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Abstract: The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.
In this paper, studies on inclusions using confocal scanning laser microscopy (CSLM) are reviewed and summarized, particularly the col-
lision of various inclusions, dissolution of inclusions in liquid slag, and reactions between inclusions and steel. Solid inclusions exhibited a
high collision tendency, whereas pure liquid inclusions exhibited minimal collisions because of the small attraction force induced by their
<90° contact angle with molten steel. The collision of complex inclusions in molten steel was not included in the scope of this study and
should be evaluated in future studies. Higher CaO/Al2O3 and CaO/SiO2 ratios in liquid slag promoted the dissolution of Al2O3-based in-
clusions. The formation of solid phases in the slag should be prevented to improve dissolution of inclusions. To accurately simulate the
dissolution of inclusions in liquid slag, in-situ observation of the dissolution of inclusions at the steel–slag interface is necessary. Using a
combination of CSLM and scanning electron microscopy–energy dispersive spectroscopy, the composition and morphological evolution
of the inclusions during their modification by the dissolved elements in steel were observed and analyzed. Although the in-situ observa-
tion of MnS and TiN precipitations has been widely studied, the in-situ observation of the evolution of oxide inclusions in steel during so-
lidification and heating processes has rarely been reported. The effects of temperature, heating and cooling rates, and inclusion character-
istics on the formation of acicular ferrites (AFs) have been widely studied. At a cooling rate of 3–5 K/s, the order of AF growth rate in-
duced by different inclusions, as reported in literature, is Ti–O < Ti–Ca–Zr–Al–O < Mg–O < Ti–Zr–Al–O < Mn–Ti–Al–O < Ti–Al–O <
Zr–Ti–Al–O. Further comprehensive experiments are required to investigate the quantitative relationship between the formation of AFs
and inclusions.
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1. Introduction

The  formation  of  nonmetallic  inclusions  during  produc-
tion  of  high-quality  steels  is  a  significant  issue.  Steel  per-
formance is related to quantity, size, composition, and distri-
bution of such inclusions. The characteristics of these inclu-
sions evolve during steel processing; for example, nucleation
and  collision  occur  after  deoxidation  during  converter  tap-
ping [1–3]. During the refining process, inclusions float to the
surface of the molten steel [4–6] and are dissolved in the re-
fining slag [7–9]. Additionally, alloy treatment [10–13] and
slag modification [14–16] can modify inclusion composition.
Moreover,  reoxidation and slag entrainment can be preven-
ted to improve steel cleanliness [17–19]. The inclusion beha-
vior  during  steelmaking,  refining,  and  continuous  casting
processes, which cannot be directly observed because of the
high temperature of molten steel, must be investigated.

Confocal  scanning  laser  microscopy  (CSLM)  combines
advanced  technologies  such  as  infrared  heating,  high-tem-
perature stretching and compression, and confocal laser scan-

ning.  A schematic  of  CSLM equipment  is  shown in Fig.  1
[20].  The surface of  samples  can be observed in-situ under
different  conditions  of  temperature  and  pressure.  CSLM  is
widely used in industries such as welding, materials, and me-
tallurgy for purposes such as in-situ observation of the form-
ation of acicular ferrites (AFs) induced by oxide metallurgy
[21], phase transformation during cooling and heating of ma-
terials [22–23], and metal solidification and inclusion evolu-
tion on the surface of liquid metals [24–25].

In the 1950s, Minsky proposed the basic concept of con-
focal  microscopy  and  applied  it  to  technical  patents.  In  the
1990s, the rapid development of optical, electronic, and com-
puter  technologies  promoted  the  development  and  applica-
tion of  CSLM, which is  commonly used to  observe micro-
morphology [26]. Chikama et al. [27] used a laser beam and
infrared furnace to observe the dynamics of crystal growth in
iron–carbon melts; CSLM has since been widely used in the
study of  steel.  Particularly,  CSLM has been widely applied
for the in-situ observation of inclusion behaviors on molten
steel surfaces. In 1997, Yin’s group [28–29] used CSLM to 
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observe the collision of different inclusions on the surface of
molten steel. In 1998, Shibata et al. [30] observed the engulf-
ment  and  pushing  of  inclusions  in  molten  steel  at  the
melt–solid  interface  using  CSLM.  In  1999,  Hanamura
et al. [31] used CSLM for the in-situ observation of the influ-
ence of inclusions on ferrite formation. In 2000, Sridhar and
Cramb [32] used CSLM to study the dissolution of Al2O3 in-
clusion  particles  in  Al2O3–SiO2–CaO–MgO  slags  at  1430–
1550°C. In 1998, Yuki et al. [24] observed the precipitation
of  MnS  inclusions  in  Fe–42wt%Ni  using  CSLM.  In  2017,
Khurana et al. [33] observed the modification of inclusions
by calcium treatment using CSLM. Thus, by combining in-
situ observation and temperature simulation of the steel pro-
duction  process,  CSLM  can  effectively  monitor  the  evolu-
tion of inclusions in molten steel. 

