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Abstract: Electrode materials that rely on conversion reactions for lithium-ion batteries (LIBs) possess high energy densities. However, a
key issue in their design is bolstering their stability and minimizing volume variations during lithiation and delithiation. Herein, an effect-
ive strategy was devised to fulfill the fully reversible conversion reaction for lithium storage in CoMoO4 through the hybridization of Co-
MoO3. CoMoO3/CoMoO4 with a nanorod structure was synthesized via one-step annealing treatment after a solvothermal process. In such
a  structure,  the  CoMoO3/CoMoO4 nanorod  can  considerably  boost  mechanical  robustness  and  offer  ample  space  to  counteract  volume
fluctuations throughout successive cycles owing to the cooperative interaction between CoMoO3 and CoMoO4. CoMoO3/CoMoO4 exhib-
ited  superior  lithium-storage  capacity  (919.6  mAh/g  at  0.1  A/g  after  200  cycles)  and  cycling  stability  (683.4  mAh/g  at  1  A/g  after
600 cycles). CoMoO3/CoMoO4 showed a high potential as an anode material for LIBs.

Keywords: anode; CoMoO3/CoMoO4; nanorod structure; hybrid material; electrode materials; conversion reaction-type; lithium-ion bat-
teries

  

1. Introduction

Transition-metal oxides accumulate lithium through con-
version reactions, and they are reduced to metallic nanocrys-
tals within a Li2O matrix during the lithiation phase and re-
oxidized  to  their  original  form during  delithiation [1–5].  In
addition, some transitional-metal oxides further accommod-
ate  lithium  via  alloying  reactions  after  the  formation  of
metallic nanocrystals, which provides extra capacity [6–10].
As a result, electrode materials based on metal oxides typic-
ally have theoretical specific capacities ranging from 600 to
1000 mAh/g, which surpass those of traditional graphite by a
factor of 1.5–3. Moreover, bimetal oxides demonstrate better
performance than monometal oxides and are thus well docu-
mented as substitutes for anodes with elevated capacities for
lithium-ion batteries (LIBs) [11–13].

Among various bimetal oxides, CoMoO4 is a prospective
electrode for  LIBs,  and it  is  characterized by its  theoretical
capacity  (980 mAh/g)  and advantageous  properties,  includ-
ing  high  conductivity  and  a  range  of  oxidation  states  from
molybdenum [14–19].  However,  this  material  faces  chal-
lenges, such as its sluggish reaction kinetics and poor cycling
stability, which are often attributed to large volume changes
and the configuration of a fragile solid–electrolyte interphase
(SEI) layer.

The exceptional properties of nanostructure materials in-
clude swift migration channels for electrons and lithium ions,
a broad interface that enables the interaction of the electrode

with the electrolyte, paired with superior pliability and durab-
ility to manage the strain resulting from Li+ insertion/extrac-
tion. Therefore, the above advantages make nanostructuring a
powerful  strategy  for  addressing  the  aforementioned  chal-
lenges for CoMoO4. Yu et al. [15] reported a hierarchically
porous three-dimensional  CoMoO4 electrode that  delivers  a
specific  capacity  of  894  mAh/g  after  100  cycles.  Porous
CoMoO4 nanorod reported by Wang et al. [20] delivered 603
mAh/g  after  300  cycles  at  0.4  A/g.  They  demonstrated  ex-
ceptional  lithium-storage  performance  after  the  design  and
fabrication of CoMoO4 with various nanostructures. The in-
troduction of carbon clamping shell layers is another strategy
for  preventing  severe  capacity  fading,  particularly  at  high
current [21–23].  Furthermore,  the  large  surface  area  of  the
modified  anode  materials  can  increase  the  number  of  ion
storage sites and promote the penetration of the electrolyte,
which  enhances  the  specific  capacity  and  the  rate  of  ion
transport [24]. As evidenced by researches [25–28], the asso-
ciation of CoMoO4 with carbon materials realized improved
electrochemical performance over pure CoMoO4.  However,
carbon coating is often tedious and may lower the tap density
or initial Coulombic efficiency [29].

