating on SS304L,
initially treated with Ni for improved Au adhesion. Despite
the Au coating’s efficacy in preventing SS304 bipolar plate
attenuation  at  160°C  over  432  h,  issues  such  as  coating
delamination and the prohibitive cost of gold pose practical
challenges. To mitigate the high costs associated with noble
metals, various studies have explored methods to reduce their
usage. These include co-alloying treatments of substrates and
doping  noble  metals  into  other  coatings.  Lin et al. [29]
employed  active  screen  plasma  nitrogen–platinum  co-
alloying  (ASPA)  on  SS316  surfaces  with  different  appli-
ed  bias,  forming  dense,  columnar  single-phase  Pt3Fe  layers
(Fig. 3(a1)–(a3)). After a 4 h potentiostatic test at 0.6 V vs.
SCE,  the  surface  of  the  15%  Bs  (15%  applied  bias  of  15
kVA) sample exhibited no evidence of corrosion compared
to the as-treated sample (Fig. 3(b1)–(c)). Moreover, the low
Icorr and  the  stable  ICR  values  reflected  the  great  corrosion
resistance and chemical stability of Pt3Fe (Fig. 3(c) and (d)).
Unfortunately, the small amount of iron nitride formed dur-
ing alloying treatment led to the higher passive current dens-
ity over 10 μA⋅cm−2.

Doping noble metals into TiN and a-C coatings has been
also studied extensively to alleviate non-negligible degrada-
tion  caused  by  corrosion  and  subsequently  increased  ICR.
For  instance,  TiN  coatings  doped  with  silver  nanoparticles
were prepared by employing direct current (DC) magnetron
sputtering  at  different  temperatures.  At  350°C,  the  coating
reached a thickness of  1.198 μm and achieved a prominent
ICR of 4.18 mΩ∙cm2, confirming the role of Ag in improving
conductivity of TiN coating [31]. Micron spot corrosion Au
was also integrated into TiN coatings,  which exhibited low
corrosion  current  density  of  0.2  μA⋅cm−2 at  0.67  V  vs.
Ag/AgCl  for  96  h,  and  thus  presented  a  stable  ICR  of
5.8 mΩ∙cm2 after potentiostatic test. Investigation into the de-
pendence of ICRs on Au suggested that 4%–6% surface cov-
erage of Au dots was the critical threshold to meet the target
ICR value of 10 mΩ∙cm2.  However, subjected to combined
cyclic  potentiostatic  and  potentiodynamic  polarization,  the
samples exhibited galvanic corrosion between Au and TiN,
subsequently significant delamination of Au dots (Fig. 3(e1)–
(f)) [10]. Following this, Zhang et al. [32] furthered this ap-
proach by doping a-C coating with Ag and Cr using closed
field unbalanced magnetron sputter ion plating (CFUBMSIP)
(Fig. 3(g)). Similarly, galvanic corrosion between Ag and a-
C also occurred in the coatings with higher Ag and Cr con-
centrations, resulting in deteriorated corrosion resistance after

durability corrosion tests. The potentiostatic curves and ICR
data  corroborate  the  improved  durability  and  reduced  ICR
with moderate Ag and Cr content (Fig. 3(h)–(j)).

In summary, while noble metal coatings demonstrate su-
perior  performance  in  enhancing  the  efficacy  of  bipolar
plates in PEMFCs, their high cost remains a significant barri-
er to widespread adoption. Doping noble metals into corro-
sion-resistance coatings has been confirmed to effectively al-
leviate the rapid degradation of conductivity during the cor-
rosion process, but galvanic corrosion might induce the noble
metal ion release, especially under combined potential polar-
ization. This underscores the need for cost-effective yet high-
performing alternatives in bipolar plate technology. 

2.3. Pure carbon coatings

Pure  carbon  coatings,  recognized  for  their  exceptional
electrical  conductivity,  corrosion  resistance,  chemical  inert-
ness, and mechanical hardness have garnered significant in-
terest for enhancing the performance of metal BPs [34–41].
Numerous researchers have explored the application of these
coatings  to  assess  the  enhancement  in  the  performance  of
metal BPs.

For  instance,  Fukutsuka et al. [34] fabricated  a  carbon
coating on SUS304 surface through plasma-assisted chemic-
al vapor deposition. The resulting ICR of the carbon coating
measured approximately 8.9 mΩ∙cm2 at 1 MPa, highlighting
its potential in reducing ICR. Exploring the influence of sub-
strate  variations,  Li et al. [41] developed  a-C  coatings  on
SS316L and TA2 by DC balanced magnetron sputtering. X-
ray  photoelectron  spectroscopy  (XPS)  spectra  analysis  re-
vealed sp2 bonding proportions  of  56.06% and 57.75% for
the  a-C  films  on  TA2  and  SS316L  substrates,  respectively
(Fig.  4(a1)  and  (a2)).  This  elevated  sp2  content  correlated
with a reduced ICR, which dropped to 5.64 and 6.52 mΩ∙cm2

at  1.5  MPa  for  the  respective  substrates  (Fig.  4(b)).  Poten-
tiostatic  polarization  tests  demonstrated  a  substantial
reduction  in  current  density  for  the  a-C-coated  SS316L
and TA2 samples, meeting the DOE target at 0.6 V vs. SCE
(Fig. 4(c)–(d2)).