2. In-situ observation  of  the  collision  of  inclu-
sions in steel

In  recent  years,  researchers  have  conducted  numerous
CSLM experiments on the collision of inclusions, including
Al2O3 [28–29,34], 80wt% Al2O3–20wt% SiO2 [28,35], MgO
[36],  93wt% Al2O3–7wt% MgO [36–37],  Al2O3–CaO–SiO2

[38],  Al2O3–CaO [28,33,39–41],  CaO–MgO–Al2O3 [38],
CaO–MgO–Al2O3–SiO2 [35,42],  Al2O3–Ce2O3 [43–44],
Ce2O2S [45],  SiO2 [46],  TiN [25–27],  MnS [47–49],  and
Ti2O3 [50].  Primary  interfaces  include  steel–slag  interface
[33,39–42,50–51],  steel–Ar  interface [28,34,36,50–55],  sol-
id–liquid interface [37,39,56], and slag surface [40]. Table 1
summarizes  related  studies  on  the  observation  of  inclusion
collision using CSLM [25,28–29,34–40,45,47,50,53,56–63].

The collisions of inclusions are related to their liquid frac-
tions. The inclusion composition in steel samples before the
CSLM  experiments  was  analyzed  using  scanning  electron
microscopy–energy  dispersive  spectroscopy  (SEM–EDS).
The melting temperature was calculated using the FactSage
software to evaluate the solid and liquid inclusions. As shown
in Fig. 2(a) [28], Yin reported that solid inclusions, such as

Al2O3, exhibited a significant attractive force and had a high
tendency to collide. However, pure liquid inclusions such as
CaO–Al2O3 rarely collided because of their small mutual at-
traction.  The  collision  between  inclusions  was  due  to  the
long-range  attractive  force  between  solid  particles  on  the
steel  surface,  which  was  caused  by  capillary  action [64].
Fig. 2(b) [60] shows that there is no significant collision of li-
quid inclusions. Fig. 3 shows the variation in attractive force
between  inclusions  at  different  distances [28,36–38,
44,46,52]. R1 and R2 denote the radii  of  the two inclusions.
Capillary force between inclusions was primarily influenced
by the contact angle between the inclusions and steel, as well
as surface tension and density of molten steel. Because sur-
face tension and density of molten steel changed minimally
during steelmaking, the capillary force of the inclusions was
primarily related to the contact angle between the inclusions
and steel. The order of capillary force for different inclusions
was  Al2O3 >  TiAlOx–Al2O3 >  Ce2O3 >  Ce–Al–O >  Al2O3–
SiO2 >  Ce–O–S > Al2O3–CaO > SiO2 >  MgO > MgAl2O4;
this  was  positively  correlated  with  the  change  in  contact
angles between the inclusions and steel [65]. Notably, attrac-
tion between inclusions refers to that between inclusions of
the  same  type.  For  instance,  the  attraction  between  Al2O3–
SiO2 composite  inclusions  refers  to  the  attraction  between
one or more Al2O3–SiO2 composite inclusions. Previous in-
vestigations primarily focused on the collision of inclusions
at the steel–Ar interface, and the collision of inclusions at the
steel–slag  interface  has  become  more  complex.  Both  long-
range attractive and repulsive forces acted when the distance
between two inclusions was less than 100–150 μm [39]. Li-
quid  Al2O3–CaO inclusions  rarely  collided at  the  steel–slag
interface, and the collision ability of the inclusions signific-
antly increased [40].

The  capillary  force  between  inclusions  under  various
physical and chemical conditions was calculated according to
the attractive capillary force model [53], as shown in Fig. 4.
According to Fig. 4(a) and (b), the attractive capillary force
exhibits a positive correlation with the density and size of the
inclusions. The larger the density and size of the inclusions,
the greater the capillary force on the surface of molten steel.
The  dependence  of  the  capillary  forces  on  contact  angle  is
shown in Fig. 4(c) [53]. The attractive capillary force first de-
creased and then increased and was  very  close  to  zero  at  a
contact angle of 90°. The correlation between surface tension
of  liquid  steel  and  capillary  suction  force  is  shown  in
Fig.  4(d) [53].  When surface tension decreased from 1.9 to
1.1  J/m2,  the  attractive  capillary  force  increased  slightly,
leading to collisions of inclusions. 

3. In-situ observation  of  the  dissolution  of  in-
clusions in slag

In 2000, Sridhar and Cramb [32] in-situ observed the dis-
solution of Al2O3 inclusions in CaO–MgO–SiO2–Al2O3 slag
using CSLM, as shown in Fig. 5. The inclusion particles in
previous  studies  were  primarily  pure  oxides  such as  Al2O3,
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Fig.  1.     Schematic  of  CSLM  equipment [20].  Reprinted  by
permission  from  Springer  Nature: Metall.  Mater.  Trans.  B, In
situ observation of the agglomeration of MgO–Al2O3 inclusions
on the surface of a molten GCr15-bearing steel, M.H. Wu, C.Y.
Ren, Y. Ren, and L.F. Zhang, Copyright 2023.
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MgO,  and  SiO2,  and  the  slags  used  were  mostly  liquid
Al2O3–SiO2–CaO  and  Al2O3–SiO2–CaO–MgO.  Slag  com-
positions  reported  in  literature  are  plotted  in  the
Al2O3–CaO–SiO2 diagram shown in Fig. 6 [7,32,41,66–79].
The  dissolution  mechanisms  of  different  inclusions  in  the
slag  are  summarized,  including  diffusion  in  liquid  slag
(DLS),  boundary  layer  diffusion  (BLD),  chemical  reaction

(CR), and product layer diffusion (PLD) controls. The dissol-
ution  mechanism  of  inclusions  in  slag  was  determined  by
comparing  the  observed  and  calculated  dissolution  curves.
The  effects  of  temperature,  inclusion  properties,  and  slag
composition  on  inclusion  dissolution  rates  in  slag  were  in-
vestigated  using  CSLM,  as  summarized  in Table  2
[7,32,41,66–90].

