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Abstract: The converter steelmaking process represents a pivotal aspect of steel metallurgical 
production, with the characteristics of the flame at the furnace mouth serving as an indirect 
indicator of the internal smelting stage. Effectively identifying and predicting the smelting stage 
poses a significant challenge within industrial production. Traditional image-based methodologies, 
which rely on a single static flame image as input, demonstrate low recognition accuracy and 
inadequately extract the dynamic changes in smelting stage. To address this issue, the present 
study introduces an innovative recognition model that preprocesses flame video sequences from 
the furnace mouth. Subsequently, it employs a convolutional recurrent neural network (CRNN) to 
extract spatiotemporal features and derive recognition outputs. Additionally, we adopt feature 
layer visualization techniques to verify the model’s effectiveness and further enhance model 
performance by integrating the Bayesian optimization algorithm. The results indicate that the 
ResNet18 with convolutional block attention module (CBAM) in the convolutional layer 
demonstrates superior image feature extraction capabilities, achieving an accuracy of 90.70% and 
an area under the curve of 98.05%. The constructed Bayesian optimization-convolutional 
recurrent neural network (BO-CRNN) model exhibits a significant improvement in comprehensive 
performance, with an accuracy of 97.01% and an area under the curve of 99.85%. Furthermore, 
statistics on the model’s average recognition time, computational complexity, and parameter 
quantity (Average recognition time: 5.49 ms, floating-point operations per second: 18260.21 M, 
parameters: 11.58 M) demonstrate superior performance. Through extensive repeated experiments 
on real-world datasets, the proposed convolutional recurrent neural network model is capable of 
rapidly and accurately identifying smelting stages, offering a novel approach for converter 
smelting endpoint control.
Keywords: Intelligent steelmaking; Flame state recognition; Deep learning; Convolutional 
recurrent neural networks

1. Introduction

The converter steelmaking process occupies a pivotal position in the metallurgical industry, 
with its intelligent manufacturing at the forefront of the sector and serving as a demonstration for 
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other [1-4]. Globally, advanced large and medium-sized steelmaking enterprises have extensively 
researched automatic control technologies for converters [5]. Endpoint control primarily focuses 
on the temperature and carbon content of molten steel, with its accuracy directly affecting product 
quality. Currently, traditional control models are categorized into static and dynamic types, with 
the former primarily based on energy and material balance calculations during the process to 
determine the addition of auxiliary materials and blowing conditions [6]. Nevertheless, owing to 
the inherent complexity and variability of the smelting process, these models exhibit significant 
deviations in effectively tracking and adjusting the process for optimization. Dynamic control 
models address the shortcomings of static models and are crucial for improving the accuracy of 
endpoint carbon and temperature control, as well as enhancing the quality of the steel [7-9]. The 
advancement of dynamic model control technology has largely been driven by the implementation 
of sub-lance detection and exhaust gas mass spectrometry, which have attained a relatively mature 
level of application [10-11]. However, challenges related to detection accuracy, equipment 
maintenance, and associated costs highlight the necessity for the development of a novel endpoint 
prediction model.

The optical information present in the furnace mouth flame provides a direct and real-time 
representation of the decarburization reaction progress occurring within the furnace [12]. In light 
of the rapid advancement of industrial big data, it is critically important to develop non-contact 
intelligent prediction models for smelting that leverage the characteristics of the furnace mouth 
flame and associated optical information. Current research mainly focuses on two directions: 
radiation spectral information methods [9,13-14] and flame image information methods [15-16]. 
Zhang et al. [13] collected spectral information of the converter flame using a USB2000 and a 
spectrometer, and simultaneously obtained continuous carbon content changes during the later 
stages of smelting using a flue gas analysis mass spectrometer, constructing a large sample dataset 
and establishing a prediction model. Zhao et al. [14] utilized the (Baseline estimation and sparse 
noise reduction) BEADS algorithm and genetic algorithm based on a dataset of converter mouth 
flame spectral data, and combined these with back propagation neural network (BPNN) to build a 
carbon content and temperature prediction model. The flame image method involves dividing the 
furnace mouth flame into multiple regions and using characteristic pixels appearing in these 
specific regions as inputs for pattern recognition, analyzing the characteristics of the blowing 
process, and introducing endpoint control [15]. Liu et al. [17] proposed an accurate and rapid 
multi-flame feature extraction method based on the generalized regression neural network 
(GRNN) and established a prediction model. Building on this, they also introduced a multi-scale 
color difference histogram feature weighted fusion method to describe the changes in the flame 
during the blowing process, which demonstrates good recognition rates and high computational 
speed, offering practical value in converter endpoint control [18].