A reported novel strategy introduces highly active nanos-
ized  Co-based  oxides  to  stabilize  structured  electrodes  and
promote  reversible  insertion  and  extraction  reactions  in  an
atomically  homogeneous  manner [30–35].  Thus,  seeking
suitable  Co-based  oxide  to  decorate  CoMoO4 should  be  a
powerful  strategy  to  advance  lithium-storage  capacity,  but 
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−⇀↽−

such a task remains highly challenging. Wang et al. [30] re-
ported  a  fully  reversible  MoO3/CoMoO4 was  achieved
through the introduction of Co-based oxide into CoMoO4. In
addition,  valence-rich  Mo  (IV,  V)  oxides  are  more  active
than single-valence Mo (VI) oxides due to the altered charge
distribution at the material interface [36–39]. Therefore, the
introduction of CoMoO3 into CoMoO4 is deemed an effect-
ive means to realizing the conversion reaction of CoMoO4 +
8Li+ + 8e−  Mo + Co + 4Li2O due to the combined advant-
ages  of  the  constructed  CoMoO3–CoMoO4 hybrid.  More-
over, in-situ formation of Co nanoclusters from CoMoO3 and
CoMoO4 effectively curbs the aggregation of Mo nanocrys-
tals  and  cushions  the  stress  resulting  from volume  changes
during the cycling process, which improves the capacity re-
tention  and  cycling  stability  of  the  CoMoO3/CoMoO4 elec-
trode.

Herein, hybrid CoMoO3/CoMoO4 nanorods were success-
fully  synthesized  via  a  straightforward  two-step  synthesis
procedure, which included a solvohydrothermal reaction fol-
lowed by a high-temperature annealing treatment. CoMoO3/
CoMoO4 delivered a specific capacity of 919.6 mAh/g after
200 cycles  at  0.1 A/g and 683.4 mAh/g after  600 cycles  at
1 A/g and displayed an exceptional lithium-storage perform-
ance  originating  from  the  unique  CoMoO3/CoMoO4 archi-
tecture  and  synergistic  action.  This  work  presents  a  novel
strategy to boost the high-performance lithium storage of bi-
metal  oxides  and  potentially  offers  considerable  advance-
ment in the field of energy storage materials. 

2. Experimental

The  fabrication  process  of  CoMoO4 (CMO-1)  and  Co-
MoO3/CoMoO4 (CMO-2) both involved the solvothermal re-
action and annealing treatment. First, 1.1420 g CoCl2·6H2O
was dissolved in 60 mL triethylene glycol via magnetic stir-
ring for  0.5  h,  which resulted  in  a  purple  solution.  Second,
1.1614 g Na2MoO4 was added to 10 mL deionized water and
sonicated to create a transparent solution. Third, this solution
was blended with the purple solution under magnetic stirring
for  0.5  h.  The  solution  color  turned  blue-violet  and  was
deemed solution C. Then, solution C was placed in a Teflon-
lined autoclave, maintained for 12 h at 120°C, and allowed to
cool  naturally.  The  violet  precursor  was  retrieved  through
centrifugation and cleaned with ethanol to remove impurities
before  being  dried  at  60°C overnight.  CMO-1  and  CMO-2
products were achieved through thermal treatment of the vi-
olet  precursors  at  600  and  650°C  for  1  h  under  N2 atmo-
sphere at a consistent heating rate of 2°C/min.

The comprehensive material assessments and explanation
of  electrochemical  tests  were  shown  in  Supplementary  In-
formation. 