 

Table 1.    Studies on the observation of inclusion collisions using CSLM [25,28–29,34–40,45,47,50,53,56–63]

Authors Year Interface Inclusion composition
Inclusion
density /
(kg·m−3)

Inclusion
size / μm

Capillary
attraction / N Refs.

Yin et al. 1997 Steel–Ar

Al2O3 3900 10 10−16 [28–29]
Al2O3 3900 2 [34]
80wt%Al2O3–SiO2 3378 1–3 7.0 × 10−16 [28,34]
CaO–60wt%Al2O3–SiO2 5–10 Noncollision [34]
CaO–80wt%Al2O3–SiO2 1–3 4.0 × 10−16 [34]
CaO–Al2O3–95wt%SiO2 5–10 8.2 × 10−15 [34]
CaO–50wt%Al2O3–SiO2 5–10 Noncollision [34]
CaO–80wt%Al2O3 3768 3–5 6.5 × 10−14 [34]
CaO–60wt%Al2O3 3645 5–10 10−16 [34]
CaO·Al2O3 5–10 Noncollision [34]

Kimura et al. 2000
2001 Steel–Ar Al2O3·MgO 3600 5.3 5.0 × 10−18–

5.0 × 10−16 [36–37]

Kimura et al. 2001 Steel–Ar MgO 3580 [36]
Nakajima and
Mizoguchi 2001 Steel–Ar 30wt%CaO–60wt%Al2O3–

10wt%MgO 1.5–15.5 10−14–10−17 [38]

Nakajima and
Mizoguchi 2001 Steel–Ar 40wt%CaO–55wt%Al2O3–

5wt%MgO <40 Noncollision [38]

Hasegawa et al. 2001 Steel–Ar MnS 1–10 Noncollision [47]
Vantilt et al. 2004 Steel–Ar Al2O3–MnO–SiO2 10 Noncollision [51]
Wikstrom et al. 2008 Slag–Ar CaO·Al2O3 [39]
Wikstrom et al. 2008 Steel–Ar CaO·Al2O3 10–80 10−13–10−15 [40]
Appelberg et al. 2008 Steel–Ar Ce2O3 7100 20 [43]
Kang et al. 2011 Steel–Ar CaO·Al2O3 Noncollision [57]
Wen and Song 2012 Steel–Ar Ce2O2S 6000 <5 Noncollision [45]
Jiang et al. 2014 Steel–Ar CaO–MgO–Al2O3–SiO2 5 [56]

Mu et al. 2017
2018 Steel–Ar TiN 5430 [50,53]

Tian et al. 2018 Steel–Ar TiN 5430 10 [58]
Mu and Xuan 2019 Steel–Ar TiOx–Al2O3 10–20 [59]

Wang and Liu 2020 Steel–Ar

Al2O3 3900 15–30 10−15–3.0 × 10−14 [44]

Ce–Al–O 10–30 1.3 × 10−16–
2.0 × 10−14 [44]

Ce2O3 7100 10–30 1.3 × 10−16–
2.0 × 10−14 [44]

Ce–O–S 5–20 2.1 × 10−18–
6.0 × 10−16 [44]

Wu et al. 2023 Steel–Ar MgO 3580 5–20 10−17–10−15 [20,60]
Misra et al. 2001 Steel–slag TiN 5430 5 [25]
Lee et al. 2001 Steel–slag Al2O3 3900 [41]
Coletti et al. 2003 Steel–slag CaO·Al2O3 3–4 [42]
Vantilt et al. 2004 Steel–slag Al2O3–MnO–SiO2 Noncollision [51]
Wikstrom et al. 2008 Steel–slag CaO·Al2O3 [39–40]
Mu et al. 2016 Steel–slag MgO 3580 6 Noncollision [61]
Misra et al. 2000 Steel–slag Al2O3 3900 5 10−16–3.0 × 10−15 [62]
Michelic et al. 2015 Steel–slag Al2O3, Al2O3–MgO 3900 Noncollision [63]
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Chemical  compositions  of  the  inclusions  and  slag  influ-
ence  the  dissolution  rates  of  inclusion  particles  in  slags,  as
shown in Fig. 7. Fig. 7(a) [90] shows the plots of the inclu-
sion size and dissolution rate. The dissolution rate of inclu-
sions increased with an increase in their diameter. When the
experimental temperature was 1773 K, the order of inclusion
dissolution rate was SiO2 > Al2O3 > ZrO2. Fig. 7(b) [7,89] and
(c) [80] shows  the  effects  of  the  CaO/Al2O3 and  CaO/SiO2

mass ratios of the slag on the dissolution rate of inclusions,
respectively.  Increasing the CaO/Al2O3 and CaO/SiO2 mass
ratios in the slag is beneficial for the dissolution of inclusions
in liquid slag.  Solid phase formation in slag should be pre-
vented to improve inclusion dissolution. When the temperat-
ure increased from 1773 to 1853 K, the dissolution rate of the
inclusions increased.

Inclusion dissolution rate was related to the ratio of inclu-
sion  solubility  to  slag  viscosity  (ΔC/η).  The  correlation
between  dissolution  time  of  inclusions [7,32,66–67,76,
80–81,89] and the  parameter ΔC/η is  substituted  in  Eq.  (1)
[90], as shown in Fig. 8(a). The larger the value of ΔC/η, the
faster the dissolution of inclusions. However, ΔC/η is a para-
meter with dimensions, which cannot be used to explain the
relationship  between  dissolution  rate  and  inclusion  size.