Deep learning, recognized as a breakthrough technology within the realm of artificial 
intelligence, distinguishes itself from traditional machine learning approaches by obviating the 
need for data annotation prior to the execution of each learning task. This methodology is 
increasingly applied within the combustion industry [19]. However, the transformation of the 
flame during various phases of converter steelmaking constitutes a dynamic process characterized 
by fluctuations in flame oscillation and stroboscopic variations in brightness across the flame 
region at different temporal intervals, exerting significant temporal influences. Conventional 
convolutional networks (CNNs) that utilize static images of smelting flames as input are prone to 
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noise and other interferences, resulting in diminished accuracy. In contrast, video sequences 
encapsulate a broader spectrum of information and can more precisely reflect alterations in the 
smelting stage.

In the context of rapid advancements in deep learning, Niu et al. [20] employed CNN-LSTM 
to predict 3D temperatures from combustion flame dynamics, showing effective learning and 
forecasting. Lu et al. [21] applied convolutional recurrent neural network (CRNN) to compartment 
fire prediction, offering scientific guidance for the development of intelligent fire-fighting 
technologies. Similarly, Huang et al. [22] proposed a U-ConvLSTM model for the reconstruction 
of multi-dimensional combustion fields. Collectively, these studies underscore the considerable 
potential of the CNN-LSTM model in extracting spatiotemporal features of flames and predicting 
combustion states [23-24], thereby offering promising applications for predicting converter 
smelting stages. Currently, data-driven methods have been extensively studied and applied to 
explore the causal relationships between steelmaking components, processes, structures, and 
performances, aiding in the control of the steelmaking process [16,25]. However, there is a lack of 
research utilizing image data in this field. Therefore, against this backdrop, this paper proposes the 
use of a CRNN model and serialized mouth flame images to achieve the recognition of converter 
smelting stage.

To effectively leverage deep learning for the task of converter flame recognition, we initially 
gathered on-site smelting data and developed a corresponding dataset. Subsequently, we 
established the CRNN model and integrated it with visualization techniques and various 
evaluation metrics. Experimental results indicate that the proposed CRNN model exhibits superior 
performance in the process of flame recognition, providing a novel approach for endpoint control 
in converter smelting processes.

2. Data acquisition and description

Based on the characteristics of the chemical reactions occurring within the converter molten 
bath, the blowing process can be categorized into three distinct stages: early, middle, and late. The 
phenomenon of the mouth flame is fundamentally attributed to the combustion of CO, which is 
generated by the decarburization reaction occurring in the molten steel and ignited at the furnace 
mouth. Figure 1 illustrates the trend of changes in CO and CO2 concentrations in the flue gas 
throughout the blowing process, with flame categories delineated based on variations in the 
carbon-oxygen reaction rate. 
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Fig. 1. The change curve of CO and CO2 concentration with time in smelting process, and the 
basis of flame division in three stages.

The experimental data utilized in this study were collected from front-of-furnace cameras at a 
steelmaking plant, with all video recordings captured during the normal smelting process. To 
effectively differentiate the flame stages throughout the various blowing periods, dataset 
calibration was performed in conjunction with observed changes in flue gas patterns and insights 
from expert experience.

