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8 Abstract: Large-scale underground projects require precise in-situ stress information, and the 
9 acoustic emission (AE) Kaiser effect method currently provide lower costs and streamlined 

10 procedures. In this method, the accuracy and speed of Kaiser point identification are crucial. Thus, 
11 the integration of chaos theory and machine learning for the precise and rapid identification of 
12 Kaiser points constitutes the objective of the study. The intelligent model of the AE partitioned 
13 areas identification was established by phase space reconstruction (PSR), genetic algorithm (GA), 
14 and support vector machine (SVM). Then, the plots of model classification results were made to 
15 identify Kaiser points. We refer to this method of identifying Kaiser points as “The Partitioning 
16 Plot Method based on PSR-GA-SVM” (PPPGS). The PSR-GA-SVM model demonstrated 
17 outstanding performance, achieving a 94.37% accuracy rate on the test set, with other evaluation 
18 metrics also indicating exceptional performance. The PPPGS identified Kaiser points similar to 
19 the tangent-intersection method, with greater accuracy. Furthermore, in the classification model's 
20 feature importance score, the fractal dimension extracted by PSR ranked second after accumulated 
21 AE counts, confirming its importance and reliability as a classification feature. To validate 
22 practicability, the PPPGS were applied to in-situ stress measurement at a phosphate mine in 
23 Guizhou Weng'an, China, demonstrating good performance.
24 Keywords: Acoustic emission (AE); Kaiser effect; Phase space reconstruction (PSR); Support 
25 vector machine (SVM); Genetic algorithms (GA); Classification model.
26 1 Introduction
27 With the rapid development of the mining industry and the construction of urban 
28 underground spaces, there is a growing trend towards large-scale deep underground mining and 
29 excavation of deep tunnels [1-7]. To ensure the safety of construction and personnel in the project, 
30 it is necessary to determine the in-situ stress information reliably [8-11]. In the measurement of in-
31 situ stress, traditionally employed methods include the stress relief method by overcoring and 
32 hydrofracturing method, etc. Although widely used in engineering measurements, traditional 
33 methods show certain limitations and drawbacks. These limitations include high costs, time-
34 consuming and labor-intensive procedures, and difficulty conducting measurements in deep 
35 underground areas [12]. Therefore, the acoustic emission (AE) Kaiser effect method has been 
36 rapidly developed recently. The Kaiser effect refers to the phenomenon in materials undergoing 
37 cyclic loading, where a significant amount of AE signals is detected only when stress surpasses 
38 the material's previously experienced maximum stress. The moment when the Kaiser effect occurs 
39 is called the Kaiser point. The Kaiser effect was first discovered by Joseph Kaiser in 1950 in metal 
40 samples [13], followed by Goodman in 1963 in rocks [14]. 
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1 The most critical part of the AE Kaiser effect method for in-situ stress measurement is the 
2 identification of the Kaiser point, and numerous scholars have already proposed various 
3 identification methods for the Kaiser point. Boyce et al. [15] first proposed the tangent-
4 intersection method based on AE features. Hayashi et al. [16] concluded that Kaiser point can be 
5 obtained by "take-off point" based on AE counts, and Qin et al. [17] also used this method. 
6 Villaescusa et al. [18] combined the take-off point method with the specimen's strain to determine 
7 the Kaiser point. Yoshikawa et al. [19] proposed a new method to identify the Kaiser point by 
8 loading the specimen twice cyclically and observing the difference in the AE events between the 
9 first and second cycles. Later, Srinivasan et al. [20] also employed this method to study the Kaiser 