Zhang and Ren [91] proposed the inclusion capacity of refin-
ing slag (Zh), which is a dimensionless number, as defined in
Eq.  (2).  The  dimensionless  dissolution  rate  of  inclusions  in
the slag is proposed in Eq. (3). The empirical equations of Zh
and Ry for the Al2O3, ZrO2, and SiO2 inclusions were plotted
using Eqs. (4)–(6)] [90], as shown in Fig. 8(b). The inclusion
capacity of the slag was introduced to predict the dissolution
rate  of  inclusions.  The  larger  the Zh number  and  inclusion
size,  the  longer  the  dissolution  time  of  the  inclusions  in  li-
quid slag.

τ = 5.03×103

(
∆C
η

)−1

(1)

Zh =
g ·ρ2

slag · (Csaturation−C) ·d3
p,0

η2
slag

(2)

Ry =
1

vslag ·dp,0
φ =

ρslag

ηslag ·dp,0
φ (3)

RyAl2O3 = 2.93×10−6Zh0.165 (4)

RyZrO2 = 1.02×10−6Zh0.089 (5)

RySiO2 = 1.08×10−4Zh0.079 (6)
where C is the content of inclusions in the slag; Csaturation is the
saturation  content  of  inclusions; dp,0 is  the  initial  inclusion
diameter (m); ρslag is the slag density (kg/m3); ηslag is the slag
dynamic viscosity (kg/(m·s)); g is the gravitational accelera-
tion rate (m/s2); and φ is the dissolution rate of the inclusion
particles in the slag (m3/s). The Zh number represents the dis-
solution capacity of inclusions by the refining slag; The Ry
number represents the dissolution rate of inclusion particles
in the refining slag. 

4. In-situ observation of the modification of in-
clusions in steel

Alloy  addition  is  an  effective  method  to  modify  inclu-
sions in steel. To address the limitation of sample loading in
CSLM,  researchers  have  attempted  to  observe  inclusion
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modifications using CSLM, as shown in Fig. 9. Fig. 9(a) [33]
and  (b) [92] shows  endogenous  inclusions  colliding  with
each other on the surface of molten steel, which made track-
ing the modification behavior of a specific inclusion in steel
challenging.  Additionally,  determining  the  starting  time  for
inclusion modification was difficult. Thus, extraneous Al2O3

particles  were  proposed  to  be  placed  on  the  surface  of  the
steel  sample.  After  melting  the  steel  sample,  the  inclusions
were modified by the active elements in the steel, as shown in
Fig. 9(c) [93]. The melting time of the steel samples was re-
corded  as  the  start  time  of  the  modification  reaction.  The
morphological and compositional evolution of the inclusions
during the modification process was analyzed using a com-
bination of  CSLM and SEM–EDS. Thus,  the method illus-
trated in Fig. 9(c) was suggested to improve the tracking of
modification behavior of a specific inclusion.

Khurana et al. [33] placed CaO powder at the bottom of an

Al-killed steel sample using the method shown in Fig. 9(a).
After melting the steel samples, inclusions in steel before cal-
cium  treatment  were  Al2O3.  After  calcium  treatment  with
CaO powder,  the  inclusions  were  modified to  Al2O3–CaO–
CaS. Wang and Liu [92] used the method shown in Fig. 9(b)
to heat and melt an Al-killed steel sample, enabling numer-
ous  cluster  inclusions  to  float  to  the  surface  of  the  sample.
The upper  surface of  Al-killed steel  was cut  and placed on
top  of  the  Ca-treated  steel  to  expose  the  aggregated  inclu-
sions in  the steel  for  observation.  The irregular  solid  Al2O3

inclusions in the steel changed to liquid spherical inclusions
within approximately 40 s of the steel melting, as shown in
Fig.  10 [92].  Chen et  al. [93] placed Al2O3 particles on the
surface  of  steel  samples.  Compositional  evolution  of  Al2O3

inclusions with different initial sizes during the modification
process  is  shown in Fig.  11 [93].  C3A,  C12A7,  CA,  CA2,
CA6,  and  Al2O3 in  the  right  vertical  axis  represent

 

Table 2.    Summarized studies on the inclusion dissolution in slags using CSLM [7,32,41,66–90]

Authors Year Inclusion Diameter / μm Slag system T / K Rate-limiting step
Sridhar and Cramb [32] 2000 Al2O3 84–138 CASM 1703–1823 BLD
Lee et al. [41] 2001 Al2O3 50–90 CAS 1723–1773
Valdez et al. [66] 2002 Al2O3 200 CAS and CASM 1723–1803 CR and BLD

Yi et al. [67] 2003
MgO 190–330

CAM 1723–1873
CR

Al2O3 200 DLS

Fox et al. [81] 2004

Al2O3

CASM 1523–1773 CR
ZrO2 200, 550
MgO 200
MgAl2O4

Monaghan et al. [68,76,82]