3. Results and discussion 

3.1. Results

The fabrication of CMO-1 and CMO-2 involved a solvo-
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thermal  synthesis,  followed  by  an  annealing  step.  Thermo-
gravimetric (TG) analysis was performed to ascertain the op-
timal annealing temperature of the precursor (Fig.  S1).  The
TG  curve  indicated  that  annealing  should  be  conducted  at
temperatures between 600 and 800°C, where a clear weight
reduction  was  observed.  X-ray  diffraction  (XRD)  measure-
ments  were  carried  out  to  measure  the  crystal  phase  and
structure of CMO-1 and CMO-2. As displayed in Fig. 1(a),
for  CMO-1,  the  typical  peaks  located  at  23.32°,  26.56°,
27.38°,  28.70°,  32.25°,  33.79°,  and  38.95°  corresponded  to
the (021), (002), ( ), ( ), ( ), ( ), and (040) planes
of  CoMoO4 (PDF#21-0868) [15,20,25,39],  respectively,
which imply that CoMoO4 was successfully obtained via an-
nealing after a hydrothermal process. For CMO-2, other than
the  several  characteristic  peaks  of  CoMoO4 observed  in
CMO-1,  the  peak  marked * at  19.7°  was  indicative  of  the
( )  plane of  CoMoO4.  Furthermore,  the  distinct  peaks  at
18.05°,  25.67°,  30.68°,  35.97°,  37.10°,  45.63°,  and  49.24°
corresponded to the (002), (102), (110), (200), (004), (203),
and (114) planes of CoMoO3 (PDF#21-0869) [40–41]. For a
more in-depth analysis of the structure, Raman spectral ana-
lysis was further conducted. As shown in Fig. 1(b), the bands
observed at 333, 365, 803, 869, and 933 cm−1 represent the
stretching vibrations  of  Co–O–Mo in CoMoO4 or  CoMoO3

[20,42–45]. To determine the composition of CMO-2, X-ray
photoelectron spectroscopy (XPS) survey was conducted to
analyze the sample. For the Co 2p XPS spectrum, two prom-
inent peaks at 780.4 and 796.8 eV (Fig. 1(c)) corresponded to
the Co 2p1/2 and Co 2p3/2 energy levels, respectively. In addi-
tion, the satellite peaks near 803.1 and 786.9 eV were associ-
ated with the shakeup-type peaks of the Co 2p1/2 and Co 2p3/2

edge,  respectively,  which  is  characteristic  of  the  high-bind-
ing-energy  Co  side [20,46–48].  For  the  Mo  3d  spectrum
(Fig.  1(d)),  the intense peak at  235.08 eV was attributed to
Mo 3d3/2, and the strong peak at 232.0 eV and the faint peak
at  229.9  eV  corresponded  to  Mo  3d5/2,  which  signified  the
presence of Mo6+ and Mo4+ oxidation states [46–47,49–50].
Fig.  1(e)  and (f)  displays the N2 adsorption–desorption iso-
therms  and  pore  size  distribution  curves  for  CMO-1  and
CMO-2,  and  Table  S1  provides  the  corresponding  specific
surface  area  and  mean  pore  diameter.  CMO-2  exhibited
higher  specific  surface  area  of  14.81  m2/g  than  CMO-1
(10.97 m2/g). The elevated surface area can offer more active
sites  for  Li+ storage.  Notably,  the pore sizes of  the CMO-1
and  CMO-2  were  predominantly  within  that  of  mesopores
(Fig. 1(f)), suggesting their potential for enhancing ion trans-
port [30].

The  morphological  examination  via  field-emission  scan-
ning electron microscopy (FESEM) in Fig. 2(a)–(c) revealed
that the precursor, CMO-1, and CMO-2 had a nanorod form.
These  nanorods  interconnected  and  formed  a  network  that
enhanced  ion  transport.  Further,  the  transmission  electron
microscopy  (TEM)  images  of  CMO-2  (Fig.  2(d)  and  (e))
revealed  nanorods  that  were  several  micrometers  in  length,
300  nm  wide,  and  100  nm  tall.  The  high-resolution  TEM
(HRTEM)  images  displayed  an  interplanar  distance  of
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2̄010.44 nm, which corresponded to the ( ) plane of CoMoO4,
as shown in Fig. 2(f)–(i). Distances of 0.34 and 0.49 nm were
associated with the (102) and (002) planes of  CoMoO3,  re-
spectively [30,35]. Moreover, the elemental mappings in Fig.
2(j)–(m)  illustrate  the  even  distribution  of  Co,  Mo,  and  O
within  the  samples.  All  the  above  results  demonstrate  the
successful synthesis of the CoMoO3/CoMoO4 structure.