The impact of the preparation temperature on the protect-
ive effect on the substrate has also been noted. Afshar et al.
[35] investigated  the  effects  of  varying  substrate  temperat-
ures (100–500°C) on the structural, chemical, and electrical
properties of carbon coatings on SS316L. Their findings re-
vealed  that  the  corrosion  resistance  decreased  at  elevated
temperatures due to the emergence of cracks and pores, with
optimal  resistance  observed  at  temperatures  below  400°C.
The most effective performance was achieved at a substrate
temperature  of  300°C,  where  the  carbon  coating  exhibited
superb  corrosion  resistance.  Building  on  this,  Li et al. [38]
further  demonstrated  that  the  microstructure  of  a-C  nano-
coatings could be altered by varying the deposition temperat-
ure during magnetron sputtering. They observed a transition
from a columnar to a dense microcrystalline structure in the
a-C nano-coating when the deposition temperature exceeded
300°C (Fig.  4(e1)  and (e2)).  This  change also led to  an in-
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creased content of sp2 carbon in the coating, significantly en-
hancing  its  corrosion  resistance,  interface  conductivity,  and
hydrophobicity.

Li et al. [36] extended this research by depositing a series
of a-C coatings on SS316L samples using magnetron sputter-
ing  technology  at  different  power  levels.  The  sample  pre-
pared  at  0.9  kW  exhibited  the  best  corrosion  resistance,  as
evidenced by the stable current density gradually increasing
from 3.99 × 10−3 μA·cm−2 at 0.9 kW to 2.948 × 10−2 μA⋅cm−2

at  2.1  kW (Fig.  4(f)  and  (g)).  Post  long-term potentiostatic
testing, the morphology and element distribution of the a-C

film  remained  stable  (Fig.  4(h)).  However,  the  presence  of
spherical defects enriched in Cr and O elements at the inter-
face  suggested  a  potential  alternative  corrosion  mechanism
within the a-C coating, potentially leading to the formation of
Cr2O3 spherical defects (Fig. 4(i)). Furthermore, a novel ap-
proach  involved  preparing  a  graphite  sheet  on  the  SS316L
substrate,  transforming  it  into  continuous  graphite  through
rapid heating between 800 and 900°C. The resulting graphite
displayed a loosely porous structure and was used to create a
pure graphite coating atop a binder layer, forming a pinhole-
free  protective  film  with  superior  electrical  conductivity
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(Fig. 4(j) and (k)). The potentiodynamic polarization results,
even after prolonged immersion tests, maintained a remark-
ably low corrosion current density, adhering to the DOE tar-
get [37].

In summary, pure carbon coatings demonstrate consider-
able  potential  in  enhancing  the  performance  of  metal  BPs,
particularly due to their  superior  electrical  conductivity and
corrosion  resistance.  However,  challenges  remain,  notably
the  adhesion  issues  between  carbon  layers  and  metal  sub-
strates, which can lead to delamination over extended service
periods. Moreover, the high production costs of materials like
amorphous  carbon  and  graphene  present  barriers  to  large-
scale  manufacturing.  Ongoing research  is  essential  to  over-
come  these  challenges,  focusing  on  improving  adhesion
properties  and  reducing  production  costs,  thereby  making
pure carbon coatings a more feasible and economical option

for industrial applications. 

2.4. Carbide coatings

Carbide coatings [42–49] are renowned for their superior
corrosion resistance and electrical conductivity. They are in-
creasingly being favored as the primary option for metal bi-
polar plate coatings in both academic and industrial spheres,
owing to  their  superior  performance and cost-effectiveness.
Presently, carbide coatings stand as one of the most extens-
ively  researched  and  widely  used  metal  bipolar  plate  coat-
ings.

