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Abstract: The control of oxygen is paramount in achieving high-performance titanium (Ti) parts by powder metallurgy such as metal in-
jection molding (MIM). In this study, we purposely selected the Ti and Ti–6Al–4V powders as the reference materials since these two are
the most representative Ti materials in the industry. Herein, hydride–dehydride (HDH) Ti powders were pre-oxidized to examine the ef-
fect of oxygen variation on the characteristics of oxide layer on the particle surface and its resultant color feature. The results indicate that
the thickness and Ti oxide level (Ti0 → Ti4+) of the oxide layer on the HDH Ti powders increased as the oxygen content increased, lead-
ing to the transition of color appearance from grey, brown to blue. This work aids in the powder feedstock selection at the initial stage in
powder metallurgy. In addition, the development of oxygen content was comprehensively studied during the MIM process using the gas-
atomized (GA) Ti–6Al–4V powders.  Particularly,  the oxygen variation in the form of oxide layer,  the change of oxygen content in the
powders, and the relevant parts were investigated during the processes of kneading, injection, debinding, and sintering. The oxygen vari-
ation was mainly concentrated in the sintering stage, and the content increased with the increase of sintering temperature. The variation of
oxygen content during the MIM process demonstrates the crucial role of powder feedstock and sintering stage in controlling oxygen con-
tent. This work provides a piece of valuable information on oxygen detecting, control, and manipulation for the powder and processing in
the industry of Ti and its alloys by powder metallurgy.
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1. Introduction

Titanium (Ti) and its alloys find extensive applications in
aerospace, biomedical,  and energy industries owing to their
excellent properties such as low density, high strength, excel-
lent  corrosion  resistance,  and  good  biocompatibility  [1–4].
Due to the poor processability of Ti, it is hard to consistently
produce  complex-shaped,  high-performance,  and  low-cost
products of Ti and its alloys through conventional processing
technologies e.g., refining casting and extrusion forging [5–8].

Metal injection molding (MIM) is one typical powder me-
tallurgy  route  that  combines  powder  metallurgy  and  injec-
tion molding technologies [9–11], which excels in producing
intricately  shaped  small  to  medium-sized  parts  and  is  well
suited for mass production [12–13]. The application of MIM
to produce Ti and its alloys has undergone extensive invest-
igations for several years [9,14], mainly focusing on improv-
ing  product  quality  (e.g.,  densification,  size  precision,  and
microstructure) through processing control.

To control the impurity content in Ti and its alloys during

powder  metallurgy  or  MIM is  of  great  significance  for  en-
hancing the performance of Ti and its alloys. Among the in-
terstitial elements, oxygen has the most significant influence
on both microstructure and performance of Ti and its alloys
made  by  powder  metallurgy  [15−16].  In  general,  an  in-
creased  interstitial  oxygen  content  results  in  strength  en-
hancement while concurrently diminishing the ductility of Ti
and its alloys [17–19]. Investigations by Yan et al. [20] and
Amherd Hidalgo et al. [21] explored the correlations between
oxygen content, microstructure, and performance for Ti and
its  alloys.  Banerjee  and  Joens  [22]  investigated  the  oxygen
content during the sintering stage of MIM, providing insights
into potential oxygen sources. These investigations primarily
focused  on  the  final  products  by  powder  metallurgy,  but
overlooking the investigations into the original powder. The
oxygen source  in  Ti  and  its  alloys  made  by  powder  metal-
lurgy  normally  comes  from  the  original  powder  feedstock
and  oxygen  increment  during  the  process.  However,  vari-
ations in the oxygen content of the powder feedstock during
powder preparation and throughout the entire MIM process 
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(kneading,  injection,  debinding,  and  sintering  stages)  have
not  been  thoroughly  studied.  Meanwhile,  these  unexplored
investigations  play  a  critical  role  in  understanding  the  oxy-
gen variation and further possibly providing the oxygen con-
trol in powder metallurgy of Ti and its alloys.

This  work  utilizes  the  hydride-dehydride  (HDH)  Ti
powders  and  gas-atomized  (GA)  Ti–6Al–4V  powders  as
starting materials, to investigate the variation of oxygen con-
tent  in  both  preparation  of  powder  feedstock  and  overall
MIM  process.  In  this  study,  we  purposely  selected  Ti  and
Ti–6Al–4V powders  as  the  reference  materials,  since  these
two are the most widely-used and representative Ti materials
in the industry. The findings of this work are able to serve as

a valuable reference for the selection of powder feedstock for
powder metallurgy, and also fills a gap in understanding the
oxygen content variation during MIM for Ti and its alloys. 