The flame morphologies corresponding to the three stages of smelting are depicted in Figure 
2. In the early stage of smelting, the flame appears weak, exhibiting an overall conical shape 
characterized by a predominantly dark red hue, often approaching black, and the blowing process 
is frequently accompanied by black smoke. During the mid-stage of smelting, the flame color 
transitions from bright yellow to an even brighter yellow, with the flame body becoming softer 
and exhibiting more vigorous combustion. It displays a narrow base and an inverted trapezoidal 
top, yet its stability is poor, filling the entire mouth of the furnace. In the late stage of smelting, the 
flame shape at the furnace mouth stabilizes, with the area gradually contracting. The overall 
appearance is characterized by a soft yellow flame that exhibits a translucent and glowing visual 
effect. Acce
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Fig. 2. Flame morphology during the main different stages of the converter smelting process: (a) 
early-stage, (b) mid-stage and (c) late-stage.

3. Methods

To achieve the recognition of flame states during the converter steelmaking process, the 
experiment employed the technical approach illustrated in Figure 3, which consists of two main 
parts. Firstly, Resnet is utilized to extract the spatial features of video frames from the smelting 
process. Secondly, the sequence of feature vectors extracted by Resnet is input into a long 
short-term memory (LSTM) model to extract temporal sequence features. Additionally, a 
convolutional block attention module (CBAM) attention mechanism is embedded in the image 
feature extraction part, and class activation mapping technology is employed for visualization, 
along with the tree-structured parzen estimator (TPE) optimization algorithm to search for 
hyperparameters. Ultimately, a three-classification result for the recognition of smelting stages is 
obtained. In this section, we will primarily introduce the specific methods used in the 
aforementioned process, as well as the CRNN model proposed in this paper.Acce
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Fig. 3. Dilated CNN–LSTM with CBAM attention mechanism.

3.1 Extraction of spatial features by the Resnet block

CNNs possess the capability to extract image features from the local to the global level, 
enabling tasks such as image recognition. Deep network structures are capable of capturing richer 
and more complex features, typically exhibiting good adaptability to new tasks. However, due to 
issues such as vanishing gradients and network degradation, deeper networks are more difficult to 
train. To overcome the problem of network degradation, He et al. [26] proposed a deep residual 
network. Figure 4 shows the structure of the residual block used, which introduces an “identity 
mapping.” This ensures that even when the network learns fewer features, its performance does 
not degrade, thereby maintaining relatively better performance.

Fig. 4. Residual learning: a building block.
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3.2 Extraction of time features by the LSTM block

RNNs are used to model problems with dynamic changes over time series, but they lack the 
ability to learn long-term dependencies. Therefore, in practical applications, the recurrent layer 
typically employs LSTM [27] structures or gated recurrent units (GRU) [28]. The unit structure of 
the LSTM model is shown in Figure 5, with the formulas presented in (1)-(6).

𝑖𝑡 = 𝜎(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 + 𝑊ℎ𝑖ℎ𝑡―1 + 𝑏ℎ𝑖) (1)

𝑓𝑡 = 𝜎 𝑊𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 + 𝑊ℎ𝑓ℎ𝑡―1 + 𝑏ℎ𝑓 (2)

𝑔𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 + 𝑊ℎ𝑔ℎ𝑡―1 + 𝑏ℎ𝑔 (3)
𝑜𝑡 = 𝜎(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 + 𝑊ℎ𝑜ℎ𝑡―1 + 𝑏ℎ𝑜) (4)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡―1 + 𝑖𝑡 ⊙ 𝑔𝑡 (5)
ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) (6)

In the equations, ℎ𝑡, 𝑐𝑡, and 𝑥𝑡 represent the hidden state, cell state, and input at time 𝑡, 
respectively, while ℎ𝑡―1 is the hidden state of the layer at time 𝑡 ― 1. 𝑖𝑡, 𝑓𝑡, 𝑔𝑡, and 𝑜𝑡 
correspond to the input gate, forget gate, cell gate, and output gate, respectively. 𝑊 denotes the 
weight vectors, and 𝑏 represents the bias vectors, with subscripts indicating the weights and 
biases for the corresponding units. 𝜎 represents the sigmoid function, and ⊙  denotes 
element-wise tensor multiplication.