−⇀↽−

The lithium-storage performances of CMO-1 and CMO-2
as the anode material for LIBs were evaluated. Fig. 3(a) and
(b) presents the cyclic voltammetry (CV) curves of the initial
three  cycles  for  CMO-1  and  CMO-2  at  0.2  mV/s,  respect-
ively. For CMO-1, the initial cathodic process exhibited two
reduction peaks at 0.30 and 0.12 V, which signifies the form-
ation  of  metallic  Co and Mo,  respectively,  solid  electrolyte
interphase film, and a peak at 1.21 V indicating Li2O forma-
tion [15,44,51]. After the initial cycle, the reduction peaks at
1.52 and 0.62 V were ascribed to the reversible reduction re-
action: CoMoO4 + 8Li+ + 8e−  Mo + Co + 4Li2O. During
the  anodic  scans,  two  oxidation  peaks  of  1.44  and  1.84  V
were detected, which signifies the oxidation reactions of Co

and Mo. At 1.44 V, the peak implied the advancement from
Mo0 to Mo4+, and that at 1.80 V was indicative of the change
from Co to Co2+ and the further change from Mo4+ to Mo6+.
For  CMO-1,  the  peak  at  1.21  V  denoted  the  formation  of
Li2O,  which  was  reversible  but  with  a  low  intensity.  For
CMO-2, during the initial cathodic process, the 0.45 V reduc-
tion peak was linked to the intercalation of Li+ into CoMoO4,
which resulted in the generation of metallic Co and Mo along
with the formatting of SEI films. Meanwhile, the peak at 1.26
V indicated Li2O formation. After the initial cycle, new peaks
identified at  approximately 0.62 and 1.26 V were linked to
the reversible lithium uptake by CoMoO3 and CoMoO4,  re-
spectively.  The  identification  of  these  new  peaks  indicates
that the contribution of CoMoO3 to the lithium-storage per-
formance is important and should not be overlooked. In an-
odic scans, a prominent oxidation peak (1.44 V) along with a
less intense peak (1.80 V) was observed, and it corresponded
to the lithium reversible desertion occurring in CoMoO3 and
CoMoO4.  The  peak  at  1.44  V  shifted  right  and  intensified,
and the peak at 1.80 V weakened due to the increased levels
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Fig. 1.    (a) XRD and (b) Raman spectra of CMO-1 and CMO-2, (c) Co 2p and (d) Mo 3d XPS spectra of CMO-2, and (e) N2 adsorp-
tion–desorption hysteresis loops and (f) their matching pore size distribution plots for CMO-1 and CMO-2.
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of  the  Co  (II)  and  Mo  (IV)  components  in  the  composite
upon oxidation process and polarization. The peak at 1.21 V
corresponding to Li2O can be made fully reversible and shif-
ted to 1.26 V after the first cycle, which should stem from the
integrated effect of CoMoO3 and CoMoO4. Furthermore, the
CV curves  for  CMO-2  exhibited  a  strong  overlap  after  the
initial  cycle,  which also demonstrates  its  enduring stability.

The large specific surface area of CMO-2 promoted lithium
insertion/extraction by providing more active  sites  for  lithi-
um ions, which is crucial for the enhanced rate capability and
cycling stability of the anode material. The increased surface
area allowed for more efficient contact between the electrode
material  and  the  electrolyte,  which  improved  its  electro-
chemical performance.
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Fig. 3.    CV curves of (a) CMO-1 and (b) CMO-2 at 0.2 mV/s.
 