2. Experimental 

2.1. Raw powder

HDH Ti powders, with an irregularly shape (see Fig. 1(a))
and  a  mean  particle  size  (D50)  of  24.4  μm (see Fig.  1(c))),
were used for pre-oxidation.  Spherical-shaped GA Ti–6Al–
4V powders (Fig. 1(b)) with a D50 of 17.0 μm were chosen to
formulate feedstocks for MIM. Chemical compositions of the
HDH Ti and GA Ti–6Al–4V powders are listed in Table 1.
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Fig.  1.     Microscopic  morphologies  of  the  (a)  HDH Ti  and (b)  GA Ti–6Al–4V powders;  (c)  particle  size  distribution curves  of  the
HDH Ti and GA Ti–6Al–4V powders.
 
  

Table  1.     Chemical  compositions  of  the  HDH  Ti  and  GA
Ti–6Al–4V powders wt%

Powder type Ti Al V H N O C
HDH Bal. — — 0.027 0.026 0.15 0.059
GA Bal. 5.94 3.90 0.004 0.017 0.12 0.010

  

2.2. Powder pre-oxidation and metal injection molding

The pre-oxidation process  for  the  HDH Ti  powders  was
conducted in a quartz tube furnace under a continuous flow
of gas mixture (90vol% Ar and 10vol% O2) under a flow rate
at 1 L/min at 350, 400, 450, 500, 550, and 600°C for 30 min,
followed by furnace cooling. A multicomponent binder sys-
tem  consisting  of  paraffin  wax  (PW),  polypropylene  (PP),
polyethylene (PE), and stearic acid (SA) was used to formu-
late  feedstocks  using  the  GA  Ti–6Al–4V  powders.  Feed-
stocks  were  compounded  in  a  mixer  (Greenlong  M-H-1L-
DCSS-H) at 160°C for 2 h at 30 r/min in air. Injection mold-
ing was performed on an injection molding machine (Chen
Hsong Group, EM80-SVP/2). To conduct solvent debinding,
the injection-molded parts were treated in a solvent debind-
ing furnace at 50°C for 12 h, and trichloroethylene was used
as the solvent. The debound parts were sintered in a vacuum
sintering furnace (BFZS1903111), followed by furnace cool-
ing. We established an experimental group to investigate the
effect of sintering profile on the oxygen variation, with spe-
cific sintering parameters as outlined in Table 2. 

2.3. Characterization

A laser  particle  analyzer  (Mastersizer2000)  was  used  to

analyze  the  particle  size  distribution  of  the  powders.  Scan-
ning electron microscopy (SEM, Regulus8100) was used to
investigate the microscopic morphologies of the powder and
sintered  parts.  High-resolution  transmission  electron  micro-
scopy (HRTEM, JEM2200FS) was employed to observe the
detailed microstructures of the oxide layer.  Samples for the
oxide layer observation were prepared with a dual-beam fo-
cused ion beam system (FIB, FEI Helios NanoLab 600i) us-
ing the lift-out technology. The powders (approximately 40
μm in particle size) were sectioned and then deposited with
platinum (Pt). The deposited layer’s sides were milled using
the  regular  cross-section  milling  option.  Following  lift-out,
the specimen was further thinned at 30 kV for the oxide layer
characterization. The phase identification and surface analys-
is of the oxide layer were performed by X-ray photoelectron
spectroscopy (XPS,  Thermo EscaLab 250XI).  The alloying
contents  (aluminum  and  vanadium)  were  determined  using

 

Table 2.    Sintering profiles for MIM as functions of temper-
ature and time

No. Temperature / °C Time / h
1 1050 5
2 1050 8
3 1150 4
4 1150 5
5 1200 3
6 1250 2
7 1300 2
8 1350 2

J.P. Shen et al., Oxygen variation in titanium powder and metal injection molding 2707



an inductively coupled plasma atomic emission spectrometer
(Agilent 730 ICP-OES). The oxygen-nitrogen-hydrogen ana-
lyzer (TCH600) and carbon-sulfur analyzer (EMIA-820V2)
were utilized to  analyze the oxygen and carbon contents  in
the raw powders and sintered parts, respectively. Five meas-
urements  were conducted for  each type of  powder,  and the
average and standard deviation were then calculated. 