Fig. 5. LSTM network structure.

Specifically, the forget gate 𝑓𝑡 regulates the information derived from the previous cell 
state, determining the extent to which this information should be retained or transmitted to the 
subsequent stage. The input gate 𝑖𝑡 governs the incorporation of new information, integrating the 
outputs of both the forget gate and the input gate to update the current cell state. Finally, the 
output gate 𝑜𝑡 merges the most recent cell state information with the input data to update the 
current hidden state, which functions as the output of the LSTM network. Throughout this entire 
process, the parameters of the LSTM are updated via backpropagation.

3.3 The CBAM attention module

Attention mechanisms selectively filter out a small amount of crucial information from a vast 
amount of data, focusing attention on this important information while disregarding the majority 
of less relevant content [29]. The CBAM is a lightweight and versatile attention module [30] that 
can be seamlessly integrated into any CNNs architecture and trained by end-to-end [31]. Figure 6 
illustrates the structure of the CBAM attention mechanism, which dynamically adjusts channel 
and spatial feature weights in CNNs through channel and spatial attention modules, thereby 
enhancing the model's ability to perceive important features and improving performance in image 
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representation learning.

Fig. 6. Structure diagram of CBAM attention mechanism.

3.4 Class Activation Mapping

The class activation mapping (CAM) technique involves removing the fully connected layers 
after the final convolutional layer of CNNs and introducing a global average pooling (GAP) layer. 
By performing a series of Softmax and linear transformation operations on each feature map in the 
GAP layer, an activation map is ultimately generated. This process can be expressed by equation 
(7):

1c c k
k ij

k i j
S A

Z
w= å åå (7)

Where 𝜔𝑐
𝑘 represents the weights between the GAP layer and the Softmax layer, c is the 

index of the target class, A is the feature map output by the last convolutional layer, 𝑘 is the 
index of its channel dimension, and 𝑖 and 𝑗 are the indices for the width and height dimensions, 
respectively.

As an extension of CAM, Selvaraju et al. [32] proposed a gradient-weighted class activation 
mapping (Grad-CAM) technique, which rearranges the summation order to obtain the Grad-CAM 
map of an image. Generalizing the CAM algorithm, Grad-CAM can be applied to any CNN 
architecture without the need for retraining or modification of the network structure [33]. The 
Grad-CAM technique provides better visual explanations for deeply connected neural networks, 
and therefore, this paper will utilize Grad-CAM to offer deep interpretability insights for the 
converter smelting stage recognition task, providing additional information that aids in explaining 
the CNN’s decisions.

3.5 The Proposed Network Architecture

The architecture of the stage recognition model proposed in this study is illustrated in Figure 
7. The CRNN model is constructed from three essential modules: convolutional layers, recurrent 
layers, and output layer.

The convolutional layer processes a sequence of converter smelting images during each 
recognition cycle. To comprehensively extract feature information from the spatial dimensions of 
these images, the ResNet-CBAM architecture is employed to enhance feature representation. 
Following the convolutional operations, the resultant feature matrix is flattened and concatenated 
into vector form, which is then input into the LSTM network for the recurrent layer.
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In the recurrent layer, a stacked architecture comprising two bidirectional LSTM structures is 
utilized to capture the temporal features present in the time series data. This stacked LSTM 
configuration significantly enhances the model's capacity compared to a conventional single-layer 
LSTM. Each layer within this framework is configured with an identical number of hidden nodes 
to ensure consistency in feature extraction.

Fig. 7. Schematic diagram of the CRNN architecture proposed in this work. It primarily consists 
of three components: the convolutional layer, the recurrent layer, and the output layer.