10 effect. Bai et al. [21] suggested a Kaiser point identification method based on the slope and tilt 
11 angle of the accumulated AE counts curve. The aforementioned methods can identify Kaiser point 
12 and have their respective strengths. However, these methods may have some drawbacks, such as 
13 the discriminative conditions are relatively subjective or difficult to identify the Kaiser point in the 
14 case of more noise.
15 Chaos refers to a phenomenon in nonlinear dynamical systems whose characteristics include 
16 initial value sensitivity, intrinsic randomness, and ergodicity, which show the complexity and 
17 unpredictability of system behavior. It has been studied to different degrees by scholars in many 
18 fields. Li et al. [22] investigated the law of AE activity of rock mass through chaotic dynamics 
19 theory and extracted the nonlinear features of AE activity. Xue et al. [23] relied on chaos theory to 
20 study the deformation law of the slope rock mass, obtained the nonlinear features of the 
21 deformation of the slope rock mass, and established an accurate prediction model. Cao et al. [24] 
22 accurately predicted and diagnosed the agglomeration phenomenon in a fluidized bed by applying 
23 chaos analysis to the AE signals. Some researchers have applied chaos theory to the identification 
24 of Kaiser effect points. Zhao et al. [25] used the G-P algorithm to calculate the correlation fractal 
25 dimension of AE energy, thereby identifying the Kaiser points. Wang et al. [26] demonstrated the 
26 chaotic characteristics of Kaiser point signals in sandstone using wavelet packet analysis and 
27 phase space reconstruction (PSR).
28 In addressing non-linear problems, machine learning serves as a potent solution method. 
29 Traditional linear methods have limitations when dealing with non-linear problems, while 
30 machine learning can better deal with this complexity. Currently, many scholars have 
31 accomplished many prediction and classification tasks by integrating chaos theory with machine 
32 learning. Sivakumar et al. [27] studied the nonlinear characteristics of river flow using two 
33 nonlinear methods, PSR and artificial neural networks, to predict its dynamics. Fei et al. [28] 
34 developed a bearing fault diagnosis model with wavelet packet variation, PSR, and support vector 
35 machine (SVM). Su et al. [29] used SVM, PSR, and particle swarm optimization to study the 
36 structural model of dam deformation and establish a dam deformation prediction model.
37 In summary, traditional methods for Kaiser point identification have several limitations, and 
38 currently, there is a research gap in integrating chaos theory and machine learning for the 
39 identification of the Kaiser point. Hence, this research is directed towards the rapid and accurate 
40 identification of Kaiser points, thus embarking upon the following works. The AE activity was 
41 analyzed and its nonlinear chaotic features were extracted, by PSR. Then, Genetic Algorithms 
42 (GA) and SVM were employed to construct an intelligent identification model of the AE 
43 partitioned areas by combining chaotic features with AE features. Finally, the Kaiser points were 
44 identified based on classification results. Moreover, the PPPGS was applied to practical 
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1 engineering.
2 2 Experimental device and Rock samples
3 2.1 Sample preparation
4 The test specimens were taken from the Shandong Gold Mine, China, located at five different 
5 depths, including -1000 m, -1200 m, -1400 m, -1600 m, and -1800 m. The core samples from each 
6 depth were made into test specimens, 20 mm~25 mm in diameter and with a 2:1 height-to-
7 diameter ratio. Before testing, intact specimens with fewer cracks were chosen from these 
8 samples. Diameter and height measurements were taken for each specimen, and they were 
9 numbered accordingly based on their depth.

10 2.2 Test equipment
11 The rock specimens underwent uniaxial compressive testing using the MTS815 servo 
12 material testing machine, while synchronously collecting load and AE data using the PCI-II multi-
13 channel AE system. The AE system has a sampling rate of up to 40 MHz and can record 
14 continuous waveforms in real-time. It can record over 20 characteristic parameters, including AE 
15 events, energy, amplitude, counts, rise time, etc. The experimental setup is shown in Fig. 1.

16
17 Fig. 1.  The experimental setup.

18 2.3 Loading scheme
19 The experimental loading method employed displacement-controlled loading at a loading rate 
20 of 0.05mm/min. It involved two cycles of loading and unloading, as illustrated in Fig. 2. The AE 
21 system's preamplifier is 40 dB, with a sound noise threshold of 40 dB. The AE sensor used has 
22 dimensions of F 8 mm × 8 mm, resonating at a frequency range of 20~400 kHz, and dual-channel 
23 data acquisition is performed at a sampling frequency of 1 MHz. To ensure the regular operation 
24 of the sensor, it requires inspection before the experiment. Vaseline was used as a coupling agent 
25 between the sensor and the specimen, and both sensors were fixed on opposite sides at the mid-
26 length of the specimen, secured by adhesive tape. To minimize the end effect of the specimen on 
27 the experimental results, a layer of Vaseline was uniformly applied to the contact surfaces of both 
28 the pressure head and the specimen before the experiment began. Synchronous data acquisition 
29 was initiated using the AE system at the start of the experiment.
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1
2 Fig. 2.  Loading scheme.

