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Abstract: CoFe bimetallic hydroxides (CoFe BMHs) are widely used as excellent 

catalysts in the field of water splitting. However, the influence of morphologies of 

CoFe BMHs on catalyst performance has not been systematically studied. In this 

study, we prepared CoFe BMHs nano-flowers (CoFe BMHs NFs), CoFe BMHs 

nano-sheets (CoFe BMHs NSHs), CoFe BMHs nano-rods (CoFe BMHs NRs), and 

CoFe BMHs nano-spheres (CoFe BMHs NSPs) on nickel foam using a hydrothermal 

method. Among them, CoFe BMHs NSHs exhibited the most beneficial catalytic 
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activity. At a current density of 100 mA cm−2, the overpotential for oxygen evolution 

reaction (OER) was 282 mV, and the overall water splitting voltage was 1.923 V. The 

Cdl value of CoFe BMHs NSHs is the largest in CoFe BMHs, which proves that CoFe 

BMHs NSHs have the largest active area. Furthermore, the active site in the OER 

process was found to be MOOH by in situ Raman characterization and the generation 

of the active substance is an irreversible process. This work provides significant 

insights into the design of catalyst morphologies, offering valuable guidelines for 

enhancing the performance of other catalysts.

Keywords: CoFe Bimetallic Hydroxides, Various Morphologies, Hydrogen 

Evolution Reaction, Oxygen Evolution Reaction, Overall Water Splitting

Acce
pte

d M
an

us
cri

pt 
Not 

Cop
yed

ite
d



1. Introduction
Hydrogen energy, as a clean energy source, can significantly reduce greenhouse gas 

emissions and play a crucial role in combating climate change [1-3]. Among various 

hydrogen production methods, water splitting is considered the most environmentally friendly 

approach [4]. In the process of overall water splitting, the four-electron process of anode OER 

is slow and consumes most of the energy input, which determines the energy consumption of 

the entire reaction [5-6]. Although precious metal catalysts (e.g., IrO2/RuO2) exhibit excellent 

activity in OER [7-8], they are costly. Currently, large-scale electrolyzers in industrial settings 

mainly utilize nickel-based catalysts, such as pure nickel mesh or nickel foam, which possess 

excellent conductivity, high-volume porosity, and good mechanical properties. However, it is 

challenging to further increase the number of catalytic sites solely through structural 

optimization of nickel mesh or foam. Optimization can be performed at a more microscopic 

scale, such as depositing catalysts with higher specific surface area and catalytic activity on 

substrates [9-12].

Transition metal hydroxides are well-known electrocatalysts due to their easy-to-obtain 

raw materials, adjustable chemical composition, superior activity, and stability [13-15]. 

Among them, CoFe bimetallic hydroxides (CoFe BMHs) exhibit excel-lent OER performance 

under alkaline conditions [16-18]. However, the low electrical conductivity of CoFe BMHs 

hinders the expression of catalytic activity [19]. Growing CoFe BMHs on a nickel foam 

substrate is an effective method to address this issue [20-21]. Additionally, the microstructural 

morphology of the catalyst also influences the active sites and intrinsic activity. Although 

researchers have prepared CoFe BMHs nano-flowers (CoFe BMHs NFs) [22-23], CoFe 

BMHs nano-sheets (CoFe BMHs NSHs) [24-25], and CoFe BMHs nanorods (CoFe BMHs 

NRs) [26], using various methods, there has been no systematic study on the relationship 

between the morphology prep-aration of CoFe BMHs and their catalytic performance.
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Herein, we utilized a one-step hydrothermal method to prepare CoFe BMHs NFs, CoFe 

BMHs NSHs, CoFe BMHs NRs, and CoFe BMHs nano-spheres (CoFe BMHs NSPs) on the 

nickel foam surface. The porous structure of the nickel foam not only facilitates the transfer of 

substances during the reaction process but also compensates for the poor conductivity of 

CoFe BMHs. Through physical characterization and electrochemical testing, it was 

discovered that CoFe BMHs NSHs exhibit the most superior catalytic performance. CoFe 

BMHs NSHs demonstrated overpotentials of only 282 mV for OER at a current density of 

100 mA cm−2. Furthermore, the surface structural changes of CoFe BMHs NSHs during OER 

were measured by in situ Raman spectroscopy. This work provides valuable insights into 

enhancing catalytic activity by optimizing the morphology of catalysts.