Fig.  4(a)  and  (b)  presents  the  galvanostatic  discharge/
charge curves at 0.1 A/g for CMO-1 and CMO-2, spanning
from 0.001 to 3.0 V. Upon first discharge, CMO-1 displayed
a clear peak at 1.80 V and a prolonged voltage flat spot at 0.5
V, which matched its CV curve. For CMO-2, the initial dis-
charge curve was split  into two regions at  1.5 V. In the re-
gion above 1.5 V, the capacity was an outcome of Li+ inser-

tion into CoMoO4 formatting CoMoO3, which was respons-
ible for the 147.1 and 87.3 mAh/g capacities of CMO-1 and
CMO-2, respectively. The lower capacity of CMO-2 was due
to  its  composition  of  CoMoO4 and  CoMoO3.  When  the
voltage dropped below 1.5 V, a conversion reaction occurred,
which was attributed to  the transformation of  LixMoO3 and
Li+ into Mo and Li2O, yielding 1021.1 and 1034.7 mAh/g for
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CMO-1 and CMO-2, respectively. The initial cycle capacity
fade was ascribed to the formation of Li2O and SEI films and
associated side reactions. CMO-2 exhibited well-aligned dis-
charge/charge  profiles  and  minimal  capacity  loss  after  the
first  cycle,  and  these  findings  signify  its  better  cyclability
compared  with  CMO-1.  Such  outcomes  were  attributed  to
the  synergistic  interaction  between  CoMoO3 and  CoMoO4.
Accordingly,  the  Coulombic  efficiency  of  CMO-2  experi-
enced a sharp increase, starting at 75.57% in the first cycle,

and the value reached ∼96.13% by the second cycle and re-
mained above 98% beyond 200 cycles. Although the initial
Coulombic efficiency of CMO-1 (84.24%) was higher than
that of CMO-2 (75.57%), the Coulombic efficiency of CMO-
2 was 93.43% in the second cycle, and it increased to 96.49%
until the 5th cycle and remained above 98% after 200 cycles.
The results demonstrate that the introduction of CoMoO3 in-
to  CoMoO4 can  promote  the  fully  reversible  conversion  of
CoMoO4 for LIBs.
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Fig. 4.    (a, b) CV discharge/charge profiles of CMO-1 and CMO-2, respectively; (c) cycling performancesat 0.1 A/g and (d) rate per-
formances of CMO-1 and CMO-2; (e) prolonged cycling performance of CMO-2 at 1 A/g.
 

Fig. 4(c) depicts the cycling performances of CMO-1 and
CMO-2 at  0.1 A/g after 200 cycles.  Upon initial  discharge,
CMO-1 delivered a specific capacity of 1168.2 mAh/g, sur-
passing that of CMO-2 (1122.0 mAh/g). However, an evid-
ent capacity fade was observed during cycling, which resul-
ted in a high-capacity loss of up to 77.81% for CMO-1 after
200 cycles. The capacity retention of CMO-2 after 200 cycles
reached  81.69%,  which  is  considerably  higher  than  that  of
CMO-1. The result signifies that the better cycling stability of
CMO-2 was due to the introduction of highly active nanos-

ized  CoMoO3 into  CoMoO4,  which  not  only  promoted  the
fully  reversible  conversion  in  CoMoO4 but  also  provided  a
better  cushion  to  accommodate  volumetric  swelling  during
cycling. Moreover, the capacity of CMO-2 continuously in-
creased after approximately 80 cycles due to the activation of
additional active material surfaces and the improved electro-
chemical  reactions  during  the  cycling  process,  consistent
with the observation in a similar study [52].

Fig. 4(d) illustrates the rate performances of CMO-1 and
CMO-2. At various current densities, CMO-2 delivered dis-
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charge  specific  capacities  of  1257.8,  832.4,  660.1,  484.1,
273.6, 115.3, and 63.9 mAh/g at 0.1, 0.3, 0.5, 1, 3, 5, and 10
A/g,  respectively.  Conversely,  CMO-1  exhibited  a  poorer
rate capability, with capacities of 860.7, 669.8, 563.9, 409.4,
177.6,  98.6,  and  53.6  mAh/g  at  the  corresponding  current
densities. After cycling at various rates and the current dens-
ity  reverting  to  0.1  A/g,  CMO-1  and  CMO-2  recovered  to
760.3 and 1355.9 mAh/g, respectively, which implies that the
electrodes maintained their  structural  robustness at  elevated
current  densities.  Furthermore,  the  long  cycling  stability  of
CMO-2 was investigated. Fig. 4(e) shows its substantial ca-
pacity  of  683.4  mAh/g  after  600  cycles  at  1  A/g,  which
proves its excellent cycling stability. 