The output layer is composed of a fully connected layer followed by a Softmax layer. The 
original flame sequence undergoes spatial feature extraction via convolutional layers and temporal 
feature extraction through recurrent layers, resulting in a feature vector v  that integrates spatial 
image information and temporal relational characteristics. For the flame state classification task, a 
fully connected layer is first applied to v , performing a linear transformation to produce a new 
vector  fv . This transformed vector is subsequently passed through the Softmax layer, yielding 
the predicted probability 𝑝𝑖𝑐 for the image category during the recognition cycle, as expressed in 
the following equation:

      

1
/

ff
jc

M
vf v

ic
j

p f v e e
=

= = å (8)

The Softmax layer maps the probabilities associated with each category to a range between 0 
and 1, ensuring they sum to unity. The category with the highest probability is identified as the 
model's output, representing the predicted converter smelting stage at the given time.
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4. Experimental analysis

The primary objective of this paper is to propose an automatic recognition model for the 
stage of converter steelmaking. The experiment encompasses the following content: (1) Collecting 
smelting video files through CCD cameras; (2) Extracting image information from video files; (3) 
Annotating all collected flame images according to the early, middle, and late stages of smelting; 
(4) Constructing and training a deep learning model; (5) Visualizing and comparing the evaluation 
of the converter smelting stage recognition model.

4.1 Dataset establishment

The establishment of the training dataset follows the processes and rules illustrated in Figure 
8. For the video set collected on-site, the initial step involves manually selecting the regions of 
interest (RoI) based on the flame characteristics described in the preceding section, followed by 
segmenting the entire video into 10-second intervals. Subsequently, image frames are extracted 
from each small video segment, and the corresponding sequence lengths are determined. Finally, 
the extracted image frames are temporally ordered and labeled accordingly, thus completing the 
overall dataset construction. All image data utilized in this study are RGB three-channel with 
dimensions of 224×224.

Fig. 8. Process and rules for establishing converter flame dataset.

In this work, 12,310 image data were extracted, comprising 4,970 samples from the 
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early-stage, 4,250 samples from the mid-stage, and 3,090 samples from the late-stage. The dataset 
utilized for time series prediction consists of 1,440 early-stage samples, 1,310 mid-stage samples, 
and 940 late-stage samples, amounting to a cumulative total of 3,690 samples. This dataset is 
partitioned such that 70% is allocated for training purposes, while the remaining 30% is 
designated for validation. Importantly, since only the training dataset was employed for model 
training, no duplicate data exists within the validation set.

4.2 Learning and evaluation

As mentioned above, the CRNN model proposed in this paper consists of three main 
elements: convolutional layers, recurrent layers, and an output layer. By flexibly combining 
convolutional layers and recurrent layers, this experiment mainly considers two different neural 
networks, the corresponding dataset establishment for which can be seen in Figure 8.

(1) CNN: This model consists only of convolutional layers and an output layer, without 
including recurrent layers. The purpose of using convolutional operations in the convolutional 
layer is to further learn features in the image spatial dimension, without considering the associated 
information in the continuous temporal dimension. The aim is to evaluate the impact of global 
information obtained from local image information after convolution on the accuracy of 
recognizing the smelting stage.

(2) CRNN: This model is the complete structure designed in this work, with its framework 
depicted in Figure 7. The purpose is to fully consider both the image spatial features and the 
time-related information, in order to further improve the accuracy of recognizing the state of the 
converter flame.