2. Materials and Methods
2.1. Materials

Nickel foam was purchased from Kunshan Guangjiayuan Materials Co. LTD, China. 

Fe(NO3)3·9H2O (97.5wt%) and Co(NO3)2·6H2O (97.0wt%) were bought from Macklin, 

Shanghai, China. Urea (CH4N2O, 96.5wt%), NH4F (99.5wt%), KOH (98wt%), and NaH2PO2 

(99.0wt%) were bought from Aladdin, Shanghai, China.

2.2. Synthesis of CoFe BMHs NFs, CoFe BMHs NSHs, CoFe BMHs NRs, and CoFe 

BMHs NSPs

First, the nickel foams were ultrasonically cleaned with 3 M HCl for 15 min to remove 

the oxide layer on the surface, followed by alternating with alcohol and deionized water. For 

the synthesis of CoFe BMHs NFs, a Solution A was prepared by dissolving 404 mg of 

Fe(NO3)3·9H2O, 289 mg of Co(NO3)2·6H2O, 1.2 g of urea, and 370.3 mg of NH4F in 30 mL 

of deionized water. For CoFe BMHs NSHs, Solution B was made with 404 mg of 

Fe(NO3)3·9H2O, 578 mg of Co(NO3)2·6H2O, 0.6 g of urea, and 370.3 mg of NH4F in 30 mL 

of deionized water. Solution C for CoFe BMHs NRs was prepared by dissolving 404 mg of 
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Fe(NO3)3·9H2O, 578 mg of Co(NO3)2·6H2O, 1.2 g of urea, and 154.3 mg of NH4F in 30 mL 

of deionized water. Lastly, Solution D for CoFe BMHs NSPs was formulated with 202 mg of 

Fe(NO3)3·9H2O, 144.5 mg of Co(NO3)2·6H2O, 0.6 g of urea, 154.3 mg of NH4F, and 42.4 mg 

of NaH2PO2 in 30 mL of deionized water. Each solution was then transferred to a 50 mL 

reactor liner and incubated at 120℃ in an oven for 8 hours. After the oven cooled naturally, 

the catalysts were removed, rinsed with alcohol and distilled water, dried, and set aside.

2.3. Characterization

The electrocatalyst's chemical composition was ascertained utilizing an X-ray 

diffractometer (XRD, SMARTLAB (9)). Examinations of the electrocatalysts' morphology, 

lattice diffraction, and compositional analysis were carried out with a field-emission scanning 

electron microscope (FESEM, SU8020) and a transmission electron microscope (TEM, JEOL 

JEM 2100F). The electrocatalysts' chemical composition was evaluated using X-ray 

photoelectron spectroscopy (XPS, Thermo Kalpha). In situ characterization of the samples 

was performed using HORIBA's LabRAM HR Evolution high-resolution Raman imaging 

spectrometer.

2.4. Electrochemical Measurements

All electrochemical data were obtained using the Kesite electrochemical workstation (CS 

Studio6, Wuhan Kesite Instrument Co., Ltd.). A three-electrode working system was 

employed for OER testing. The prepared material served as the working electrode, a platinum 

sheet was used as the counter electrode, and the Hg/HgO electrode was used as the reference 

electrode. OER performance tests were conducted in 1 M O2-saturated KOH solutions. The 

test voltage was converted to the voltage of the reversible hydrogen electrode (RHE) using the 