Jin et al. [42] prepared  CrAlCN  coatings  with  different
carbon  contents  on  the  SS316L  substrate  by  using  closed
field unbalanced magnetron sputter ion plating (CFUMSIP).
The C-12sccm sample showed the lowest ICR values of 2.94
and 7.42 mΩ⋅cm2 before and after corrosion at 1.4 MPa. This
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underscores the effectiveness of the CrAlCN coatings in en-
hancing  surface  conductivity,  which  is  due  to  its  highest
carbide content. Similarly, Mo–C coatings of varying thick-
nesses were manufactured on SS316L by magnetron sputter-
ing.  Their  results  demonstrated  that  increasing  the  coating
thickness  improved  corrosion  resistance.  A  thin  transition
layer of Cr on SS316L prior to Mo–C deposition further en-
hanced performance by eliminating micro-defects [43]. Hou
et al. [45] prepared a series of a-C films (a-C:Cr) with vary-
ing Cr content on SS316L, observing an initial decrease and
subsequent increase in resistance with higher Cr content, sug-
gesting  an  optimum  Cr  concentration  for  maximizing  con-
ductivity.  Additionally,  multilayer  Cr–C coatings  were  pre-
pared on SS316L using CFUBMSIP (Fig. 5(a)). The Cr0.75C5

coating exhibited an Icorr of 1.046 μA⋅cm2 at 0.6 V vs. SCE,
demonstrating outstanding corrosion resistance, likely due to
the higher proportion of C sp2, enhancing the coating’s cor-
rosion resistance. Moreover, the potentiostatic experiments at
0.6 V vs. SCE show the stability of the coating film. Notably,
the ICR results indicated a significant improvement in elec-
trical conductivity with this coating (Fig. 5(b)–(d)) [44].

The  MXene  analogous  phase  (MAX),  a  novel  material
distinct from traditional transition metal carbide coatings, of-
fers excellent oxidation resistance and electrical conductivity
due to its unique layered structure and bonding characterist-
ics. Lu et al. [46] deposited multilayer Ti–Al–C thin films on
304  SS  substrates  using  physical  vapor  deposition  (PVD),
subsequently  forming  a  Ti3AlC2 phase  through  annealing
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(Fig. 5(e)). With the rise in heating temperature from 800 to
900°C, there was a corresponding increase in grain size from
10 to 50 nm, indicating that elevated provided greater energy
to fostered grain growth (Fig. 5(f)–(g2)). The Ti3AlC2-coated
sample  exhibited  outstanding  corrosion  resistance  with  an
average current density of 0.8 μA⋅cm2 in potentiostatic po-
larization tests at 0.6 V vs. SCE. Furthermore, the exception-
ally  lower  ICR,  when  compared  to  other  samples,  under-
scores its outstanding conductivity (Fig. 5(h)–(k)). To invest-
igate the impact of phase orientation on the corrosion resist-
ance and conductivity of bipolar plates, the Cr2AlC coatings
with  different  crystal  orientations  were  prepared  by  arc/
sputtering  deposition  combined  with  vacuum  annealing
(Fig. 5(l)). The S60 sample showed the best corrosion resist-
ance, with the lowest Icorr of 0.068 μA⋅cm2 (Fig. 5(m)). Dens-
ity functional calculations suggested that the preferential ori-
entation (103)  of  the  Cr2AlC layer  facilitated  the  formation
of an oxide layer, contributing to its superior corrosion resist-
ance.  Additionally,  the  S60  sample  maintained  remarkably
low  ICR  before  and  after  potentiostatic  polarization
(Fig. 5(n)) [47].

In summary, while carbide coatings show immense poten-
tial,  their  long-term  electrical  conductivity  and  preparation
efficiency warrant further improvement. The stringent condi-
tions required for temperature and carbon sources during the
preparation  pose  significant  challenges  for  large-scale  pro-
duction,  highlighting  a  critical  area  for  future  research  and
development. 

2.5. Nitride coatings

Nitride  coatings [50–55],  such  as  titanium nitride  (TiN),
chromium  nitride  (CrN),  and  titanium  aluminum  nitride
(TiAlN), have garnered considerable attention in recent years
for  their  robust  structural  and  mechanical  properties.  These
coatings  hold  particular  appeal  for  deployment  in  metal  bi-
polar plates across various technological applications, owing
to their dense surface structure, exceptional protective qualit-
ies, good corrosion resistance, and superior surface conduct-
ivity.

In  order  to  explore  novel  metal  compound  coatings,  the
TiN  coatings  using  titanium  tetra  (dimethylamino)
(TDMAT)  and  titanium  tetrachloride  (TiCl4)  as  precursors
were prepared by plasma-enhanced atomic layer  deposition
(PEALD). The TDMAT-TiN coating provided more effect-
ive protection for SS316L than TiCl4-TiN, achieved a posit-
ive corrosion potential (Ecorr) of –0.263 V vs. SCE and a low
Icorr of 0.1 μA⋅cm−2 (Fig. 6(a1)–(b)). The higher Icorr of TiCl4-
TiN coating was attributed to the presence of Cl and Fe with-
in the bulk films, as indicated by the Auger electron spectro-
scopy (AES) depth profile and energy-dispersive X-ray spec-
troscopy  (EDX)  mapping  analysis  (Fig.  6(c)  and  (d)) [54].
Following this research, Jang et al. [53] modified the surface
of SS316L by depositing 4.5 µm of Ta and 200 and 400 nm
of  TiN  using  magnetron  sputtering  and  plasma-enhanced
atomic layer deposition, respectively (Fig. 6(e)). As a result,
the Icorr at 0.6 V vs. SCE was reduced to 1.3, 1.0 μA⋅cm−2 for