3 3 Data preprocessing and Feature exploration
4 3.1 AE data process
5 After the AE data were obtained experimentally, a curve of accumulated AE counts versus 
6 time was made and used for the initial identification of the Kaiser point for each specimen. In the 
7 experiments, there were two cycles of loading and unloading, so the specimen underwent the 
8 Kaiser effect twice in a single experiment. To identify these two Kaiser points, we utilized the 
9 tangent-intersection method, as shown in Fig. 3. In the figure, line A starts from the curve's 

10 endpoint and reaches the curve's inflection point, while line B starts from the curve's beginning 
11 and reaches the inflection point. The intersection of the two lines corresponds to the time point 
12 where the Kaiser point is located. The Kaiser effect points obtained through the tangent-
13 intersection method will be used to validate the applicability of the Kaiser effect to rock samples 
14 and will serve as an evaluation criterion in subsequent analyses.

15
16 Fig. 3.  The tangent-intersection method

17 3.2 Phase space construction of AE data 
18 Phase space is a useful tool for describing dynamical systems. With the help of a model and 
19 an appropriate set of variables, dynamics can represent a real-world system as the geometry of a 
20 single moving point.
21 The time-delay method [30] is one of the most popular methods to reconstruct phase space. 
22 This method uses past historical data and an appropriate delay time to reconstruct a scalar (or 
23 univariate) time series, where i = 1, 2, ...  , N ), representing the underlying dynamics in a 
24 multidimensional phase space. The reconstructed phase space can be built as:

25 2 ( 1)( , , ,..., )j j j j j mY X X X Xt t t+ + + -= (3.1)

26 where 1,2,..., ( 1)j N m t= - - , Yj is the time series, t  is the time delay, and m  is the embedding 
27 dimension. The parameters m  and t  are critical technical parameters for phase space 
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1 reconstruction, determining the number of components and the component spacing of the phase 
2 points, respectively. Both parameters cannot be chosen arbitrarily. The following describes the 
3 parameters to be determined and the obtainable chaotic features for phase space reconstruction.
4 There are many methods for determining the time delay and embedding dimension[31,32,33]. 
5 In this paper, the mutual information method [34] and the false nearest neighbors (FNN) [32] 
6 method will be used to determine the time delay and embedding dimension, respectively. The 
7 mutual information method offers a quantitative measure of the information shared between the 
8 variables, allowing for a more precise selection of the reconstruction parameters. It is appropriate 
9 for analyzing complex systems, robust to noise, and capable of handling incomplete information 

10 in the phase space reconstruction process [35]. The FNN method was chosen to determine the 
11 embedding dimension based on the following idea: If the phase space is reconstructed using a 
12 dimension lower than the proper embedding dimension of the system, then the nearest neighbors 
13 in the original phase space may be misclassified as non-neighbors in this low-dimensional space, 
14 i.e., "false neighbor". The FNN method aims to find these misclassified points and determine the 
15 embedding dimensions more suitable for the target system.
16 The Lyapunov exponent l  is an index used to characterize whether trajectories in phase 
17 space are contracting or expanding. When 0l < , the trajectory contracts, and the system motion 
18 tends to stabilize and is less sensitive to different initial conditions. When 0l ³ , the trajectory 
19 separates rapidly, making the system susceptible to the initial conditions. In an m-dimensional 
20 discrete system, there are usually m Lyapunov exponents ( 1,2,..., )i i ml = , and if the largest is 
21 max 0l ³ , then the system is likely to exhibit chaotic behavior [36]. The Wolf method [37] was 
22 used to determine the maximum Lyapunov exponent in this study.
23 The fractal dimension reflects the geometric structure and distribution characteristics of 
24 trajectories in phase space, which can be computed using the G-P algorithm [31]. In previous 
25 studies, the G-P algorithm was commonly utilized to calculate the correlation dimension of a 
26 univariate time series, eventually deriving the fractal dimension of the time series. In this study, 
27 the G-P algorithm was improved to reveal the characteristics of the fractal dimension over time 
28 effectively.
29 The AE features of the specimens, including AE counts, amplitude, and energy, are all 
30 univariate time series. Among them, since the AE count can better express the characteristics of 
31 the AE data than other parameters and was often used to characterize the AE activity in previous 
32 research, the phase space reconstruction of the AE counts was carried out in this study to extract 
33 the chaotic features of the AE data.
34 The AE counts during the uniaxial compression experiments were extracted as a time series 
35 for each specimen. Subsequently, for each specimen, estimations were made for delay time and 
36 embedding dimension, and then phase space reconstruction was separately conducted. The 
37 following outlines the steps of phase space reconstruction for some specimens.
38 Fig. 4 shows the use of the mutual information method to estimate the delay time of the AE 
39 counts time series of rock specimens. The four curves are the time delay curves of four specimens. 
40 The mutual information method estimates the entropy of mutual information in the time series at 
41 different time delays. It identifies the time delay corresponding to the first local minimum of 
42 mutual information entropy and regards it as the optimal time delay of the time series.
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2 Fig. 4.  The time delay estimation via the mutual information method.