3.2. Discussion

To explore the mechanism accounting for their improved
electrochemical performance, CMO-1 and CMO-2 were sub-

jected to CV measurements at different scan rates (Fig. 5(a)
and (b)). The stored charge within the electrode is chiefly de-
rived from two processes,  namely,  (i)  faradaic  intercalation
and (ii) capacitive processes, which is related to the faradaic
charge transfer at/near the surface. Qualitative analysis of the
capacitive  contribution  to  capacity  was  performed referring
to the following equation [53–57]:

i = avb (1)
Eq. (1) is reformatted to Eq. (2):

lgi = lga+blgv (2)
where v signifies the scan rate, i denotes the current at a con-
sistent  potential,  and the  equation features a and b are  tun-
able parameters. b value was identified from the slope of lga
versus lgv, a key indicator of charge storage kinetics. For the
process  controlled  by  diffusion  (faradaic  process), b was
close to 0.5, whereas for processes dominated by capacitive
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behavior,  its  value  was  close  to  1.  Parameter b was  calcu-
lated using the peaks marked in Fig. 5(a) and (b). The corres-
ponding values were 0.69 (peak 1), 0.55 (peak 2), 0.53 (peak
3), and 0.76 (peak 4) for CMO-1 (Fig. 5(c)) and 0.38 (peak
1), 0.52 (peak 2), and 0.31 (peak 3) for CMO-2 (Fig. 5(d)).
Values clustering around 0.5 indicated a dominant diffusion
contribution to charge storage. This outcome verifies that the
lithium-storage mechanism of CMO-1 and CMO-2 depends
on conversion reactions.

The  relative  dominance  of  capacitive  and  diffusion-con-
trolled processes for CMO-1 and CMO-2 can be determined
using the following equations [53–54,58–63]:

i(V) = k1v+ k2v1/2 (3)
Eq. (3) is reformatted to Eq. (4):

i(V)/v0.5 = k1v0.5+ k2 (4)
where k1 and k2 denote the coefficients for surface-capacitive
and  diffusion-controlled  processes,  respectively; i(V)  de-
notes the current at a fix potential. Both constants are defined
in Eq. (4) and can be evaluated accordingly. Fig. 5(e) and (f)
provides  a  visual  representation  of  the  calculated  contribu-
tions from the diffusion-controlled and capacitive processes
of CMO-1 and CMO-2 at different scan rates,  respectively.
With  the  increase  in  the  scan  rate,  the  capacitive  contribu-
tions  of  CMO-1  and  CMO-2  ascended  to  10.88%  and
14.81% (at 2 mV/s),  respectively, from the initial  values of
4.92% and 7.52% (at 0.4 mV/s). CMO-2 exhibited higher ca-
pacitive contributions than CMO-1 at each scan rate.

EIS measurement proved vital to the evaluation of the im-
proved performance of the samples. Fig. S2(a) and (b) shows
the Nyquist plots of CMO-1 and CMO-2, respectively, with
the same discharge state from 308.15 to 388.15 K. The plots
share  three  distinctive  components:  (I)  a  minor  depressed
semicircle at  high frequencies,  which is  associated with the
SEI film resistance (Rf) and constant phase element (CPE1);
(II)  a  depressed  arc  at  the  intermediate  frequency  range,
which stemmed from the resistance to Rct (electron transfer)
and CPE2;  (III)  a  straight-line feature  in  the low-frequency
range, which points to the Warburg impedance (Zw) associ-
ated with Li+ migration. To further clarify the effect of intro-
ducing CoMoO3 into CoMoO4 on the activation energy of the
interfacial reaction, the corresponding activation energy (Ea)
for the samples was calculated through the following modi-
fied Butler–Volmer equation [64]:

T
Rct
= Aexp

(
− Ea

RT

)
(5)

Eq. (5) was reformatted to Eq. (6):

lg
T
Rct
= − Ea

2.303R
× 1000

T
(6)