TaTiN200 and  TaTiN400,  respectively (Fig.  6(f)).  Besides,
the  ICR  values  of  TaTiN400  sample  declined  to  7.78
mΩ·cm2,  thus meeting the DOE 2025 targets  for  ICR (Fig.
6(g)).  By  disproportionation  reaction  of  Nb(IV)  ions  in
NaCl–KCl–NaF  molten  salt,  Yang et  al. [11] successfully
synthesized  a  dense  nanocrystalline β-Nb2N  coating  with
thickness  of  about  600  nm,  which  was  composed  of  nano-
crystalline  grains  with  an  average  size  of  ∼30  nm (Fig.
6(h)–(j)).  Notably,  500  h  long-term  polarization  at
0.23 V vs. MSE (mercurous sulfate electrode) was carried out
on  the  sample  (Fig.  6(k)).  The  current  density  was  quite
stable at around 0.15 μA⋅cm−2. More importantly, the ICR of
β-Nb2N  coating  after  long-term  polarization  was  only
5.2 mΩ·cm2, reflecting the high chemical stability and robust
protection of the β-Nb2N coating. Mi et al. [55] doped CrTiN
coatings  with  different  C  content  on  SS316L,  wherein  a-C
and chromium carbide phases appeared as the C target cur-
rent increased from 0 to 6 A. At 1.1 V vs. SHE (saturation
hydrogen  electrode)  potentiostatic  polarization  for  2  h,  the
current  density  of  C-6A  sample  was  stable  at  a  minimum
value of  0.609 μA⋅cm−2.  Additionally,  the ICR slightly de-
creased  to  7.6  mΩ∙cm2 after  polarization,  indicating  out-
standing  corrosion  resistance  and  electrical  conductivity  at
high potential.

In  conclusion,  the  overall  characteristics  of  nitride  coat-
ings  are  remarkable  (Fig.  7),  and  the  properties  of  various
metallic nitrides have emerged as a pivotal focus in contem-
porary  research  endeavors.  Nevertheless,  thermodynamic-
ally, the corrosion dissolution of the nitride compound in an
acidic  solution  and  the  subsequent  oxidation  of  the  coating
over  prolonged  service  durations  may  contribute  to  the  in-
crease of the ICR. 

2.6. Oxide coatings

Metal oxides, relatively simple to employ as coatings for
bipolar plates (BPs) [56–63] have evolved from early surface
treatment technologies that utilized oxide films formed on the
metal BPs as protective layers. Profiting from the high trans-
passivation potential  of  metal  oxides,  this  coating generally
has improved corrosion resistance, while this approach often
could not guarantee satisfactory conductivity.

Pillis et al. [58] deposited two types of Nb2O5 coatings on
SS316L by magnetron sputtering for 15 and 30 min, respect-
ively.  Peak  fitting  of  Nb 3d  spectra  indicated  two different
oxidation states, Nb4+ and Nb5+. The corrosion current dens-
ity and anodic current density of the film for 15 min sample
at room temperature were relatively low, which linked to sur-
face enrichment of the less reactive Nb5+. Despite their excel-
lent  corrosion  resistance,  the  doped  oxide  coatings  did  not
achieve optimal conductivity levels. Aiming to enhance both
corrosion  resistance  and  conductivity,  the  multilayer
CrO*/Cr coatings were prepared on 304 SS substrate using
magnetron sputtering with a remote inductively coupled oxy-
gen plasma (O-ICP) (Fig. 8(a) and (b)) [59]. Compared to the
native oxide layer, the CrO*/Cr/SS exhibited a lower stable
corrosion current density (<1 μA⋅cm−2), attributed to the ox-
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idation  of  Cr  to  its  highest  valence  state  in  CrO*  layer
(Fig.  8(c)).  While  the  introduction  of  oxygen  initially  re-
duced  conductivity,  the  CrO*/Cr/SS  specimens  demon-
strated  slower  conductivity  decay  during  polarization  and
better conductivity retention post-testing (Fig. 8(d)).