Nernst Equation (𝐸𝑅𝐻𝐸 = 𝐸𝐻𝑔/𝐻𝑔𝑂 + 0.059 pH +  0.098 V). For overall water splitting 

testing, a two-electrode working system was employed, with the prepared material serving as 

the anode and a platinum sheet serving as the cathode. All measurements were carried out in 
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an electrolytic cell containing 1 M KOH. Linear sweep voltammetry (LSV) curves were 

recorded at a scan rate of 5 mV s−1 without iR-compensation. Tafel slopes were obtained 

using the equation (𝜂 =  𝑎 +  𝑏𝑙𝑜𝑔(𝑗)) according to LSV curves. Electrochemical impedance 

spectroscopy (EIS) was performed over a frequency range from 106 to 10−2 Hz. Stability tes 

were conducted by subjecting the catalyst to constant current polarization, and the change in 

catalyst activity was observed over a 30-hour testing period. The double-layer charging 

capacitance (Cdl) was obtained from the voltammetric cycle (CV) curves in the non-Faraday 

zone recorded at different scan rates (5, 20, 40, 60, 80, 100 mV cm2), Cdl is proportional to 

the electrochemically active surface area (ECSA). The ECSA was calculated through the 

equation: ECSA = Cdl/Cs. where Cs represents the ideal specific capacitance of a smooth 

planar surface made of the same material. Here Cs was assumed to equal 0.060 mF cm–2 [27]. 

The current density (j) measured is divided by the ECSA of the material to obtain jECSA (jECSA 

= j/ECSA).

3. Results and discussion

3.1 Preparation and Characterization of CoFe BMHs

The synthesis of CoFe BMHs with diverse morphologies was achieved by adjusting the 

ratio of Co2+, Fe3+, NH4F, urea, and NaH2PO2. Urea plays a crucial role in maintaining the pH 

of the solution within a suitable range. Under certain temperatures, urea decomposes to 

produce ammonia (NH3), which then reacts with water to form ammonium hydroxide 

(NH4OH). This process can further break down into OH, providing a favorable environment 

for the growth of bimetallic hydroxides and enhancing their yield. Additionally, fluoride ions 

(from NH4F) may replace some of the OH⁻ groups in the bimetallic hydroxide structure, 

which can influence the overall morphology. The Co:Fe ratio and content also play a crucial 

role in determining the morphology of the catalyst. The Co:Fe ratios for the different CoFe 

BMHs samples are summarized in Table S1 (Supporting Information). Specifically, the ratios 
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for CoFe BMHs NFs, CoFe BMHs NSPs, CoFe BMHs NSHs, and CoFe BMHs NRs are 

approximately 0.70:1, 1.63:1, 1.68:1, and 0.93:1, respectively. These variations in the Co:Fe 

ratio create distinct growth environments for the catalyst, which in turn affect the direction 

and rate of crystal growth, ultimately influencing the catalyst's morphology. Additionally, we 

observed that the concentrations of Fe3+ and Co2+ ions significantly impact the final 

morphology of the samples. For example, CoFe BMHs NSPs can achieve the desired 

morphology even with a lower metal ion concentration compared to the other CoFe BMHs 

samples. Fig. 1(a) presents a schematic illustration of various CoFe BMHs morphologies on 

bare nickel foam (Figure S1, Supporting Information). CoFe BMHs NFs, CoFe BMHs NSHs, 

CoFe BMHs NRs, and CoFe BMHs NSPs make the foam nickel reddish brown, light brown, 

brown, and silver gray, respectively. SEM images reveal the distinct morphologies of CoFe 

BMHs formed on the nickel foam substrate. In Figs. 1(b) and (c), CoFe BMHs NFs exhibit a 

flower-like structure with a diameter of approximately 7.5 m, densely arrayed on the nickel 

foam surface. Figs. 1(d) and (e) show CoFe BMHs NSHs as micron-sized flakes with a 

thickness of 100 nm, which grow uniformly and perpendicularly in an interlocking 

arrangement. CoFe BMHs NRs shown in Figs. 1(f) and (g) are rod-like structures, measuring 