3. Results and discussion 

3.1. Effect  of  pre-oxidation  on  oxygen  content  of  the
HDH Ti powders

Pre-oxidation of powders can facilitate the formation of a
relatively  stable  oxide  layer  on  the  surface,  which  exerts  a
passivation  effect  and  inhibits  oxidation  reactions  [23].
Table 3 lists the oxygen content of the pre-oxidized HDH Ti
powders  at  different  temperatures  for  30  min,  respectively.
The oxygen contents of the pre-oxidized powders, with pre-
oxidation temperatures ranging from 350 to 600°C, increase
from 0.36wt% ± 0.02wt% to 1.04wt% ± 0.02wt%.
 
 

Table 3.    Oxygen contents of the HDH Ti powders pre-oxid-
ized at different temperatures for 30 min

Temperature / °C Oxygen content / wt%
Raw powders 0.15 ± 0.02
350 0.36 ± 0.02
400 0.51 ± 0.02
450 0.62 ± 0.02
500 0.79 ± 0.02
550 0.91 ± 0.02
600 1.04 ± 0.02

 
It has been reported that oxygen in the powders of Ti and

its alloys tends to predominantly accumulate on the powder’s
surface, forming an thin oxide layer [24]. The oxide layer is
crystalline,  which  is  mainly  composed  of  TiO2,  Ti2O3,  and
TiO  [25–26].  According  to  literature,  the  oxygen  content
within the oxide layer of the powder constitutes a significant
proportion of  the overall  oxygen content  at  room temperat-
ure [26–27]. Therefore, the thickness of oxide layer serves as
a  crucial  indicator  for  assessing  the  oxygen  content. Fig.  2
shows  HRTEM images  and  corresponding  elemental  map-
ping analysis (Ti, Pt, and O) at the interface between the ox-
ide layer and Ti matrix for both raw powder without per-ox-
idation  and  the  HDH Ti  powder  pre-oxidized  at  350°C for
30  min.  The  oxide  layer  thickness  increases  from  (5.9  ±
0.6) nm (Fig. 2(a)) for the raw powders to (17.7 ± 1.8) nm
(Fig. 2(b)) for the powders oxidized at 350°C for 30 min. The
elemental mapping analysis indicate a significant enrichment
of oxygen at the surface of the Ti matrix in the powder oxid-
ized  at  350°C  for  30  min  (Fig.  2(d))  compared  to  the  raw
powder (Fig. 2(c)). HRTEM has been widely used to invest-
igate  the  oxide  layer  on  the  powder  surface  [25–26,28],
which  has  proved  to  be  quite  reliable.  In  addition,  the  in-
crease in oxide layer thickness indicates a rise in the oxygen
content during the pre-oxidation stage, aligning with the ob-

servations  in  Table  3.  It  demonstrates  that  the  oxide  layer
thickness on the HDH Ti powder surface increases with the
pre-oxidation temperature.
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Fig.  2.     Microstructural  images  of  the  oxide  layer  of  (a)  raw
HDH Ti powder and (b) pre-oxidized HDH Ti powder and ele-
mental  mapping  images  of  (c)  raw  HDH  Ti  powder  and
(d) pre-oxidized Ti powder.
 