2004 MgAl2O4 80

CAS

1750–1805 DLS

2005
Al2O3 100 1777–1850 DLS
MgAl2O4 80 1753–1805 DLS
ZrO2 100 1750–1805

Monaghan and Chen [77] 2006 MgAl2O4 28–35 CAS 1777 DLS
Park et al. [69] 2006 MgO CAS 1823 PLD
Liu et al. [71] 2007 Al2O3 500 CAS 1743–1903 DLS
Liu et al. [70] 2007 MgO 300–400 CASM 1500–1600 BLD
Verhaeghe et al. [83] 2007 Al2O3 500 CAS 1743 DLS
Park et al. [84] 2010 SiC 612, 820 CSM (MnO) 1873
Sun et al. [85] 2013 CaO 400–500 CAS and CASM 1723–1873
Feichtinger et al. [72] 2014 SiO2 612–696 CAS 1723 DLS
Guo et al. [75] 2014 CaO CAS, CASM 1723–1873 CR, BLD, PLD
Michelic et al. [73] 2016 Al2O3 400 CASM 1873 DLS
Miao et al. [78] 2018 CA2 222–270 CAS 1773–1873 DLS

Sharma et al. [79] 2018
Al2O3 320

CAS 1823
BLD

Al2TiO5 400, 900 BLD
Tian et al. [74] 2019 SiO2 ~1000 CASM 1743–1803 DLS
Lee et al. [86] 2019 MgO 370 MgF2–CaF2–LiF, MgF2–CaF2–NaF 1473 BLD
Sharma and Dogan [87] 2020 Al2TiO5 CAS 1773 BLD
Park et al. [88] 2020 Al2O3 CASM 1823 DLS
Ren et al. [7,89] 2021 Al2O3 ~200, ~400 CAS 1773–1853 DLS
Ren et al. [80] 2022 SiO2 ~200 CASM 1793–1853 DLS

Gou et al. [90] 2023
Al2O3 100–1100

CAS 1773
DLS

ZrO2 500–1100 BLD
SiO2 200–900 DLS

Note: Legend of slag system, A—Al2O3; S—SiO2; C—CaO; M—MgO; L—Li2O.
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3CaO·Al2O3,  12CaO·7Al2O3,  CaO·Al2O3,  CaO·2Al2O3,
CaO·6Al2O3,  and  Al2O3,  respectively,  which  correspond  to
the mass fraction of CaO in CaO–Al2O3 inclusions in the left
vertical axis. The CaO content in the inclusions gradually in-
creased, and the Al2O3 inclusions were gradually modified to
CaO–Al2O3.  The modification rates  of  inclusions decreased
with time. The modification rates of the inclusions of various
sizes  differed  owing  to  the  different  reaction  areas.  The  li-
quid fraction of the inclusions gradually increased owing to

the  increase  in  CaO  content  in  the  inclusions  during  the
modification process.
 

5. In-situ observation  of  the  precipitation  and
transformation of inclusions in steel

In  1998,  Yuki et  al. [24] observed  the  precipitation  of
MnS  inclusions  during  solidification  and  cooling  processes
of an Fe–42wt%Ni alloy using CSLM, as shown in Fig. 12.
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Recently, several scholars have utilized CSLM to study the
precipitation  of  inclusions  during  cooling  and  heating  pro-
cesses,  as  summarized  in Table  3 [24–25,58,94–113].  The
morphology of MnS inclusions has an influence on the prop-
erties of steel. Valdez et al. [95] observed the precipitation of
MnS inclusions during cooling and heating process of steel
containing 0.05wt% S. Nakama et al. [96] reported that the
sulfide  precipitation  was  related  to  the  solidification  se-
quence  of  Fe–Cr–Ni  alloys,  which  depended  on  Ni  and  Cr
contents.  Both  high-Ni,  low-Cr  alloys  solidifying  in  the
primary γ field and low-Ni, high-Cr alloys solidifying in the
primary δ field  led  to  sulfide  precipitation  in  the  enriched
melt ahead of the dendrite fronts. In low-Ni, high-Cr alloys,
sulfides are formed via liquid phase separation. By contrast,
in intermediate Ni and Cr alloys with limited primary phase-
field  solidification,  sulfides  are  formed  within  the  solid

phase.  Several  researchers  have  investigated  the  correlation
between  MnS  precipitation  and  the  liquid  fraction  of  steel
during  solidification [97–98,100–101,103,107].  The  precip-
itation of MnS is also related to elemental concentrations in
steels. The effects of Cu [114–115] and Te [102] contents on
the precipitation characteristics and temperature of MnS were
observed using CSLM. The addition of Cu or Te slows pre-
cipitation of MnS at the grain boundaries, which is beneficial
for  the  uniform  distribution  of  MnS  in  the  steel.  In  2001,
Misra et al. [25] studied the precipitation of TiN inclusions at
the steel–slag interface using CSLM. The morphology of TiN
varied  with  temperature.  At  a  temperature  lower  than  the
solidus of steel, increase in temperature increased the rate of
TiN inclusions in steel. Tian et al. [58] in-situ observed the
precipitation, collision, and dissolution behaviors of TiN in-
clusions on the surface of molten GCr15-bearing steel.

In 1996, Chikama et al. [27] observed the crystal growth
process of Fe–C alloys and found that inclusions in steel were
engulfed and entrapped by growing crystals during solidific-
ation and cooling of molten steel. Yin et al. [30,116] determ-
ined the flow direction and velocity of a molten steel surface
near the solid–melt interface, as shown in Fig. 13 [116]. The
velocity of the solutal Marangoni flow was very high, push-
ing the inclusions up to the surface along the steel–metal in-
terface. These features were responsible for the entrapment of
inclusions  and  solute  segregation  during  the  solidification
and cooling of steel. Chen et al. [117] reported that the high
growth rate of the δ phase promoted the entrapment of inclu-
sions. Yan et al. [118] reported that the movement of inclu-
sions at the solidification front can be of three types: attrac-
tion, repulsion, and no effect.