Subsequent studies by Wang et al. [61] involved introdu-
cing controlled amounts of oxygen into ZrN coatings using
plasma-enhanced  atomic  layer  deposition  to  create  Zr2N2O
conductive coatings (Fig. 8(e1)–(j)). As Fig. 8(i) shows, the
ICRs of Zr2N2O/SS before and after 42 h intermittently po-
larization at 0.6 V vs. Ag/AgCl are 6.9 and 12.5 mΩ∙cm2, re-
spectively. Additionally, as Fig. 8(j) shows, the introduction
of oxygen increases the oxidation resistance of ZrN, thereby
limiting the thickness of the oxide layer and reducing the cor-
rosion products on the surface due to the reduced corrosion
current density, so the ICR after long-term test of Zr2N2O/SS
was much lower than that of ZrN/SS. At a cathodic transient
potential as positive as 1.1 V vs. Ag/AgCl, the substrate is ef-

fectively protected by the Zr2N2O coating [62].  As a result,
Zr2N2O reduces the anodic dissolution of 304 SS in the trans-
passive  region.  These  coatings  effectively  protect  the  sub-
strate, as evidenced by minimal shallow corrosion pits after
long-term  polarization  (Fig.  8(e1)  and  (e2)).  The  Zr2N2O
coatings, with a wider bandwidth than the passivation film on
304  SS,  required  a  higher  anodic  polarization  potential  to
“bend” the  valence  band  upwards  to  reach  the EF and  thus
enter the transpassive region at a more positive potential than
304 SS. In summary,  it  was proved that  introducing a con-
trolled amount of oxygen could alleviate the oxidation of the
coating during polarization, thus inhibit the ICR attenuation
rate of the coating (Fig. 8(f) and (g)).

Besides the studies above, the TiNO coatings with vary-
ing  oxygen  contents  were  fabricated  on  316L  SS  using
CFUMSIP [60].  Worth  mentioning  is  that  a  SU/SD  (start
up/shut down) cycle test was designed to evaluate the durab-
ility of the bipolar plate coatings, involving 6000 cycles of a
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triangular wave with a potential  change range of 1.1–1.6 V
vs.  SCE within  2  s  to  accelerate  the  degradation  of  the  bi-
polar plate. With the increase of O2 flow rate, the pace of cur-
rent density elevation at 1.6 V vs. SCE had slowed down, in-
dicating that the addition of O2 improved the corrosion resist-
ance and stability of the TiN coating. However, the oxygen-
doped TiN coating enhanced the anti-oxidation and anti-cor-
rosion  properties  while  simultaneously  weakening  the  con-
ductivity. Additionally, Hong et al. [63] conducted heat treat-
ment on the TiN deposited samples at different temperatures
to  incorporate  O2 into  the  coatings.  Although  the  resulting
oxide layer effectively reduced corrosion rate, it significantly
increased  the  ICR due  to  the  thicker  oxide  layer  formed  at
high  temperature  of  450°C.  In  contrast,  coatings  treated  at
300°C formed a gradient layer with an appropriate amount of
oxide and exhibited a low ICR value of 8.3 and 12.2 mΩ∙cm2

before  and  after  potentiostatic  polarization  at  0.6  V  vs.
Ag/AgCl, respectively.

In summary,  oxide coatings have the potential  to  reduce
corrosion  rates  and  enhance  the  chemical  stability  of  the
coating.  Despite  their  inherent  lower  conductivity,  the  re-
markable corrosion resistance of these coatings plays a cru-
cial  role  in  mitigating  the  rapid  ICR  increase  typically  ob-
served during polarization. Consequently, oxide coatings are
emerging as a viable material  choice for long-term stability
and performance in BPs applications. 

2.7. Metal compound composite coatings

Metal compound composite coatings, including metal ox-
ides, carbides, and nitrides, have garnered attention for their
potential to achieve a balanced performance in terms of cor-
rosion resistance and electrical  conductivity [64–69].  These
coatings are designed to address the dual requirements of ex-
ceptional corrosion resistance and favorable electrical prop-
erties in BPs.

A notable study by Wang et al. [64] involved the prepara-
tion of Ti/(Ti, Cr)N/CrN multilayer coatings on SS316L by
arc ion plating technology (Fig. 9(a) and (b)). The ICR of the
coated  sample  measured  4.9  mΩ∙cm2 under  a  pressure  of
1.5  MPa.  The  enhanced conductivity  could  be  attributed  to
the high electrical  conductivity of the outermost CrN layer.
Simultaneously, the occurrence of metal oxide semiconduct-
ors was effectively impeded by the internal Ti layer and the
formed nitride layer.  Additionally,  the reduced internal  res-
istance in the cell featuring the multilayer-coated SS316L bi-
polar  plate  elevated  the  maximum  output  power  density  to
811.65 mW⋅cm−2 at  1500 mA⋅cm−2,  comparable  to  that  of
the cell equipped with a graphite bipolar plate (Fig. 9(c) and
(d)).  Further  research  explored  the  integration  of  graphene-
like carbon bridged nano-Cu clusters within amorphous car-
bon  matrices,  resulting  in  the  creation  of  a  dual-structured
C18.60Cr0.06Cu  (S65)  film  was  fabricated  using  magnetron
sputtering technique (Fig. 9(e) and (f)) [67]. The ICR of the
coating was 7.34 mΩ∙cm2 at 1.4 MPa pressure. Additionally,
the potentiostatic polarization revealed that the current dens-
ity  of  S65 sample was stable  at  0.71 μA⋅cm−2 at  0.6  V vs.