Fig. 3(a)–(c) depicts the peak analysis of Ti 2p spectra for
the raw powder and the pre-oxidized HDH Ti powders (pre-
oxidized at 350 and 600°C for 30 min). The peak fitting res-
ults reveal Ti 2p3/2 binding energies of (458.6 ± 0.1) eV (Ti4+),
(457.2 ± 0.1) eV (Ti³+), (454.1 ± 0.2) eV (Ti²+), and (453.8 ±
0.1) eV (Ti0), which is consistent with the results in Ref. [29].
The peak analysis indicates the existence of elemental Ti0 and
oxidized Ti2+,  Ti3+,  and Ti4+ within  the  raw powder.  As the
temperature rises to 350 and 600°C, the peak analysis indic-
ates  the  presence  of  only  oxidized  Ti2+,  Ti3+,  and  Ti4+.  The
compositional analysis, as illustrated in Fig. 3(d), elucidates
the composition of oxide layer on the raw powder and pre-
oxidation  powders.  In  the  oxide  layer  of  the  raw  HDH  Ti
powder, the content of TiO2 (Ti4+) is 63.9at%, alongside the
presence of Ti2O3  (Ti³+),  TiO (Ti²+),  and elemental Ti (Ti0).
As  the  temperature  rises  to  350°C,  in  the  pre-oxidized
powders, the TiO2 content within the oxide layer increases to
83.7at%. Concurrently, there is a reduction in the contents of
Ti2O3, TiO, and elemental Ti. This suggests a continuous in-
filtration  of  oxygen atoms into  the  substrate,  leading  to  the
valence  change  of  Ti  from  Ti0  to  Ti4+.  This  gradual  trans-
formation ultimately results in the formation of a stable ox-
ide layer. However, after oxidation at 600°C, the TiO2 con-
tent decreases to 54.7at%, while the corresponding contents
of Ti2O3 and TiO increase. This implies the decomposition of
TiO2 at high temperatures, with oxygen atoms diffusing from
the TiO2 into Ti2O3, TiO, and Ti substrate.

Interestingly,  as the temperature rises from 25 to 600°C,
the observed color development of the HDH Ti powders fol-
lows  this  rule:  gray  →  gold  →  brown  →  mauve  →  dark
purple → blue, as shown in Fig. 4(a). During the pre-oxida-
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tion stage, the powder color can serve as an indicator of its
oxidation  degree  and/or  oxygen  content.  The  color  trans-
formation  of  Ti  powder  is  significantly  correlated  to  its  re-
flectance,  primarily  influenced  by  the  interference  phe-
nomenon resulting from differences in the thickness of oxide
layer  [30−31].  Fig.  4(b)  illustrates  the  mechanism  of  color
variation  in  the  oxygen  layer  at  different  thickness  levels.
When  the  powder  surface  is  illuminated,  light  1  penetrates
the oxide layer and reflects off the underlying metal surface,

while light  2 reflects  off  the oxide layer surface,  leading to
their convergence into a unified interfering beam. The optial
path  difference  of  light  1  and  light  2  can  be  expressed  as
Eqs. (1) and (2) [31−32]:

∆ = 2d
√

n2
m−n2

a × sin2i0 =

 kλ,k = 1,2, · · ·
(2k+1)

kλ
2
,k = 0,1,2 · · · (1)

nm =
∑4

i=2
xini (2)
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where Δ is the optical path difference, i0 is the angel of incid-
ence  of  light,  λ  is  the  wavelength  of  light,  k  is  the  natural
number, d is the thickness of oxide layer, na is the refractive
index of air, nm is the mean refractive index of oxide layer, re-
spectively. In formula (1), nm is composed of xini, where i = 2,
3, 4. xi and ni are the contents and refractive indices of TiO
(Ti2+),  Ti2O3  (Ti3+),  and  TiO2  (Ti4+)  in  the  oxide  layer,  re-
spectively. The refractive index of TiO [33], Ti2O3 [34], and
TiO2 [35] is 2.31, 2.35 and 2.64, respectively. The HRTEM
results,  as  presented  in  Fig.  2,  reveal  that  the  oxide  layer
thickness of the raw powder is 5.9 nm. With the temperature
increasing  to  350°C,  the  oxide-layer  thickness  increased  to
17.7 nm. Peak fittings data demonstrate that within the XPS
detection range,  as  the  temperature  increased to  350°C,  the
content of Ti4+ in the oxide layer gradually increased, while
the contents of Ti3+ and Ti2+ decreased. Consequently, the av-
erage refractive index increased from 2.31 to 2.59. With the
temperature  further  increasing  to  600°C,  there  was  a  pro-
gressive  decrease  in  the  content  of  Ti4+  in  the  oxide  layer,
while the contents of Ti3+ and Ti2+ increased, leading to a de-
crease in the average refractive index to 2.50. As expressed in
Eq.  (1),  when Δ equals  to kλ,  the interference enhancement
occurs. In addition, the enhancement of certain wavelengths
of light waves after interference depends on the oxide layer
thickness and refractive index of oxide layer. Such distinct-
ive  interference  enhancements  result  in  variation  of  colora-
tion of the HDH Ti powders. Therefore, the coloration of the
HDH Ti  powders  in  this  study indicates  an insight  into  the
oxygen level,  which is  useful  to instantly estimate the oxy-
gen content of Ti and its alloy powders in industry. 