CSLM has also been widely used to observe changes in
inclusions  during  solid  steel  heating.  In  2011,  Shao et  al.
[108–109,119] utilized  CSLM  to  observe  morphological

 

30 μm

Irregular solid inclusion

30 μm 30 μm 30 μm

Liquefying process Liquefying process Spherical liquid inclusion 

Time 1159.18 s Time 1176.38 s Time 1187.38 s Time 1198.58 s
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evolution of large slender MnS inclusions in sulfur-contain-
ing  steels,  as  shown  in Fig.  14 [108].  Moreover,  they  pro-
posed a mechanism for the evolution of MnS inclusions dur-
ing heating. The elongated MnS inclusions shrank and frac-
tured  during  heating,  forming  spherical  MnS.  Song et  al.

[113] observed  the  formation  of  MnS  on  oxide  inclusions
during heating of heavy rail steel. Wang et al. [111] reported
that the amount of MnS decreased during EH36 steel heating
at  1473  K  and  TiN  inclusions  precipitated  in  the  steel.
Moreover, CSLM can be used to observe the changes in ox-

 

Table 3.     Summarized in-situ observation of the precipitation and transformation of inclusions during solidification and heating
processes [24–25,58,94–113]

Authors Year Steel Process Inclusion Temperature / K
Yuki et al. [24] 1998 Fe–Ni alloys Solidification MnS 1329–1438
Misra et al. [25] 2001 Stainless steel Solidification TiN 1553–1593, 1623–1773
Wang et al. [94] 2003 Al-killed Ca-treated steel Solidification CaS
Valdez et al. [95] 2005 Resulfurized steel Solidification MnS
Nakama et al. [96] 2009 Fe–Cr–Ni alloys Solidification MnS 1669–1738
Luo et al. [97] 2011 49MnVS3 steel Solidification MnS
Hu et al. [98] 2018 Sulfur-bearing steel Solidification MnS 1700, 1746
Tian et al. [58,99] 2018 GCr15-bearing steel Solidification TiN 1640–1840
Tanaka et al. [100] 2019 High-carbon steel Solidification MnS
Zeng et al. [101] 2020 High-sulfur microalloyed steel Solidification MnS 1703, 1713
Shen et al. [102] 2021 Te-treated resulfurized special steel Solidification Mn–S–Te
Chu et al. [103] 2022 Medium/high-manganese steel Solidification MnS
Cao et al. [104] 2022 GCr15-bearing steel Solidification MgO–TiN 1597
Liu et al. [105] 2022 Al-killed Ca-treated steel Solidification CaO–MgO–Al2O3 1273–1473
Zhu et al. [106] 2023 High-titanium steel Solidification TiCxN1−x 1649, 1707
Cao et al. [107] 2024 High-Al medium-Mn steel Solidification MnS
Shao et al. [108] 2011 Free-cutting steel Heating MnS 873–1473
Shao et al. [109] 2011 Free-cutting steel Heating MnS 1463
Wang et al. [110] 2018 EH36 steel Heating TiN 1473
Wang et al. [111] 2018 EH36 steel Heating MnS 1473

Wang et al. [112] 2019 High-carbon steel Heating Rare-earth
inclusions 1473, 1623

Song et al. [113] 2023 Heavy rail steel Heating MnS, oxides 1323, 1393
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Fig.  13.     Movement  of  an  inclusion  at  the  solid–melt  interface  due  to  surface  flow  during  steel  solidification  at  a  cooling  rate  of
0.025 K/s [116]. Reprinted by permission from Springer Nature: Metall. Mater. Trans. B, Marangoni flow at the gas/melt interface of
steel, H.B. Yin and T. Emi, Copyright 2003.
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Fig. 14.    Observation of the morphological evolution of slender MnS inclusions in free-cutting steel at 1463 K using CSLM [108].
Reprinted with permission from Ref. [108]. © 2011 The Iron and Steel Institute of Japan.
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ide inclusions during solid steel heating. Liu et al. [105] used
CSLM  to in-situ observe  that  inclusions  evolved  from
CaO–MgO–Al2O3 to  CaO–MgO–Al2O3–CaS  in  solid  Al-
killed Ca-treated steels at  1273–1473 K. High temperatures
promoted the formation of CaS in the inclusions owing to the
large  diffusion  rate  of  the  elements.  They  concluded  that
MnS precipitation was primarily related to the Mn and S con-
tents and temperature of the steel and the formation of TiN
was influenced by the Ti and N contents and temperature of
the steel. 

6. In-situ observation of the formation of intra-
granular acicular ferrite at inclusions in steel

Oxide metallurgy was invented in the 1990s and has been
widely used in manufacturing of high-strength steel compon-
ents such as ship plates and pipes. During the welding pro-
cess, high heat input leads to a reduction in toughness. Nano-

scale inclusions have been reported to pin the grain boundary.
Moreover,  micron-scale  inclusions  can  promote  the  nucle-
ation of AF on the surface of inclusions, which has become
an effective method to increase steel toughness at low tem-
peratures [120–125].  Mu et  al. [126] reviewed the  applica-
tion of CSLM in the observation of AF growth induced by
inclusions. The key step in oxide metallurgy is adjusting the
elements to form inclusions that induce AF nucleation and to
control  the  microstructure  by  controlling  the  cooling  rate.
The dependence of the inclusion characteristics and temper-
ature parameters on the volume fraction, size, and formation
temperature  of  AF  has  been  widely  studied.  In  1999,
Hanamura et al. [31] used CSLM to observe the formation of
polygonal and Widmanstätten ferrites on the surfaces of ox-
ides  and  sulfides.  Since  then,  numerous  scholars  have  con-
ducted  experimental  studies  on  the  induction  of  AF  nucle-
ation by inclusions using CSLM, as summarized in Table 4
[31,46,127–144].