− Ea

2.303R
lg

T
Rct

1000
T

where A is the pre-exponential factor, T is the absolute tem-

perature, R is  8.314  J·mol−1·K−1,  and  was  identi-

fied from the slope of  versus .  The correspond-
ing values were −1.83 for CMO-1 (Fig. S2(c)) and −0.42 for
CMO-2 (Fig. S2(d)), and the Ea values of CMO-1 and CMO-

2 were 35.04 and 8.06 kJ/mol, respectively. The results indic-
ate that the charge transfer interfacial reaction of CMO-2 was
more readily conducted, which exhibited excellent reversible
and  rate  performances  than  CMO-1. Fig.  5(g)  shows  the
Nyquist  plots  of  CMO-1 and  CMO-2 after  cycling  for  200
cycles at 0.1 A/g. As shown in Fig. 5(h), CMO-2 exhibited a
better charge transfer ability than CMO-1. To further clarify
the effect of introducing CoMoO3 into CoMoO4 on the lithi-
um-ion  diffusion,  the  corresponding  ion  diffusion  coeffi-
cients (DLi

+) for the CMO-1 and CMO-2 samples were calcu-
lated using the following equation [65–66]:

DLi + = 0.5× R2T 2

S 2n4F4C2
Li + σ2

(7)

where T equals 2981.5 K, S is the electrode area (1.54 cm2) ,
n signifies the number of transferred electrons involved in the
electrochemical  redox  reaction  (8), F is  96500  C/mol
(Faraday’s  constant), CLi

+ indicates  the  molar  concentration
of Li+ in the solid (3.56 × 10−5 mol·cm−3), and σ was calcu-
lated  by  evaluating  the  slope  of  the Z'–ω−1/2 line  segments
(Fig.  5(i)),  with  values  of  617.5  and  355.3  rad1/2·s1/2 for
CMO-1 and CMO-2, respectively. Therefore, the DLi

+ values
were calculated using Eq. (7). The DLi

+ for CMO-2 was 1.74
times higher than that of CMO-1, which implies that the in-
troduction of CoMoO3 into CoMoO4 can facilitate ion diffu-
sion in the electrode.

Furthermore, to highlight the outstanding reversibility per-
formance for LIBs, Table S2 demonstrated the comparison of
CMO-2 and other reported CoMoO4-based electrodes. Evid-
ently,  the  lithium-storage  performance  of  CMO-2,  particu-
larly for long-term cycling performance, is as good as or bet-
ter than that of CoMoO4 with various amorphous or carbon
coatings.  In  addition,  CMO-2  showed  a  reversible  lithium-
storage capacity similar to the benefits observed with the in-
corporation of Co3O4 into CoMoO4. The above characteriza-
tions and analyses revealed that the remarkable lithium-stor-
age  performance  of  CMO-2  was  due  to  the  following:  (i)
high specific surface area supplied ample active sites for ion
hosting; (ii) low Rct promoted optimal charge transfer during
the  discharge/charge  process;  (iii)  the  introduction  of  Co-
MoO3 into  CoMoO4 can  effectively  decrease  the  activation
energy of the interfacial reaction, which promotes Li+ diffu-
sion and storage. 

4. Conclusion

CMO-2 nanorods have been successfully synthesized by
employing a simple solvo-hydrothermal approach, followed
by an  annealing  approach  to  finalize  the  structure.  Introdu-
cing  CoMoO3 into  CoMoO4 can  boost  charge  transfer  effi-
ciency at the electrode contact and promote the rapid move-
ment of Li+ within the electrode. In addition, nanorod struc-
ture can reduce the distance that ions must travel, which fa-
cilitates the process of Li+ insertion and extraction. Therefore,
CMO-2 exhibited excellent lithium-storage performance, in-
cluding specific capacity and cycling stability (919.6 mAh/g
at 0.1 A/g after 200 cycles and 683.4 mAh/g at 1 A/g after
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600 cycles). The strategy presented in this work will serve as
a promising means to promote the development of highly re-
versible capacity metal oxides for high-performance LIBs. 
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