Ag/AgCl,  underscoring the  remarkable  anti-corrosion prop-
erties of S65 sample. With the target current increasing fur-
ther,  the  electrochemical  impedance  of  the  samples  de-
creased, signifying that S65 exhibited the highest impedance
cycle (Fig. 9(g) and (h)).

SO2−
4

Pugal Mani et al. [65] employed cathodic arc-physical va-
por deposition (CA-PVD) technology to deposit single-layer
TiN, TiAlN, and multilayer TiN/TiAlN coatings on SS316L
(Fig.  9(i)).  The  TiN/TiAlN  multilayer  coating  exhibits  a
dense  microstructure  and  an  interfacial  barrier  between  the
TiN/TiAlN layers. This configuration impedes the diffusion
of corrosive ions such as  and F−, consequently enhan-
cing  the  material’s  corrosion  resistance.  It  can  be  observed
that, with the increase of polarization time, the ICR values for
all of samples rise, stabilizing around 3.5 h (Fig. 9(j) and (k)).
The  rise  in  ICR values  for  TiAlN and  TiN/TiAlN coatings
after 4 h of polarization study was predominantly ascribed to
the  formation  of  a  protective  passivating  aluminum  oxide
film on  both  coatings [70–72].  Subsequently,  CrN,  CrAlN,
and  the  multilayer  CrN/CrAlN coatings  were  fabricated  on
SS316L  using  the  cathodic  arc  evaporation-physical  vapor
deposition  (CAE-PVD)  system  (Fig.  9(l)).  These  samples
were  tested  in  85wt%  H3PO4 solution  at  140°C,  with  the
CrN/CrAlN  coated  samples  exhibiting  a  corrosion  current
density  of  0.91  μA⋅cm−2 at  0.6  V  vs.  Ag/AgCl  under  the
cathode  condition  of  high  temperature  proton  exchange
membrane  fuel  cells  (HT-PEMFCs).  Compared  with  other
coatings, the CrN/CrAlN coating exhibited the best protect-
ive  performance  against  ionic  corrosion.  Additionally,  the
ICR  of  SS316L/CrN/CrAlN  increased  marginally  from
6 to 7 and 9 mΩ∙cm2 in anode and cathode after potentiostat-
ic  polarization  respectively,  displaying  outstanding  stability
(Fig. 9(m)–(n2)) [66].

In  summary,  metal  compound  composite  coatings  have
commendable  electrical  conductivity,  corrosion  resistance
and  stability  in  long-term  service  (Fig.  10).  However,  the
complex  preparation  processes  of  compounds  such  as  ni-
trides, carbides, and oxides within these composite coatings
present a challenge for large-scale production. 

2.8. a-C/metal compound composite coatings

“Conductive carbon + metal” composite coatings, such as
C/Ti and C/Cr, have been extensively explored due to their
comprehensive  performance,  which  benefit  from  the  con-
ductivity of carbon and the corrosion resistance of metals.

Wu et al. [73] prepared Cr/a-C coatings on 304 SS by DC
magnetron  sputtering.  The  unique  interlocking  structure
between the Cr layer and the a-C layer effectively prevented
corrosive liquids from reaching the substrate, reducing corro-
sion current density to 0.894 μA⋅cm−2. Wang et al. [74] then
prepared  C/Ti  nano-coatings  of  varying  thicknesses  on
SS316L (C100Ti60/SS and C20Ti140/SS), with the C100Ti60 coat-
ing  exhibiting  superior  corrosion  resistance  and  electrical
conductivity. This coating maintained its protective capabil-
ities until a potential of 1.13 V vs. Ag/AgCl, beyond which
delamination  of  the  C  layer  led  to  a  significant  increase  in
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ICR  (266.12  mΩ∙cm2)  (Fig.  11(a1)–(a4)).  In  fact,  the  sub-
stantial rise in ICR is fundamentally attributed to the increase
of potential drop within the double electric layer (Fig. 11(b)).