This experiment was conducted using Pytorch 2.0.0 under the Windows 11 operating system 
(CPU: Intel® i9-13980HX @ 2.20 GHz, GPU: NVIDIA GeForce RTX 4070 Laptop). During 
training, the loss calculation was performed using CrossEntropy, and the optimizer selected was 
SGD with a Learning rate of 0.001, a Momentum factor of 0.9, a Weight decay of 0.0005, and a 
maximum Epoch number of 100. The Batch size was set to 4. The same training set and 
hyperparameters were used for each training iteration, and the same validation set was used for 
model performance evaluation. Additionally, to enhance the model’s ability to fit images with 
different angles, sizes, positions, and noise levels, data augmentation techniques such as image 
translation, flipping, and scaling were introduced to mitigate potential overfitting issues during the 
training process.

The evaluation of the classification model’s accuracy generally employs four metrics: True 
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). The model’s 
accuracy (ACC) represents the proportion of correctly classified results out of all classifications:

TP + TNAccuracy =
TP + TN + FP + FN

(9)

In the context of multi-classification tasks, the use of average accuracy to evaluate model 
performance and generalization capabilities has certain limitations, as it does not reflect the 
recognition accuracy and error rates for each individual category. Therefore, this paper 
comprehensively considers the F1-score, confusion matrix, and the Receiver Operating 
Characteristic (ROC) curve to achieve a comprehensive assessment of the model’s performance.

The F1-score is the harmonic mean of precision and recall, and its mathematical form is as 
follows:
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precision recallF1-score 2
precision recall

´
= ´

+
(10)

Precision refers to the proportion of correctly classified events among all detected events:
TPprecision

TP FP
=

+
(11)

Recall indicates the proportion of events that are correctly classified out of all events:
TPrecall

TP FN
=

+
(12)

4.3 Results and discussion

4.3.1 Convolution layer comparison

Fig. 9. Confusion matrix of different algorithms for classification test in each blowing period: (a) 
Resnet18, (b) Densenet121, (c) Transformer, (d) VGG16, (e) Resnet18-SE and (f) 

Resnet18-CBAM.
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In this experiment, four CNN models were selected for training and validation on the furnace 
mouth flame dataset: Resnet18, Densenet121, Transformer, and VGG16. In addition, we 
considered the addition of SE-block and CBAM-block attention mechanisms within the Resnet18 
network respectively. To ensure a fair comparison among all models, the experimental parameters 
were standardized.

Fig. 10. Receiver operating characteristic (ROC) of different algorithms, with an area under the 
ROC curve (AUC): (a) Resnet18, (b) Densenet121, (c) Transformer and (d) VGG16, (e) 

Resnet18-SE and (f) Resnet18-CBAM.

Figure 9 presents the confusion matrices for the classification performance of different CNN 
models. By examining the confusion matrix, the classification effectiveness of each category can 
be intuitively analyzed. The larger and darker the values on the diagonal of the matrix, the better 
the performance of the classification model. Additionally, in Figure 10, we have plotted the ROC 
curve to further illustrate the recognition performance of each model. The classes are represented 
as class1-3 for the early, middle, and late stages of smelting, respectively, and are drawn with 
cyan, orange, and blue solid lines. The area under the ROC curve (AUC) closer to 1 indicates a 
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stronger recognition capability of the model. The results show that the AUC values of the models, 
from highest to lowest, are Resnet18-CBAM (98.05%), Resnet18-SE (96.99%), Resnet18 
(96.88%), Densenet121 (95.44%), VGG16 (95.87%), and Transformer (88.96%). The experiment 
demonstrates that integrating spatial and channel attention mechanism modules significantly 
enhances the overall recognition performance.

We also discussed the impact of different depths of Resnet networks on recognition 
performance, with the accuracy and loss change curves of the training and validation processes 
depicted in Figure 11. As the network depth increases, the accuracy gradually decreases, while 
simultaneously, the model’s computational complexity and parameter count significantly rise. 
Therefore, for the flame dataset used in this experiment, shallow network architectures exhibit 
better performance.

Fig. 11. Accuracy and loss curves of Resnet models with different depths: performance of (a) 
training sets and (b) validated sets.