3 Fig. 5 shows the use of the FNN method to estimate the embedding dimension of the AE 
4 counts time series. Using Fig. 5(a) as an example, when the embedding dimension is 6, Criterion 1 
5 stabilizes, Criterion 2 keeps increasing, and the joint criterion shows that the false nearest 
6 neighbors percentage starts to change from a decreasing to an increasing trend. So, the optimal 
7 embedding dimension for this example is 6.

8 Fig. 5.  (a) 1200-45-3. (b) 1400-90-2. (c) 1600-45-2. (d) 1800-45-3. The embedding dimension estimation via FNN 

9 method.

10 Once the time delay and embedding dimension are estimated, the Lyapunov exponent and 
11 fractal dimension can be estimated. The Wolf method was used to estimate the Lyapunov 
12 exponent, and the estimated values were given in Table 1. As can be seen from Table 1, the 
13 Lyapunov exponents of the AE counts time series of the four specimens are all greater than zero.
14 Table 1. Lyapunov exponent of AE counts time series for four specimens

Specimen number 1200-45-3 1400-90-2 1600-45-2 1800-45-3
Lyapunov exponent 0.4131 0.6786 0.5724 0.7800

m=6 m=4

m=6 m=5

(a) (b)

(c) (d)
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1 The fractal dimension was estimated for each time point in the time series using the improved 
2 G-P algorithm, and the curve of fractal dimension over time was shown in Fig. 6. As can be seen 
3 from the figure, there is a close relationship between the fractal dimension and the AE counts. The 
4 fractal dimension shows a general trend of rising with the increase of the AE counts, interspersed 
5 with some cases of decreasing. In other words, as the AE counts increase, the fractal dimension 
6 demonstrates an overall upward trend with varying degrees of fluctuations, portraying a 
7 phenomenon that is neither entirely random nor regular. Then, combined with the Lyapunov 
8 exponent, it fully illustrated that the AE counts have chaotic properties.
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9 Fig. 6.  (a) 1200-45-3. (b) 1400-90-2. (c) 1600-45-2. (d) 1800-45-3. The fractal dimension curve estimation via 

10 improved G-P algorithm.

11 3.3 Preprocessing of SVM datasets
12 It has been demonstrated in numerous studies [19, 38] that friction-type AE signals caused by 
13 the closure of existing fractures and inter-particle friction occur during the early stages of rock 
14 loading. These AE signals differ from the fracture-type AE signals caused by the expansion of 
15 new fractures used to identify the Kaiser effect. Thus, the two types of AE signals need to be 
16 differentiated. 
17 When subjected to uniaxial cyclic loading and unloading, rocks exhibit distinct stages in their 
18 stress-time curves, as depicted in Fig. 7. The O(O’)A segment represents the compaction stage 
19 associated with pore and crack closure. The AB segment represents the elastic deformation stage. 
20 It was found in the experiment that friction-type AE occurs in both sections, with less activity in 
21 the O(O’)A segment and more in the AB segment. So, we set the AB segment of the stress-time 
22 curve as "Pore compacting area". In the region, AE signals are friction-type. AE signals activated 
23 after point B and before the Kaiser point are considered to exhibit the Felicity effect [39]. This 
24 phenomenon is characterized by a significant increase in acoustic emission when the load is less 
25 than the highest stress level experienced in the early stages of the cyclic loading process. 
26 Therefore, we set this region as "Felicity area". AE signals activated from the Kaiser point up to 
27 the point of peak stress can be considered to exhibit the Kaiser effect. So, we set this region as the 
28 "Kaiser area". In summary, the AE signals were classified into three areas based on the rock 

(a) (b)

(c) (d)
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1 stress-time curve and the AE data: Pore compacting area, Felicity area, and Kaiser area. 

2
3 Fig. 7.  Stress-time curves of the rocks and the partitioning of the AE signals. 