To  address  the  adhesion  challenges  between  carbon  and
metal interfaces, researchers like Bi et al. [75] turned to met-
al  compounds.  They synthesized multilayer  Zr–C/a-C coat-
ings on SS316L using CFUBMSIP,  achieving a  stable  cur-
rent density at about 0.06 μA⋅cm−2 after potentiostatic polar-
ization at  0.6 V vs.  SCE and a slight  increase in ICR from
3.63 to 3.92 mΩ∙cm2. In subsequent work, Bi et al. [76] pre-
pared three kinds of a-C coatings with Cr, Ti and Nb as trans-
ition layers based on the E–pH diagrams to assess the differ-
ences  in  their  protective  performance  on  SS316L.  The  Cr
layer promoted graphitization of a-C layer, so the ICR value
of  Cr  transition  layer  sample  was  2.3  mΩ∙cm2,  which  was
less than that of the other two samples. However, Cr suffered
from anodic dissolution when the applied potential exceeded
1.2 V vs. SHE, resulting in the outmost a-C layer peeling off.
Meanwhile, originating from the Ti and Nb passivation, the

a-C coatings with Ti or Nb layers exhibited excellent corro-
sion resistance even when the applied potential was as high
as 1.6 V vs.  SHE. It  is  concluded that  a-C coating with Cr
layer  is  recommended  for  low-potential  batteries  and  a-C
coating with Ti or Nb layer could withstand the high-poten-
tial  shock  effectively  for  batteries  under  complex  working
conditions.

Some  scholars  have  prepared  composite  coatings  with
multilayer structure. On the one hand, they combined the ex-
cellent  properties  of  conductive  carbon  and  metal  com-
pounds. On the other hand, multilayer structure could effect-
ively prevent corrosive solutions from interacting with sub-
strates.  Yi et al. [77] prepared  four  kinds  of  multilayer
TiCx/a-C coatings with different thickness of carbon layer on
SS316L using  CFUBMSIP.  With  the  increase  in  the  thick-
ness  (t)  of  the  a-C  layer,  larger  graphite  like  clusters  pro-
moted more sp2 hybridized carbon atoms in the layer, while
vacancy-like defects became more obvious (Fig. 11(c1)–(e)).
The outcomes demonstrate that the 69 nm-sample performed
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the  best  anti-corrosion  properties  with  the  stable  current
density of 0.017 μA⋅cm−2,  attributing to the limited defects
and appropriate graphitization. Additionally,  the ICR of the
coating increased slightly from 2.35 to 5.3 mΩ∙cm2 after the
potentiostatic polarization at 0.84 V vs. SHE for 24 h. Zhang
et al. [78] also prepared a series of multilayer TiCx/a-C coat-
ings on SS316L by magnetron sputtering, depositing the a-C
layers through alternating the negative substrate bias voltage
between 150 V and 600 V for n periods (n = 0, 5, 10, 15). Al-
ternating  structure  promoted  the  generation  of  sp2  rich
clusters on the surface and restrained the columnar structures
in the a-C layers. As a result, the sample deposited with 15 al-
ternating periods showed optimal performance, with a stable
current  density  about  0.003  μA⋅cm−2 and  a  low  ICR  of
6.8  mΩ∙cm2 after  potentiostatic  polarization  at  0.6  V  vs.
Ag/AgCl.

In addition to these studies, the multilayer C/Ti nano-coat-
ings were fabricated on SS316L and tested their stability with
cyclic potentiodynamic and potentiostatic polarization, which
simulated the high cathodic transient potential under SU/SD
conditions (Fig. 11(f)) [79]. The ICR of the C/Ti/SS reached
a significantly low value of 1.59 mΩ∙cm2, and the corrosion
current density was 0.02 μA⋅cm−2, which notably better than
the  DOE  targets.  It  was  found  that  the  diffusion  interface
between the C and Ti monolayers optimized the potential dis-
tribution  across  the  coating  and  improved  the  transpassive
potential of C/Ti/SS to 1.5 V vs. SHE, thus significantly im-
proving the corrosion resistance of  the coating (Fig.  11(g)–
(h5)).  Yi et  al. [80] deposited  five  kinds  of  multilayer

Cr–N–C coatings with different nitrogen content on SS316L
by CFUBMSIP using closed-loop optical  emission monitor
(OEM) to control nitrogen flow rate. The findings suggested
that the ICR was mainly determined by the content of C sp2
in a-C layer and the corrosion resistance mainly depended on
the content of Cr3C2. The S3 sample (sample with OEM val-
ues of 60%) achieved optimal properties, with the corrosion
current  density  measuring  0.308  μA⋅cm−2 and  the  ICR de-
creasing to 2.11 mΩ∙cm2. Therefore, the content of C sp2 and
Cr3C2 could  be  further  increased  by  optimizing  the  coating
process  parameters  to  achieve  higher  properties.  Moreover,
Yan et  al. [81] prepared  (a-C:  H/TiC)/(TiCN)/(TiN)  mul-
tilayer coatings on titanium substrate. The columnar crystals
disappeared and changed to dense structure with higher C2H2

flow rate, which reduced the permeation channels for corros-
ive  ions  and  helped  to  improve  the  corrosion  performance.
The Icorr of the coatings with highest acetylene flow rates of
60 mL·min−1 was 0.66 μA⋅cm−2 at 0.6 V vs. SCE. Further-
more,  the  ICR  of  a-C  multilayer  coatings  containing  a
large amount of C sp2 was 1.6 mΩ∙cm2, showing superb con-
ductivity.