2.5 micrometers in length, scattered across the nickel foam surface. Lastly, CoFe BMHs NSPs 

in Figs. 1(h) and (i) are spherical particles with a diameter of less than 8 m, sparsely 

distributed on the nickel foam. SEM elemental mapping analysis was conducted on the CoFe 

BMHs NFs, CoFe BMHs NSHs, CoFe BMHs NRs, and CoFe BMHs NSPs, and their 

respective energy-dispersive X-ray spectroscopy (EDS) spectra are presented in Figs. S2-5 

(Supporting Information). These results demonstrate that Co and Fe elements are uniformly 

distributed in the synthesized BMHs. Additionally, CoFe BMHs NSHs were detached from 

the nickel foam for TEM examination (Fig. 1(j)). The high-resolution TEM (HRTEM) image 

of CoFe BMHs NSHs (Fig.1(k)) revealed lattice fringes with spacings of 0.15 and 0.26 nm, 

corresponding to the (113) and (012) crystal planes of CoFe BMHs. The selected area 

electron diffraction (SAED) pattern (Fig. 1(l)) further confirmed the presence of these crystal 

planes. Elemental analysis indicated a Fe: Co ratio of approximately 1: 1.6 (Fig. S6, 

Supporting Information). Moreover, the EDS mapping image in Fig. 1(m) demonstrates the 

uniform distribution of Co, Fe, and O elements for the CoFe BMHs NSHs.
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Fig. 1.  (a) Illustration of different morphologies of CoFe BMHs. (b, c) SEM images of 
CoFe BMHs NFs. (d, e) SEM images of CoFe BMHs NSHs. (f, g) SEM images of CoFe 
BMHs NRs. (h, i) SEM images of CoFe BMHs NSPs. (g) TEM image of CoFe BMHs NSHs 
exfoliated nickel foam form and corresponding (k) HRTEM images, (l) SAED pattern, and 
(m) EDS mapping images.

The XRD patterns of CoFe BMHs with morphologies of NFs, NSHs, NRs, and NSPs are 

displayed in Fig. 2(a). The corresponding magnification of the patterns is displayed in Fig. S7. 

It can be observed that the three prominent peaks at 2θ values of 44.6 ° , 51.8 ° , and 76.4 ° 

correspond to the (111), (200), and (220) planes of Ni (JCPDS card No. 04-0850), 

respectively, which are consistent with the bare nickel foam (Fig. S8, Supporting 

Information). In addition, CoFe BMHs NFs, CoFe BMHs NSHs, and CoFe BMHs NRs 

ex-hibit several smaller diffraction peaks at 2θ values of 11.65 ° , 23.42 ° , 34.07 ° , 38.73 ° , 
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46.23° , 59.09° , 60.54° , and 63.40° , corresponding to the (003), (006), (012), (015), (018), 

(110), (113), and (0113) planes of CoFe BMHs (JCPDS card No. 50-0235). This indicates the 

deposition of a significant amount of CoFe BMHs on the surface of the nickel foam for CoFe 

BMHs NFs, CoFe BMHs NSHs, and CoFe BMHs NSPs. However, no additional CoFe 

BMHs diffraction peaks are observed for CoFe BMHs NSPs. This is be-cause CoFe BMHs 

NSPs grow sparsely and are dispersed on the nickel foam, resulting in a larger exposed 

surface area of the bare nickel foam.

Furthermore, the surface chemical composition and oxidation states of the compounds 

were examined utilizing XPS. The XPS survey spectra depicted in Fig. S9 reveal the presence 

of Co, Fe, and O in the catalysts, in concordance with the findings from EDS. In Fig. 2(b), the 

Co 2p3/2 and Co 2p1/2 spin-orbit doublet peaks, along with the shake-up satellite peaks, form a 

four-peak spectrum. For CoFe BMHs NSHs, a deconvolution analysis was performed on the 

Co 2p3/2 and Co 2p1/2 peaks to distinguish between the different oxidation states. The peaks at 

780.5 and 796.5 eV correspond to Co3+ [28], while those at 782.9 and 798.1 eV correspond to 