3.2. Variation  of  oxygen  content  during  metal  injection
molding

In  the  MIM  process  of  Ti  and  its  alloys,  a  substantial
quantity of binder is introduced with the raw powders to form
the feedstock. Accordingly, the temporarily introduced bind-
er  will  be  completely  removed through debinding and sub-
sequent sintering, which inevitably increases the risk of oxid-
ation during the entire process. As such, the oxygen control
during  the  feedstock  kneading,  debinding,  and  sintering
stages within MIM becomes significantly important. With re-
spective to this,  characterization of oxygen variation during
MIM  is  immensely  critical  to  fully  understand  the  entire
status and further formulate the processing window for MIM
of Ti and its alloys.

However, gauging the oxygen variation for the first step of
feedstock kneading and solvent debinding is extremely diffi-
cult, because the widely-used methodologies such as chemic-
al measuring are not able to correctly determine the oxygen
content  of  powders,  due  to  the  abundant  mixture  of  binder
polymer.  In  this  study,  we innovatively  proposed a  reliable
route to determine the powder oxidation status via compar-
ing the oxide layer of raw and solvent-debound powder (after
kneading and solvent debinding). Fig. 5(a) and (b) shows the
microstructural images of raw GA Ti–6Al–4V powders and
those after solvent debinding. As can be seen from Fig. 5(b),
the  powder  surfaces  are  wrapped  with  binder  even  after
solvent debinding. To further investigate the oxygen content

of  powders  after  solvent  debinding,  HRTEM  characteriza-
tion of the oxide layer was performed by comparing the raw
and solvent-debound powders  (Fig.  5(c)  vs. Fig.  5(d)).  The
average  thickness  of  oxide  layer  of  the  raw  powder  is  ca.
(3.5 ± 0.4) nm as determined from Fig. 5(c), and it is approx-
imately (3.5 ± 0.3) nm for the solvent-debound powder (see
Fig. 5(d)). This result suggests that the powder oxidation dur-
ing the kneading and solvent debinding stages can be negli-
gible,  attributed  to  the  unchanged  thickness  of  oxide  layer.
This route is reliable because of the following reasons: (1) the
oxygen content of powders mainly comes from the oxide lay-
er [24,27]; (2) the kneading and solvent debinding temperat-
ures are well below 200°C when the oxide layer is relatively
stable due to the mild oxygen atomic diffusion from the ox-
ide layer into the powder matrix [36−37].
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Fig.  5.     SEM  images  of  the  GA  Ti–6Al–4V  (a)  raw  powders
and (b) powder after solvent debinding; HRTEM images of the
oxide  layer  for  (c)  the  raw  powder  and  (d)  the  powder  after
solvent debinding.
 

Powder sintering of Ti and its alloys is usually conducted
over  1000°C  (within  the  β  phase  zone),  while  the  oxygen
atomic diffusion in the Ti crystal lattice is significantly boos-
ted at such high temperatures, as compared to the kneading
and debinding stages. In this work, a comprehensive study on
sintering  as  functions  of  sintering  temperature  and  holding
time was carried out to examine the impact of sintering pro-
file  on  the  oxygen  content  in  the  sintered  parts.  Fig.  6
presents the oxygen contents of the sintered Ti–6Al–4V parts
with  corresponding sintering parameters  (samples  1  to  8  as
shown in Table  2).  The oxygen contents  of  samples  1  to  8
gradually increase from 0.15wt% ± 0.01wt% to 0.27wt% ±
0.01wt%. Several  points  can be drawn from Fig.  6:  (1)  the
oxygen  content  in  the  system  gradually  increases  with  the
sintering temperature from 1050 to 1350°C; (2) the oxygen
content  increases  with  the  holding  time  under  an  identical
sintering temperature (samples 1 vs. 2, and samples 3 vs. 4);
(3) it indicates that the sintering temperature plays a prior role
in the oxygen increment, since the oxygen content of sample
1  (sintering  at  1050°C  for  5  h)  is  much  lower  than  that  of
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sample 8 (sintering at 1350°C holding for 2 h). This indicates
that sintering is the primary stage to raise the oxidation risk
during  MIM in  terms  of  sintering  temperature  and  holding
time.
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Fig. 6.    Oxygen contents of the sintered Ti–6Al–4V parts with
corresponding sintering profiles for MIM.
 