In summary, the a-C/metal compound composite coatings
exhibit  excellent  corrosion  resistance  and  outstanding  con-
ductivity  (Fig.  12),  contributing to  enhanced efficiency and
longevity  of  PEMFCs.  The  coating  process  is  relatively
straightforward, resulting in reduced raw material costs and
suitability  for  large-scale  production,  which  is  also  why  it
stands out as one of the most promising coatings for practical
applications.
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Fig. 12.    Performance radar diagrams of three representative a-C/metal compound composite coatings.
  

2.9. Summary

To  intuitively  observe  the  performance  differences
between various coatings, the comparison of coatings is sum-
marized in Fig.  13 from the perspectives of  current  density
and ICR, particularly the deterioration of conductivity during
long-term  polarization.  Notably, Fig.  13(b)  presents  a  co-
ordinate system in which the proximity of points to the ori-
gin correlates with the superior stability of the ICR for the re-
spective layer types. It can be observed that the initial ICR of
oxide coatings is relatively high, potentially due to the lim-
ited availability of free electrons within their matrix and the
inherent  characteristics  of  their  crystalline  structure  and
chemical  bonding.  Additionally,  metal  compound  coatings
have  demonstrated  superior  comprehensive  performance,
making them a relatively viable option for metallic BPs coat-

ings. At last, it is worth noting that both in Fig. 13(a) and (b),
most  of  the  a-C/metal  coating  data  are  close  to  the  origin,
demonstrating robust comprehensive performance, which is
why a-C/metal coatings are considered to be the most prom-
ising option for metallic BPs. 

3. Conclusions and outlook

This review offers a comprehensive analysis of the latest
advancements in coatings for PEMFCs metal bipolar plates,
underscoring the universal  objective of  achieving a balance
between high electrical conductivity and excellent corrosion
resistance. This endeavor is crucial for meeting the technical
benchmarks  established  by  the  Department  of  Energy
(DOE). The results permit the following conclusions:

(1) Polymer coatings: The conductivity and corrosion res-
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istance are far from the basic requirements. There is a need to
optimize  overall  performance  and  increase  polymerization
efficiency for practical application.

(2) Noble metal coatings: These coatings have remarkable
and stable  conductivity.  However,  the  high  production  cost
limits  their  suitability  for  mass  production.  Future  research
should  focus  on  minimizing  the  use  of  noble  metals  while
avoiding galvanic corrosion to maintain their comprehensive
performance.

(3) Pure carbon coatings: The carbon coating is relatively
stable in acid environment and has available initial conduct-
ivity. But the coating is easy to fall off and crack due to the
lack of adhesion with metal substrate. The high cost caused
by the low deposition rate of carbon also needs to be solved.

(4) Carbide coatings: For most carbide coatings, the lim-
ited corrosion resistance causes a significant deterioration in
conductivity  after  polarization.  Future  challenges  include
finding suitable metal carbides with prominent properties and
maintaining  electrical  conductivity  over  extended  service
times.

(5) Nitride coatings: This kind of coating possesses good
corrosion resistance and initial electrical conductivity, which
can meet the basic requirements. However, issues with con-
ductivity loss due to corrosion dissolution in acidic solutions
and oxidation of coatings need addressing.

(6) Oxide coatings: Benefiting from the high transpassiv-
ation potential of oxides, these coatings generally show good
corrosion  resistance  at  high  potential.  Nevertheless,  explor-
ing suitable oxygen content to achieve improved initial con-
ductivity and ensure long-term performance remains a signi-
ficant challenge.

(7) Metal compound composite coatings: In order to com-
bine  the  available  characteristics  of  various  metal  com-
pounds, the design of coatings is generally cumbersome. The
low efficiency in preparing these compounds is a barrier to
large-scale production, necessitating process optimization.

(8)  a-C/metal  compound  composite  coatings:  Combined
with the remarkable conductivity of a-C layer and the corro-
sion  resistance  of  metal,  this  kind  of  coating  has  balanced
performance and basically meets the requirements of practic-
al  application.  In  particular,  the  conductivity  decay  in  the

long-term polarization has been mitigated. Improvements are
needed in carbon layer stability at high potentials and coating
corrosion resistance under transient service conditions.

In general, despite substantial strides in this field, several
overarching  challenges  persist,  encompassing  the  enhance-
ment of coating durability, efficiency in preparation, cost re-
duction, and scalability for mass production. A pivotal con-
cern across all coatings is the significant increase in ICR un-
der simulated corrosion conditions, impacting their practical
viability. Additionally, adopting more realistic testing meth-
ods in actual PEMFCs conditions, such as long-term dynam-
ic  polarization  and  high  transient  potential  polarization,  is
crucial for accurately evaluating the lifetime and durability of
various coatings. 
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