Co2+ [29-30]. The peaks at 786.6 and 802.9 eV are associated with satellite peaks [31-32]. The 

positions of the Co 2p peaks for CoFe BMHs NFs and CoFe BMHs NRs are largely 

consistent with those of CoFe BMHs NSHs. Due to the lower loading amount, the Co 2p1/2 

peak in CoFe BMHs NSPs is less distinct. For CoFe BMHs NSHs, the Fe 2p spectrum was 

fitted with two sets of peaks, corresponding to Fe 2p3/2 and Fe 2p1/2 at 712.6 and 725.2 eV 

[33], and two satellite peaks at 717.9 and 732.5 eV [34-35], respectively (Fig. 2(c)). In 

comparison, the Fe 2p spectra of CoFe BMHs NFs, NRs, and NSPs also exhibit similar peak 

positions. Fig. 2(d) shows the peaks of O1s, with the various O species overlapping each other 
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as seen from the XPS spectra. The peaks from left to right are assigned to surface adsorbed 

oxygen (H2O), hydroxide (-OH) [36], and metal-oxygen (M-O) species [22, 37] in CoFe 

BMHs, respectively. Metal-oxygen (M-O) is the main active species in the OER process [38]. 

The weakening of the relative peak intensity of M-O in CoFe BMHs NSPs compared to CoFe 

BMHs NFs, CoFe BMHs NSHs, and CoFe BMHs NRs indicates a decrease in the content of 

the active species, which is in agreement with the results of the high-resolution spectra of Co 

2p versus Fe 2p.
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Fig. 2.  (a) XRD patterns of CoFe BMHs NFs, CoFe BMHs NSHs, CoFe BMHs NRs, and 
CoFe BMHs NSPs. Comparison XPS spectra of (b) Co 2p, (c) Fe 2p, and (d) O 1s for 
different catalysts.

3.2. OER Performances of CoFe BMHs

The electrochemical test results for OER are presented in Fig. 3. Fig. 3(a) displays the 

LSV test results for all CoFe BMHs catalysts. To eliminate the influence of the oxidation 

peaks of Co2+ and Fe2+ in the catalysts, a negative scan was performed for all CoFe BMHs. 

From the graph, it can be observed that at a current density of 10 mA cm−2, the overpotentials 

for CoFe BMHs NFs, CoFe BMHs NSHs, CoFe BMHs NRs, and CoFe BMHs NSPs are 208, 

212, 233, and 215 mV, respectively. As the current density increases to 50 mA cm−2, the 

overpotentials are 263, 242, 290, and 304 mV, respectively. Further increasing the current 

density to 100 mA cm−2, the overpotentials are 334, 282, 357, and 372 mV Fig. 3(b), 

respectively. CoFe BMHs NSHs exhibit lower overpotential compared to other catalysts, 

indicating superior OER performance of CoFe BMHs NSHs. The Tafel slopes of the catalysts 

are presented in Fig. 3(c). The values for CoFe BMHs NFs, CoFe BMHs NSHs, CoFe BMHs 
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NRs, and CoFe BMHs NSPs are 150.9, 133.5, 156.1, and 151.4 mV dec−1, respectively. CoFe 

BMHs NSHs exhibit the smallest Tafel slope, indicating the fastest reaction rate and highest 

catalytic activity, which is consistent with the LSV test results. EIS spectra of the catalysts are 

shown in Fig. 3(d). It can be observed that the Rct values for CoFe BMHs NFs, CoFe BMHs 

NSHs, CoFe BMHs NRs, and CoFe BMHs NSPs are 0.65, 0.30, 0.88, and 1.35 Ω (Table S2, 

Supporting Information)， respectively. CoFe BMHs NSHs have the smallest Rct, indicating 

the least hindrance to charge transfer in the circuit and the highest energy conversion and 

transmission efficiency. The above electrochemical measurements indicate that CoFe BMHs 

NSHs exhibit excellent OER performance. Besides, our CoFe BMHs demonstrate clear 

advantages over the CoFe hydroxides/LDHs reported in the literature (Table S3, Supporting 

Information).
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Fig. 3.  OER was measured in 1 M KOH solution saturated with O2. (a) LSV curves, (b) 
overpotentials at 50 and 100 mA cm2, (c)Tafel plots, (d) EIS plot of CoFe BMHs NFs, CoFe 
BMHs NSHs, CoFe BMHs NRs, and CoFe BMHs NSPs, respectively.