In  addition,  the  oxide  layer  begins  to  dissolve  when  the
sintering  temperature  increases  to  a  critical  point  such  as
500°C for Ti powders concomitant with the sintering neck-
ing  among  nearby  powders  [38].  After  sintering  at  1050–
1350°C,  the  oxygen  atoms  in  the  oxide  layer  have  com-
pletely  dissolved  into  the  matrix,  resulting  in  the  oxygen
atoms uniformly distributed in the sample. In such a case, the
oxide layer is absent in the sintered sample and cannot be ob-
served using either SEM or TEM. Only equiaxed grains (see
Fig.  7(a))  and  typical  Widmanstätten  microstructures  (see
Fig. 7(b)–(f)) are present.

In  this  study,  the  variation  in  oxygen  content  during  the
MIM process is typically associated with the oxygen atomic
diffusion, which is governed by thermodynamics and kinet-
ics  [39].  The  increase  of  oxygen  content,  as  presented
in Fig. 6, can be explained through the oxygen atomic diffu-
sion by the Arrhenius Eq. [40]:

K = Aexp
(−Ea

RT

)
(3)

where K  is  the diffusion coefficient, A  is  the diffusion con-
stant, Ea is the diffusion activation energy, R is the molar gas
constant,  and T  is  the  temperature  in  Kelvin,  respectively.
According to the Eq. (3), the diffusion coefficient is depend-
ent on temperature, which rises with increasing the temperat-
ure.  During  the  sintering  stage  under  vacuum,  the  vacuum
furnace  inevitably  harbors  a  trace  of  impurities  originating
from the furnace and residual binder,  thereby regarded as a
source of oxygen [22]. The stability of oxygen atom within
the oxide layer is inferior to that within the Ti matrix, driven
by which the apparent oxide-layer dissolution into the matrix
takes place at 500°C [38]. Oxygen atoms undergo diffusion
from  the  outermost  TiO2  layer  towards  the  matrix,  finally
leaving  behind  a  concentration  gradient.  Exposed  Ti  atoms
on the surface significantly raise the surface chemical activ-
ity and concurrently diminish the activation energy required
for the atomic diffusion [23]. Generally, the increase of sin-
tering temperature leads to the corresponding increase of the
oxygen atomic diffusion coefficient, causing the accelerated
migration of oxygen atom and weakening of the obstructive
effect  of  the  oxide layer  [38,41].  Similarly,  either  elevating
the sintering temperature or prolonging the holding time res-
ult in the increment of atomic diffusion and thus the increase
of oxygen content, as evidenced in Fig. 6. Thus, formulating
and optimizing the sintering window is particularly crucial in
oxygen control for MIM of Ti and its alloys.
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Fig. 7.    SEM images of the sintered samples after sintering at different temperatures and holding time: (a) 1050°C-5 h; (b) 1050°C-
8 h; (c) 1150°C-5 h; (d) 1200°C-3 h; (e) 1250°C-2 h; (f) 1300°C-2 h.
  
4. Conclusions

This study covers the entire process on the oxygen level
and oxidation feature of the powder and sintered parts, which

provides  valuable  guidance  for  the  Ti  and  its  alloys  in  the
powder  metallurgy  industry  involving  both  Ti  and
Ti–6Al–4V alloy systems. Following points can be summar-
ized.
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(1)  In  the  pre-oxidation  process,  the  oxygen  content  in-
creases  with  the  pre-oxidation  temperature.  Besides,  the
transition of color appearance for the HDH Ti powders is de-
termined by the oxide layer on the powder surface in terms of
thickness and chemical composition.

(2) Through the observation of oxide layer thickness, the
oxidation  of  GA  Ti–6Al–4V  powders  is  minimal  after
kneading with binder and subsequent solvent debinding dur-
ing MIM.

(3)  Within  the  sintering  stage  during  MIM,  the  oxygen
content  of  the  sintered  parts  using  the  GA  Ti–6Al–4V
powders  gradually  increases  with  the  sintering  temperature
and holding time increasing, due to the correspondingly in-
creased atomic diffusion coefficient. Notably, the impact of
sintering temperature is more prominent than that of holding
time. 
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