 

Table 4.    Summarized studies on the induction of AF nucleation by inclusions using CSLM [31,45,127–144]

Author Year

Inclusions Heating cycles Quantitative of ferrite

Type Size /
μm

Temperature
/ K

Holding
time /
s

Cooling
rate /
(K·s−1)

Fraction /
wt%

Formation
temperature
/ °C

Grain size /
μm Kinetics

Hanamura
et al. [31] 1999 Ti–Si–O No 1673 1 10 No 737 No Yes

Terasaki
[127] 2007 Al–O <2.5 1673 1 2 No No No No

Zhang et al.
[128] 2009 Ti–Al–Mn–O–MnS No 1673 1–300 5 0–9 650–750 100–400 No

Hu et al.
[129] 2011 Ti–Al–Mn–Si–O–MnS 1–2 1673 1–600 5 50–90 550–700 132–251 No

Wen and
Song [45] 2012 AlCeO3–Ce2O2S 1–5 1476 600 5 No 557–623 120 No

Wan et al.
[130] 2013 Ti–Al–Mn–O–MnS No 1673 5 5 No 634.4 No No

Wan et al.
[131] 2013 Ti–Mn–O–MnS No 1673 5–30 5 No 840 150 Yes

Mu et al.
[132] 2014 TiOx–MnS >1.2 1823 60 216 10–50 No 245–968 Yes

Jiang et al.
[133] 2015 Ti–Al–Mn–Si–O–MnS No 1673 600 5 No 543–638 No No

Wan et al.
[134] 2015 Zr–Ti–Al–O No 1573–1673 5–30 5 No 550–620 46–166 Yes

Wu et al.
[135] 2015 Al–Ti–Mg–O 0.9–1.1 1523–1673 180–300 5 No 650 22–139 No

Mu et al.
[136] 2016 Ti–Al–Mn–Si–O–MnS No 1473–1673 0–600 0.1–1.2 0–80 600–760 100–900 No

Lin et al.
[137] 2017 Mg–Al–O–MnS 1.4–2.4 1573 180 1–20 7–26 559–729 60–100 No

Loder and
Michelic
[138]

2017 Ti–Mn–Al–O–MnS >1.2 1673 100 7 72–85 653–670 125–210 No

Yang et al.
[139] 2019 Ti–Zr–Al–O–MnS 1.4–1.9 1473 60 0.5–10 26–46 540–691 64.53 Yes

Wang et al.
[140] 2020 Ti–Ca–Zr–Al–O–MnS No 1673 180 2–15 75–82 600–680 170–180 Yes

Wang et al.
[141] 2022 TiN–MnS 1.3–2.7 1763 1 0.2–10 13–83 No 206–704 No

Liu et al.
[142] 2022 Ca–Al–O–MnS No 1623 1 12.5 60–77 600–700 100–114 Yes

Yao et al.
[143] 2022 Al–Ti–Mn–O–MnS 1.2–1.4 1523–1673 300 3 13.4–78.7 667–767 113–293 Yes

Xie et al.
[144] 2023 No No 1673 3 0.6–10.5 No 532.3–680.7 No Yes
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Fig. 15(a) [128] shows the nucleation and growth of AF in
a  steel  sample  during  heating  at  1400°C  for  200  s  using
CSLM. The AFs grew along the four directions of the inclu-
sion. Fig.  15(b) [128] shows  the  hard  impingement  of  the
AFs. Nucleation initiated at both the austenite grain boundar-
ies  and  inclusions.  Laths  grew  from  clean  austenite  grain
boundaries as Widmanstӓtten ferrite, which was inhibited by
the growth of intragranular AF. Subsequently, the growths of
AF  impinged  on  each  other  to  generate  a  fine  interlocking
microstructure. Thus, the growth process of AF primarily in-
cludes three steps: primary nucleation on the inclusions, sym-
pathetic nucleation on the broad side of the primary ferrite,
and impingement between AFs. Fig. 16 shows the summar-

ized  average  growth  rates  of  AFs  for  various  oxide  inclu-
sions. The growth rate of the AFs induced by various inclu-
sions was in the range of 0.03–33.3 μm/s. At a cooling rate of
3–5 K/s, the order of growth rates of AFs induced by differ-
ent  inclusions,  as  reported  in  literature,  was  Ti–O [126] <
Ti–Ca–Zr–Al–O [140] < Mg–O [137] < Ti–Zr–Al–O [139] <
Ti–Al–O [143] < Mn–Ti–Al–O [143] < Zr–Ti–Al–O [134].
Notably, the ZrO content in the Zr–Ti–Al–O inclusions was
higher  than  the  TiOx content  and  the  TiOx content  in  the
Ti–Zr–Al–O inclusions was higher than the ZrO content. The
growth  rate  of  the  AFs  induced  by  inclusions  may  also
change  when  the  heat-treatment  parameters  and  steel  com-
position are altered.