4.3.2 Feature map visualization

Fig. 12. Gradient-weighted class activation mapping (Grad-CAM) heatmaps of feature importance 
for predicting the flame state finding. (a) early-stage, (b) mid-stage and (c) late-stage.
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We utilized the Grad-CAM algorithm to output the gradient heatmap of weights in the final 
convolutional layer and visualized the network model. Figure 12 displays the class activation 
mapping images of flame images from different stages extracted by Resnet, with (a)-(c) 
representing the visualizations and corresponding original images for the early, middle, and late 
stages, respectively. Regions with more intense red color in the visualizations indicate that those 
features play a more critical role in the category-specific direction. As illustrated in Figure 12(a), 
the model predominantly focuses on the relatively dark red regions of the flame, effectively 
capturing a comprehensive contour of the flame. Figure 12(b) demonstrates an increased emphasis 
on the brighter areas of the flame, indicating heightened sensitivity in feature extraction within 
regions of similar coloration. Additionally, Figure 12(c) reveals that the model concentrates on the 
corners of the flame to assess whether the area has contracted. The features extracted from the 
model have a certain correlation with the above flame features, which further proves the 
effectiveness of the method.
4.3.3 Recurrent layer and attention mechanism comparison

We considered network variant structures with different recurrent layers and compared them 
with Resnet18. The results indicate that the CRNN model exhibits higher accuracy in the task of 
converter flame recognition. The reason lies in the fact that Resnet18 inherently classifies single 
frames of images without incorporating dynamic information between adjacent frames, thus 
having fewer features. In contrast, the CRNN model not only extracts features from the image 
spatial dimension but also uses recurrent layers to extract temporal information from multiple 
frames of images. Therefore, it is more conducive to the recognition of converter smelting stage.

Table 1 summarizes the comprehensive performance of different models. The results indicate 
that Resnet18_BiLSTM exhibits the optimal recognition performance. GRU, as a mainstream 
variant of LSTM, was applied in this experiment. From the table, it is evident that GRU has fewer 
parameters and recognition time compared to LSTM, and when the convolutional layer uses 
Resnet18, it achieves almost the same accuracy as LSTM. However, as the depth of the 
convolutional network increases, the average accuracy of GRU is lower than that of LSTM. 
Additionally, it can be observed that both GRU and LSTM exhibit higher generalization compared 
to RNN and are capable of addressing long-term dependency problems. Furthermore, using 
bidirectional recurrent layers results in a higher recognition rate than unidirectional ones. In Figure 
13, we have plotted the accuracy change curve of the CRNN models with different attention 
mechanisms on the validation set. Similarly, CBAM-block has a significant effect on improving 
accuracy.

Table 1. The recognition accuracy and performance of different models for classification test.

Algorithms
Accuracy 

(%)
Average recognition 

time (ms)
FLOPs 

(M)
Params 

(M)
Resnet18 90.62±0.54 2.55 1823.52 11.18

Unidirectional 93.75±0.82 3.20 18251.03 12.75
LSTM

Bidirectional 94.56±0.27 3.88 18269.46 14.59
Unidirectional 94.29±0.30 3.27 18247.74 12.42

GRU
Bidirectional 94.56±0.28 3.39 18261.57 13.81

Unidirectional 92.66±1.63 3.33 18241.13 11.77
RNN

Bidirectional 92.93±1.36 3.58 18245.74 12.23

Acce
pte

d M
an

us
cri

pt 
Not 

Cop
yed

ite
d



Fig. 13. The accuracy curve of CRNN models with different attention mechanisms in validated 
sets.

4.3.4 Optimization based on BO-CBAM-CRNN
For the hyperparameter optimization of feature extraction in the convolutional layer 

(latent_dim) and the recurrent layer (hidden_size), we employed the TPE optimization algorithm 
in this experiment to find the parameter combination corresponding to the optimal recognition 
accuracy. The ranges of the hyperparameters and the search results are provided in Table 2. Since 
the single training time of the CRNN for the converter flame video recognition problem is 
relatively long, we adopted the Early Stopping technique on this basis to reduce unnecessary 
iterations. The early stopping condition was set as ending the training round if the loss does not 
minimize within 15 iterations.