4 After the experiments, the 60 specimens' AE data were obtained. Then, we employed counts, 
5 accumulated counts, energies, and estimated fractal dimensions as features input into the SVM. To 
6 mitigate the influence of the data unit on the classification of the SVM model, we applied Min-
7 Max Scaling (Eq.Error! Reference source not found.) to normalize the data for each specimen.

8 min

max min
scale

X XX
X X

-
=

-
(3.2)

9 In Eq.Error! Reference source not found., X  is the original data, minX  is the minimum 
10 value of the data, maxX  is the maximum value of the data, and scaledX  is in the range [0,1].
11 After normalizing the AE data of 60 specimens, we integrated them into one dataset. 
12 However, in the final dataset, we observed that the classified data of the three partitions showed a 
13 noticeable imbalance. The proportion of data in Kaiser area was higher than in Pore compacting 
14 and Felicity areas. The distribution of the original data is shown in Fig. 8. A dataset with a 
15 noticeable imbalance tends to result in poorer classification performance, leading to a decline in 
16 the classifier's performance [40]. Therefore, the SMOTETomek [41] method was utilized to 
17 process the unbalanced dataset, obtaining a balanced dataset for improving the classifier's 
18 performance.

19
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20 Fig. 8.  The Percentage of data in each area in the original dataset.

21 The dataset processed by the SMOTETomek method contains 100,000 samples (each AE 
22 count was considered a sample). The dataset underwent a partition, with 70% allocated to the 
23 training set and 30% to the test set. The SVM classification model was constructed using the 
24 training set. The Pore compacting area, Felicity area, and Kaiser area were replaced by 1, 2, and 3, 
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1 respectively. Each input and output parameter of the model is demonstrated in Table 2.
2 Fig. 9 depicts the study's flowchart. In the flowchart, Min-Max Scaling and SMOTETomek 
3 are used to obtain a balanced normalized dataset. The training set is used to train the SVM model, 
4 the GA is used to optimize the hyperparameters of the SVM, and the test set is used to evaluate the 
5 model's performance. Finally, the SVM model's classification results are used for Kaiser point 
6 identification.
7 Table 2. Inputs and outputs of the SVM model

Name Content
Training set 70% dataset´

Test set 30% dataset´
Features Counts, Accumulated counts, Energy, Fractal dimension
Labels Pore compacting area, Felicity area, Kaiser area

8
9 Fig. 9.  Flowchart of research.

10 4 Results and Application
11 4.1 Model evaluate metrics
12 In this study, the evaluation metrics chosen for the SVM model were accuracy, precision, 
13 recall, and F1, computed based on the confusion matrix. In addition to these metrics, the receiver 
14 operating characteristic curve (ROC) was also used to evaluate the performance of the SVM 
15 classifier. Although ROC characteristic curves are often widely used in binary classification 
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1 problems, they can also provide helpful information for multiclassification problems.

2
TP TNAcc

TP TN FP FN
+

=
+ + +

(4.1)

3 = TPPrecision
TP FP+

(4.2)

4
TPRecall

TP FN
=

+
(4.3)

5 1
2 precision recallF

precision recall
´ ´

=
+

(4.4)

6 4.2 PSR-GA-SVM Parameter setting
7 The critical parameters to be determined in the SVM model include c  and g . The penalty 
8 parameter c  represents the model's intolerance for errors. The parameter g  implicitly determines 
9 the data distribution mapped to the new feature space. Therefore, GA was employed to optimize 

10 and select parameters c  and g . Integrated with five-fold cross-validation, the average accuracy 
11 of the model after cross-validation was used as the fitness function. Then, the optimal combination 
12 of parameters was sought through multiple iterations of the training set. Fig. 10 displays the 
13 procedures to calculate the objective function.

14

All Data

Training Data Test Data

Fold 1

All Data

Training Data Test Data

Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 4Fold 1 Fold 2 Fold 3 Fold 5

Fold 5Fold 1 Fold 2 Fold 3 Fold 4

Split 1

Split 2

Split 3

Split 4

Split 5

Training and 
Validating

5 times

Acc 1

Acc 2

Acc 3

Acc 4

Acc 5

=
5

15
1 AccuracyObj

15 Fig. 10.  Flowchart for calculating the objective function.

16 In the GA, the parameters were configured as follows: 50 genetic iterations, a population size 
17 of 20, a crossover probability of 0.7, a mutation probability of 0.02, a cross-validation parameter 
18 of 5, and search ranges of [0, 100] for c  values and [0, 1000] for g  values. Fig. 11 illustrates the 
19 iterative convergence process of the fitness function. Throughout 50 iterations, the GA rapidly 
20 identified the maximum of the fitness function. The optimized c  value was 42.3296, the 
21 optimized g  value was 349.4727, and the best cross-validation accuracy was 92.76%.