3.3 Analysis of Excellent Performance of CoFe BMHs NSHs

To further investigate the reasons for the superior performance of CoFe BMHs, the 

ECSA of the catalysts was measured. The Cdl values of CoFe BMHs NFs, CoFe BMHs 

NSHs, CoFe BMHs NRs, and CoFe BMHs NSPs were calculated based on the CV curves in 

the appropriate potential range (0.924-1.024 V vs. RHE) (Figs. 4(a-d)), which are 3.28, 1.42, 

1.22, and 1.14 mF cm2, respectively (Fig. 4(e)). The higher the Cdl value, the larger the 

ECSA. The ECSA values for CoFe BMHs NFs, CoFe BMHs NSHs, CoFe BMHs NRs, and 

CoFe BMHs NSPs are 54.66, 23.66, 20.33, and 19.00, respectively. The high ECSA value of 

CoFe BMHs NSHs is evidence that they possess the largest active area in the OER process.  

To clarify the source of this enhanced activity, the specific activity represented by the current 

density normalized by ECSA was compared. As shown in Fig. 4(f), CoFe BMHs NFs, CoFe 

BMHs NSHs, and CoFe BMHs NSPs exhibit similar specific activity, indicating that the 

increased current density of CoFe BMHs NSHs is mainly due to the higher exposure of active 

sites. CoFe BMHs NRs, compared to CoFe BMHs NFs, CoFe BMHs NSHs, and CoFe BMHs 
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NSPs, show a higher jECSA at voltages greater than 1.62 V (vs. RHE), suggesting that CoFe 

BMHs NRs have stronger intrinsic activity at voltages above 1.62 V (vs. RHE). This finding 

is crucial in establishing their potential as efficient catalysts for overall water splitting.
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Fig. 4.  (a) CV curves (0.925-1.025 V vs RHE) of (a) CoFe BMHs NFs, (b) CoFe BMHs 
NSHs, (c) CoFe BMHs NRs, and (d) CoFe BMHs NSPs at various scan rate for OER. (e) Cdl 
plot. (f) LSV curves with current density normalized by ECSA.
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The surface structural changes of CoFe BMHs NSHs during OER in 1.0 M KOH solution 

were measured by in situ Raman. In the in situ cell, the polarization curves can be simulated 

by the continuous chronopotentiometry (CP) method by first increasing the potential from 1.2 

V to 1.55 V and then decreasing the potential to 1.2 V. The reaction was carried out for a 

certain period at each potential to obtain the Raman spectra. Figs. 5(a) and (b) shows the in 

situ Raman spectra and corresponding contour plots of CoFe BMHs NSHs, respectively. As 

can be seen in Fig. 5(a), the Raman peak of CoFe BMHs NSHs is not significant without 

voltage application. After the start of voltage application, in the wave number range of 

200-600 cm1, the sample shows BMHs signal at 317 cm1, which corresponds to the E-type 

vibration [39-40]. Correspondingly, two Raman peaks appear at 468 and 574 cm1 

corresponding to the bending vibration of Eg ((M-O)) and the stretching vibration of A1g 

((M-O)) of the MOOH [20, 41-43]. The width and wave number of the (M-O) and (M-O) 

peaks gradually increase with increasing voltage applied intensity. It indicates that more 

MOOH species are produced at higher voltages [44]. The observed phase transition was found 

to be irreversible upon the voltage reduction back to 1.2 V, indicating that the active species 

for the OER is likely the surface MOOH, rather than the MOH. Intermediates adsorbed on the 

catalyst surface were also detected. Weakly absorbed nitrate is shown at 1060 cm1. NO3
 is 

necessary to balance the additional cation charge in the layered CoFe BMHs NSHs. At 1.45 