Table 2. Hyperparameter range domain and search results
Hyperparameter Range domain Results

latent_dim [100, 512] 367
hidden_dim [32, 256] 42

Table 3. The recognition accuracy, precision, recall, F1-score and AUC of different algorithms for 
classification test in each blowing period.

Evaluation metric
Algorithms Accuracy 

(%)
Precision 

(%)
Recall 

(%)
F1-score 

(%)
micro-average 

AUC (%)
macro-average 

AUC (%)
CRNN 96.46 96.44 96.45 96.46 99.52 99.55

BO-CRNN
97.01

(↑0.55)
97.02

(↑0.58)
97.01

(↑0.56)
97.00

(↑0.54)
99.85

(↑0.33)
99.85

(↑0.30)
In Table 3, we compare the evaluation metrics of the BO-CRNN model optimized through 

Bayesian optimization with the benchmark model (Resnet18-CBAM_BiLSTM). The experiment 
shows a significant improvement in the performance of the optimized model, with accuracy, 
precision, recall, F1 score, micro-average AUC, and macro-average AUC increasing by 0.55%, 
0.58%, 0.56%, 0.54%, 0.33%, and 0.30%, respectively. Additionally, in Table 3, we compare the 
comprehensive recognition performance of the optimized model and the benchmark model in 
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terms of the number of parameters and computational complexity. Similarly, the experiment 
indicates that the optimized hyperparameter combination has a reduced average recognition time. 
Finally, we present the confusion matrix and ROC curve of the BO-CRNN in Figure 14.

Table 4. Comparative analysis of comprehensive performance across different models.

Algorithms
Average recognition time

(ms)
FLOPs

(M)
Params

(M)
CRNN 5.59 18290.75 14.68

BO-CRNN
5.49

(↓0.10)
18260.21
(↓30.54)

11.58
(↓3.10)

Fig. 14. Performance of BO-CRNN on validated on vaildated sets: (a) confusion matrix of 
algorithom predictions and (b) receiver operating characteristic (ROC) curve.

5. Conclusion

This paper proposes a converter smelting stage recognition model based on a CRNN. The 
model collects images of the mouth flame under various stages during the steelmaking process, 
utilizing the ResNet-CBAM module for spatial feature extraction. LSTM network is then 
employed to capture the flame's time-series characteristics, culminating in a Softmax classifier 
that predicts the current smelting stage. At the same time, hyperparameter optimization is 
achieved using the Bayesian optimization algorithm. Repeated experiments on a large dataset 
validate the model’s generalization and robustness capabilities. The main achievements of this 
research are summarized as follows:

(a) A time-series modeling approach is used to consider the feature representation of the 
converter mouth flame in both the spatial and temporal domains, overcoming the limitations of 
traditional single-frame image recognition methods in terms of poor noise resistance.

(b) A comprehensive comparison of the impact of four convolutional networks (Resnet18, 
Densenet121, Transformer, and VGG16) and attention mechanisms on the model’s recognition 
accuracy is conducted, with Resnet18-CBAM ultimately selected as the optimal convolutional 
layer algorithm.

(c) Through the Grad-CAM method, the convolutional feature layer is visually analyzed, 
further proving the rationality and effectiveness of the proposed model.
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(d) By comparing different convolutional and recurrent layer structures and integrating 
Bayesian optimization, the proposed BO-CRNN model achieves the highest accuracy in 
recognizing converter smelting stage (97.01%), demonstrating strong robustness and 
generalization capabilities. It holds promise for practical industrial applications.

The CRNN model proposed in this paper offers a novel solution for the stage recognition in 
the converter steelmaking process. In future work, we plan to further incorporate converter 
endpoint control to predict the carbon content and temperature of the molten steel under different 
smelting stage.
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