22
23 Figure. 11.  The iterative convergence of fitness function.
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1 4.3 PSR-GA-SVM classification results and Kaiser point identification
2 Fig. 12 illustrates the confusion matrix of the test set. Clearly, the model accurately classified 
3 the three categories. The individual evaluation metrics based on the confusion matrix are listed in 
4 Table 3 and 4. The SVM classification model, built from the training set, exhibited an accuracy of 
5 95.31% during training and 94.37% during testing, demonstrating close similarity. Moreover, the 
6 test set accuracy slightly surpassed that of cross-validation. This suggests that the PSR-GA-SVM 
7 model avoids overfitting. 
8 The following observations were made based on the model data in Table 4 for the test set. 
9 For precision, Pore compacting area and Felicity area were around 90%, and Kaiser area reached 

10 94.58%. Therefore, the model had high precision in predicting all three areas, and performed 
11 better in identifying the Kaiser area. For recall, Pore compacting area was as high as 96.08% and 
12 Kaiser area also reached 92.84%, which were both higher than 90%, indicating that the model 
13 successfully identified more samples from these two areas. In contrast, the recall of Felicity area 
14 was only 85.70%. It may be due to the similar features between Pore compacting area and Felicity 
15 area, resulting in the model omitting some actual samples in this category and a relatively low 
16 recall rate. For F1, there was not much difference between Pore compacting area and Kaiser area. 
17 At the same time, the Felicity area was relatively low but very close to 90%. The above implies 
18 that the model achieved a good balance of classification across the three classes and performed 
19 relatively well on Pore compacting area and Kaiser area. Overall, these three classes demonstrated 
20 excellent precision, recall, and F1 performance, showcasing the model's outstanding identification 
21 capabilities for the three classes.
22 Fig. 13 illustrates the ROC curves for each class. As observed in the figure, the ROC curves 
23 for all three classes are positioned close to the upper-left corner of the plot, indicating higher true 
24 positive rates and lower false positive rates. The AUC for each class exceeded 0.95, signifying the 
25 excellent classification capabilities of the model for these three classes. A comparison of the AUC 
26 of the three categories shows that Kaiser area > Pore compacting area > Felicity area, with a 
27 higher AUC indicating better classification ability.
28 Table 3. Individual evaluation metrics in the training set

Evaluate indexes in the train dataset Pore compacting area Felicity area Kaiser area
Precision 90.97% 91.56% 96.45%
Recall 96.63% 87.68% 94.51%
F1 93.71% 89.58% 95.47%
Accuracy in the training dataset 95.31%

29 Table 4. Individual evaluation metrics in the test set
Evaluate indexes in the test dataset Pore compacting area Felicity area Kaiser area
Precision 90.43% 89.68% 94.58%
Recall 96.08% 85.70% 92.84%
F1 93.17% 87.65% 93.70%
Accuracy in the test dataset 94.37%Acce
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2 Fig. 12.  The confusion matrix for the test set.

3
4 Fig. 13.  The ROC curve for the test set.

5 Fig. 14 shows the partitioning results for the test set, using the 1400-45-3 specimen as an 
6 example due to space constraints. The figure's blue, orange, and red scatters show the AE count 
7 for the Pore compacting area, Felicity area, and Kaiser area, respectively. Although there were 
8 some misclassified results, the overall results were relatively accurate, with clear boundaries 
9 observed in each region. Therefore, the point where the classification boundary lines of Felicity 