V, all peaks associated with NO3
 fade away, implying that desorption of NO3

 is a 

prerequisite for the complete conversion of MOH to MOOH [44]. In the spectral range 

1100-1200 cm1, the peak corresponding to 1150 cm1 is the broad band of ν(O-O) of reactive 

oxygen species, which is produced by deprotonation of hydroxyl oxides, suggesting the 

production of O2 [45].
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Fig. 5.  (a) In situ Raman spectra of CoFe BMHs NSHs. (b) Corresponding contour plots of 
the Raman spectra.

3.4. Overall Water Splitting Performance

In the process of water splitting using a dual-electrode cell, the catalysts are used as the 

anode of the electrolyzer, and the platinum sheet is used as the cathode of the electrolyzer. 

The electrochemical test results for overall water splitting are presented in Fig. 6. As shown in 

Fig. 6(a), CoFe BMHs NSHs achieve a current density of 10 mA cm−2 at a voltage of only 

1.503 V, while CoFe BMHs NFs, CoFe BMHs NRs, and CoFe BMHs NSPs require voltages 

of 1.530, 1.644, and 1.579 V, respectively. At a current density of 100 mA cm−2, the voltages 

are 1.962, 1.923, 2.004, and 2.021V, respectively (Fig. 6(b)). CoFe BMHs NSHs demonstrate 

the lowest electrolysis voltage, indicating superior performance. The stability test results for 

overall water splitting using CoFe BMHs NSHs are presented in Fig. 6(c). The 

electrocatalytic efficiency of the catalyst is over 98% at a current density of 50 mA cm2 for 

30 hours, demonstrating its excellent stability. Additionally, SEM characterization of the 

reacted catalyst was done (Fig. S10). The SEM results indicated that the catalyst retained its 

morphology after the reaction, suggesting that no collapse occurred during the phase 

transition. We further performed XRD characterization on the catalyst before and after the 
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reaction (Fig. S11). The results reveal a shift in peak positions, indicating that a partial 

transition from MOH to MOOH occurred during the reaction process. This observation is 

consistent with our in situ Raman results. It indicates that the overall crystal structure remains 

largely intact and only subtle changes occur at the molecular or bonding level, resulting in 

peak shifts rather than the emergence of new peaks or the disappearance of existing ones. A 

photograph of the electrolytic cell during the stability test using CoFe BMHs NSHs is shown 

in Fig. 6(d), where continuous bubbles were generated on the surfaces of the cathodic and 

anodic catalysts, corresponding to H2 and O2 evolution, respectively. These tests demonstrate 

the promising application prospects of CoFe BMHs NSHs in the field of hydrogen production 

via water splitting.
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Fig. 6.  Overall water splitting was measured in 1 M KOH solution. (a) LSV curves and (b) 
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Potential of different electrocatalysts at 100 mA cm2. (c) Stability test curve of CoFe BMHs 
NSHs. (d) Optical photograph of H2 and O2 produced by CoFe BMHs NSHs as cathode and 
anode of electrolytic cell.

4. Conclusions
In this study, CoFe BMHs NFs, CoFe BMHs NSHs, CoFe BMHs NRs, and CoFe BMHs 

NSPs were synthesized using a hydrothermal method. Through investigations of their 

morphology, composition, and electrochemical performance, it was found that CoFe BMHs 

NSHs exhibited the best performance in terms of OER and overall water splitting. At a 

current density of 100 mA cm−2, CoFe BMHs NSHs demonstrated overpotentials of 282 mV 

for OER and a voltage of 1.923 V for overall water splitting. Furthermore, the in situ Raman 

test revealed the process of physical phase change during the OER reaction, verifying that the 

active substance of OER is mainly MOOH. These findings highlight the significant influence 

of different morphologies of the same material on catalytic performance and provide design 

insights for catalysts in other complex systems.
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