As CSLM can be used to  measure  steel  phase transition
temperature,  a  method  combining  CSLM  and  differential
scanning  calorimetry  (DSC)  was  proposed  to  monitor  the
final  continuous  cooling  transformation  (CCT)  diagram,
as  shown  in Fig.  17 [126].  Electron  backscatter  diffrac-
tion (EBSD) micrographs showed that the microstructure be-
came very fine at high cooling rates. The CCT diagram can
be  used  to  design  heating  and  cooling  parameters  in  oxide
metallurgy.
 

7. Opportunities  and  challenges  in in-situ ob-
servation of inclusions using CSLM

The characteristics of inclusions have a significant influ-
ence on steel  performance [145–152].  The formation,  colli-
sion,  dissolution,  modification,  and  precipitation  of  inclu-
sions during steel production have been extensively studied
using CSLM. However, the following directions will be the
focus of  future  research in in-situ observation of  inclusions
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using CSLM.
(1) Collision of complex inclusions at steel–slag interface.

Previous studies have primarily focused on the in-situ obser-
vation of the collision of pure inclusions at the steel–Ar inter-
face. However, the collisions of complex inclusions have not
been extensively studied. Additionally, in-situ observation of
collision of inclusions at the steel–slag interface owing to the
wettability difference between the steel–Ar and steel–slag in-
terfaces is necessary.

(2)  Dissolution  of  complex  inclusions  in  the  slag  at  the
steel–slag interface. The dissolution of pure inclusions in li-
quid  slag  has  been  widely  observed in-situ in  a  previous
study to optimize slag composition. To simulate the process
of  inclusion  dissolution, in-situ observation  of  the  dissolu-
tion of inclusions in slag at the steel–slag interface is neces-
sary.  Furthermore,  complex  inclusions  are  formed  in  steel
during  steel  production.  However,  the  dissolution  of  com-
plex inclusions in slags has not been extensively studied.

(3) In-situ observation of inclusion modifications. Several
methods have been proposed for the in-situ observation of the
modification  of  inclusions  by  dissolved  elements  in  steel.
However, further investigations are required on not only Ca
modification but also modification by other active elements.
Moreover,  developing  an  additional  technique  during  the
CSLM  experiments  to  improve  the  understanding  of  the
modification process of inclusions will be useful.

(4) In-situ observation of inclusion transformation in steel
during  solidification  and  heating  processes.  The  precipita-
tions of MnS and TiN have been extensively studied. The ef-
fects of temperature and steel composition on the precipita-
tion of inclusions have been elucidated. Recently, transform-
ation  of  inclusions  during  solidification  and  heating  pro-
cesses  has  been  reported.  However, in-situ observations  of
the transformation of oxide inclusions in steel during solidi-
fication and heating processes have rarely been reported.

(5) Quantitative correlation between AF formation and in-
clusion characteristics. The effects of temperature and grain
size on AF formation and growth have been widely studied.
The formation and growth of AF were influenced not only by
the heating and cooling parameters but also by the size and
composition  of  inclusions.  Thus,  comprehensive  experi-
ments  are  necessary  to  investigate  the  quantitative  relation-
ship between AF formation and inclusion characteristics. 

8. Conclusions

(1)  The  collisions  of  various  inclusions  observed in-situ
using CSLM are summarized. The solid inclusions exhibited
a significant attractive force, with a high tendency to collide.
However,  pure  liquid  inclusions  rarely  collided  because  of
their low attraction. The order of capillary forces for differ-
ent  inclusions  was  Al2O3 >  TiAlOx–Al2O3 >  Ce2O3 >
Ce–Al–O > Al2O3–SiO2 > Ce–O–S > Al2O3–CaO > SiO2 >
MgO > MgAl2O4. In future studies, collisions of complex in-
clusions should be investigated as these inclusions are actu-
ally formed in molten steel.

(2) Increasing the CaO/Al2O3 and CaO/SiO2 ratios is be-

neficial for the dissolution of inclusions in liquid slag. Solid
phase formation in the slag should be prevented to improve
inclusion  dissolution.  The  reported  models  are  summarized
to predict the dissolution rate of the inclusions in the slag. To
simulate the process of inclusion dissolution, in-situ observa-
tion  of  the  dissolution  of  inclusions  in  the  slag  at  the
steel–slag interface is necessary.

(3) Several methods have been proposed for in-situ obser-
vation  of  inclusion  modification  by  dissolved  elements  in
steel. The morphological and compositional evolution of the
inclusions during the reaction process were observed in-situ
using a combination of CSLM and SEM–EDS. Developing
an additional technique during CSLM experiments to further
reveal the modification process of the inclusions will be use-
ful.

(4) In-situ observation of MnS and TiN precipitation has
been  widely  studied,  whereas  the in-situ observation  of  the
transformation of oxide inclusions in steel during solidifica-
tion and heating processes has rarely been reported.

(5) CSLM can be used to observe phase transition temper-
ature induced by inclusions on a sample surface. The effects
of temperature and inclusion characteristics on AF formation
have been widely studied. At a cooling rate of 3–5 K/s, the
order of growth rates of AFs induced by different inclusions,
as  reported  in  literature,  was  Ti–O  <  Ti–Ca–Zr–Al–O  <
Mg–O  <  Ti–Zr–Al–O  <  Mn–Ti–Al–O  <  Ti–Al–O  <
Zr–Ti–Al–O. Further experiments are necessary to investig-
ate  the  quantitative  relationship  between  AF formation  and
inclusion characteristics. 
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