10 area and Kaiser area intersect with the stress-time curves was considered the Kaiser point and we 
11 called this method the Partitioning Plot Method base on PSR-GA-SVM model(PPPGS). 
12 In Fig. 14 and 15, the Kaiser points have been marked with green dashed lines, arrows, and 
13 circles. Moreover, the corresponding stress values have been provided. Fig. 15 shows two Kaiser 
14 points identified by the tangent-intersection method. Observing the two figures, it can be seen that 
15 the stresses corresponding to Kaiser point A and Kaiser point B identified by the PPPGS and 
16 tangent-intersection method are 85.4 MPa, 94.3 MPa, and 86.2 MPa, 98.3 MPa, respectively. The 
17 results of the two methods were very close, showing that the PPPGS accurately identified the 
18 Kaiser points. It is worth noting that, due to the peak stress set in the experiment for the first cycle 
19 being 95 MPa, the theoretical value of the Kaiser point for the second cycle should be 95 MPa. 
20 Therefore, the PPPGS identified this specimen's Kaiser point for the second cycle more accurately 
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1 than the tangent-intersection method. Upon observation, we noted that in most of the classification 
2 results for the test set, the Kaiser points identified by the PPPGS tended to be more accurate than 
3 those identified by the tangent-intersection method. This improvement can be attributed to the 
4 robust training of the GA-SVM model, which likely minimized the influence of subjective 
5 elements introduced by manual calibration and mitigated the effects of partial noise.
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7 Fig. 14.  partitioning results and Kaiser point identification for Specimen 1400-45-3.
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9 Fig. 15.  Identifying Kaiser point in specimen 1400-45-3 using the tangent-intersection method.

10 4.4 Feature Importance Analysis
11 To assess the robustness and stability of the model, Permutation Feature Importance (PFI) 
12 was employed to conduct feature importance analysis. If the importance score of a particular 
13 feature varies significantly across multiple runs, it is considered that the model's dependency on 
14 that feature is not sufficiently stable. PFI can also aid in evaluating the importance of each feature 
15 for the model's classification capability. It ranks the contribution of each feature to the model, 
16 providing directions for model optimization in subsequent research. Fig. 16 shows the average 
17 feature importance scores of the model after conducting 20 PFI analyses.
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2 Fig. 16.  The Average feature importance scores after 20 PFI analyses.

3 According to Fig. 16, in the average scores of feature importance, accumulated counts > 
4 fractal dimension > energy > count. It can be observed that in the classification of the three 
5 regions, the accumulated counts, commonly used in many studies, remain the most critical factor 
6 influencing classification. The importance score of the fractal dimension was second only to the 
7 accumulated counts, indicating the significant role of the fractal dimension in classifying the three 
8 regions and highlighting it as a reliable feature for identifying the Kaiser point. Moreover, the 
9 average feature importance scores and relative errors for each feature obtained after performing 20 

10 PFI analyses showed that the errors for each feature were relatively low, indicating that the PSR-
11 GA-SVM model had good robustness and stability.
12 4.5 The engineering application
13 A phosphate mine in Weng'an, Guizhou is an underground mine with an annual production of 
14 nearly 1.5 million tons. The mining depth of this phosphate mine will reach 1000 m, necessitating 
15 effective management of in-situ stress associated with deep mining. Therefore, obtaining accurate 
16 in-situ stress information is of paramount importance. This study extracted non-oriented core 
17 samples from the mining area and subsequently reoriented them using the non-oriented core 
18 ground re-orientation technique [42]. Fig. 17 displays the core extraction site of the Weng'an 
19 phosphate mine. Due to the fact that the ore body in this mine has a dip angle of approximately 9°, 
20 which is nearly parallel to the horizontal plane, the four-direction method was used to determine 
21 the direction of the maximum principal stress to simplify the calculations. The specific solution 
22 formula can be found in Eq.(4.5) [43].

23 0 90 0 90 0 45 90cos 2 sin 2
2 2 2

2H

h

b b
s s s s s s ss

s
+

þ
= + -

- - +ü
ý

o o o o o o o

(4.5)

24 where Hs is the maximum horizontal principal stress, hs is the minimum horizontal principal 
25 stress, and b is the angle between the azimuth of the maximum horizontal principal stress and 0°.
26 This study selected borehole NZK204 for in-situ stress measurement calculations. After 
27 extracting core samples at various depths from the boreholes, the samples were processed into 
28 small specimens with a diameter of 25 mm and a height-to-diameter ratio of 2:1. Experimental 
29 tests were conducted using the MTS815 servo material testing machine and the PCI-II multi-
30 channel AE system to obtain the AE features of the samples. 
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1
2 Fig. 17.  The core extraction site of the Weng'an phosphate mine.

3 Utilizing the PPPGS, the estimation of in-situ stress information for the Weng'an phosphate 
4 mine was conducted, as presented in Table 5. Subsequently, the spatial stress components of the 
5 rock mass at different depths were computed based on the information in Table 5, as shown in 
6 Table 6. Simultaneously, employing the linear regression method, the measured in-situ stresses at 
7 various depths were fitted to generate the curves depicting the variation of in-situ stress with depth 
8 for the Weng'an phosphate mine, as illustrated in Figure 18.
9 Table 5. The in-situ information estimated using the PPPGS.

Core depth/m Core number Average stress value/MPa
NZK204-500-0 16.93
NZK204-500-45 10.21
NZK204-500-90 13.07-500

NZK204-500-V 13.84
NZK204-850-0 21.02
NZK204-850-45 13.45
NZK204-850-90 16.53-870

NZK204-850-V 19.85
NZK204-1000-0 24.11
NZK204-1000-45 17.33
NZK204-1000-90 23.50-1025

NZK204-1000-V 27.62
10 Table 6. Spatial stress components of rock mass at various depths

Core number Measuring 
point depth/m

Vertical principal 
stress /MPa

Maximum horizontal 
principal stress/MPa

Minimum horizontal 
principal stress/MPa

Direction of maximum 
principal stress

-500 13.84 20.16 9.83 N35.67°W
-870 19.85 24.55 13 N36.43°WNZK204
-1025 27.62 30.29 17.32 N41.54°W

11
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12 Fig. 18.  Curves depicting the variation of in-situ stress with core depth.

13 Table 7 presents the in-situ stress data obtained at different depths through hydrofracturing 
14 method in the mining exploration information. A comparison was made between the method 
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1 employed in this study and the hydrofracturing method, revealing that the in-situ stress 
2 magnitudes measured by both approaches were very close, with the stress directions differing by 
3 no more than 15°. The results obtained by the two methods were relatively consistent. Therefore, 
4 the intelligent identification research on Kaiser point conducted in this study provides a viable 
5 solution for in-situ stress measurements in mining, and exhibited good performance. By applying 
6 the findings of this study to the AE Kaiser effect method, the human and material resources input 
7 will be reduced, and the efficiency and accuracy of in-situ stress measurements will be enhanced.
8 Table 7. Spatial stress components of rock mass at various depths (by hydrofracturing method)

Core number Measuring 
point depth/m

Vertical principal 
stress /MPa

Maximum horizontal 
principal stress/MPa

Minimum horizontal 
principal stress/MPa

Direction of 
maximum principal 

stress
-557 14.76 20.42 12.86 N51°W
-884 23.43 23.42 16.85 N50°WNZK204
-1031 27.32 29.44 19.58 N55°W

9 5 Conclusion
10 To achieve rapid and accurate identification of Kaiser points, this study combines chaos 
11 theory with machine learning algorithms to establish an intelligent identification model for Kaiser 
12 points. Firstly, AE activities of rock samples were analyzed through PSR to extract the fractal 
13 dimension of AE counts. Subsequently, the fractal dimension of AE counts was combined with 
14 AE characteristics to construct an AE partitioning intelligent identification model using GA and 
15 SVM. Finally, Kaiser points were identified based on the classification results of this model.The 
16 conclusions were summarized as follows:
17 (1) In this study, a dataset comprising AE counts from 60 rock specimens was established. 
18 The SVM was utilized to develop the intelligent model for AE count partitioning classification. To 
19 construct the model effectively and improve its performance, GA was introduced to optimize the 
20 SVM hyperparameters, and SMOTETomek was used to process the unbalanced dataset.
21 (2) The SVM model was trained using the training set, while the test set was employed to 
22 evaluate the performance of the model. The model's accuracy, precision, recall, and F1 in the test 
23 set were at high levels, and the AUC for all three classifications was greater than 0.95. Thus, the 
24 model had excellent classification performance.
25 (3) The identification results of Kaiser point by the PPPGS were very close to those of the 
26 tangent-intersection method, indicating that the PPPGS had excellent accuracy in identifying 
27 Kaiser point. Notably, the accuracy of the Kaiser point identified through the PPPGS surpassed 
28 that identified by the tangent-intersection method. 
29 (4) Upon comparing the average scores of each feature, it was evident that accumulated 
30 counts > fractal dimension > energy > count. The score for the fractal dimension was second only 
31 to the accumulated counts, signifying the crucial role played by the fractal dimension in 
32 classification and underscoring its significance as a reliable feature for identifying Kaiser point.
33 (5) The PPPGS were applied to measure the in-situ stress of a Weng'an phosphate mine, and 
34 exhibited good performance. By applying the findings of this study to the AE Kaiser effect 
35 method, the human and material resources input will be reduced, and the efficiency and accuracy 
36 of in-situ stress measurements will be enhanced.
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