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Abstract: An algorithm for the computition of the unstructured real stability radius of high dimensional linear

system is presented. Using the accuriate formula ol the real stability radius of 2-dimensional system linear system
checks the algorithm. The result shows that the algorithm is reliable and clficient. As applications, the unstructured
real stability radii of 2-dimensional Chua's circuit and 3-dimensional piecewise-linear system are calculated, the
dynamical orbits of the corresponding perturbed systems arc simulated.
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A controller 1s called to be robust, if it works well
not only for the nominal plant model but also for a
large set of perturbed models [1]. Consequently, a
fundamental problem of robustness analysis is to deter-
mine to what cxtent a stable nominal system remains
stable when subject to parameter perturbations.

An n-Dimensional Linear System (NDLS) has the
form

X)) = AX(), =0 (N

where AEK"™" is a given nominal matrix and X(7)
€K",K = R(real ficld) or C(complex licld). The corre-
sponding perturbed system can be written in the form

X = (A+ D)X, 120 (2)

where A€K " " 1s an unknown real or complex pertur-
bation matrix. Let the complex plane C be partitioned
by

C=C,UC,
where C_ N C\, = & and C, * & is open and C, *
s closed. C, and C, are called "good" region and "

bad" region, respectively. Suppose that the perfor-
mance requirements of the nominal model (1) are
expressed as the spectrums o(A4) C C,. Then the stabil-

ity radius d, of an NDLS is defined by [1,2]
d, = d(A,C,)=
min{||All; AEK™ ", o(A4+ AN C, + T},

where

1Al = max{l|Ax]l; YeK", || X]| = 1}.

If A'is real, two stability radii, d, or d,. are obtained
according to whether real (K = R) or complex (K =
() perturbation are considered.

Suppose that K” = R” provides with its usual
Hilbert norm (2-norm):

¥l = X

= VP [+ e )
forany X = [x, x, ---, x,]'éR".

For unstructured real stability radius, reference [3]
gives the following contents.

Proposition 1 Let AER™" such that o(4) C C, =
ts€C; Res(s) < 0} and R” provide Hilbet norm. Then
do(A,Cy) = min{|trace(A)| / 2, S_ (A} (3)

where trace(A) = u,| + u.,,

4y s
A= .
Uy
S (A) denotes the minimum singular value of matrix

nin

A, i e.

S =min Vil A€a(4 - A).

min

Remark It has been pointed out in reference [4]
that the conditions in Proposition 1 can be generalized
as C, N C, = &, and they are all connected sets such

that 0C,, = iR.

It has found recently that the proof of the Proposi-
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tion is far from perfect. Min, et al gives a rigorous
proof of Proposition 1 (Kexue Tongbao(Science Bullet-
in), 1998. Submitted). Unfortunately when n > 2,
there is no explicit representation of real stability
radius in general. Until 1995, Qiu, et al.[5] presented a
computable formula of real stability radius:

Proposition 2 Let AER"*"(n > 1) and R" provide
Hilbert norm and o(A4) C C,. Then

dR(A’ Ch) =

i (|:—A—Resl — v Ims/ ])
min max o, _, » .
S€2C, yE(0,1] y Ims/ —A—Res/

Section 1 presents an algorithm for the computation
of real stability radius d,(4,iR). Sections 2 and 3 give
the applications of the algorithm to 2-dimensional
Chua's circuit and 3-dimensional piecewise-linear
system, respectively.

1 Algorithm

Based on Proposition 2, an algorithm for the compu-
tation of the structured complex stability radius will be
given. Hereafter assume that AER"*”, o(A4) C C, and

0C, = iR.
This algorithm consists of three modules.
(1) Compute Z(y,w) £ o, _ (H(y,w)) where H(y,

w)is a parameter matrix:

A —yw[]

Hy.w) = [y"wl —A

and o, | (H(y,)) is the (2n — 1)th singularvalue of
H(y w).

(2) Compute Z(w) £ max ., ; Z(¥,).

(3) Compute inf _, Z(w).

These modules lead to the following subalgorithms.
Algorithm 1 Compute Z(y,w).

(a) Input AER"*", y€(0,1], w > 0).

(b) Determine the eigenvalue of A.

(c) Construct H(y,w) and compute

Z(y.w) = a,_ (H(7.0)).

Algorithm 2 Compute Z(w).

It can be proved that Z (¥, w) is a unimodal mapping
[5] of y for arbitrary given w€R *. Consequently, the
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Golden section is applied to compute Z (w):
(a) Input w, andseta=0, b= 1.
(b) Set

V5 -1

X, = b——z—(b —a),x,=a+

(¢) If Z(x,,w) < Z(x,,w), then

V5 -1

2

(b — a).

b=xelsea=x.
(d) If x, — x, < ¢, then
X+ x
output Z (T', w), stop;
else go to (b).

Algorithm 3 Compute inf ., Z(w).

wER
(A)Draw graph of Z (w) to determine unimodal
required interval [w,, w,] of Z(w).

(B) Compute Z(w,, @,) = inf,

we(wl,w:)

Z(w).

(a) Input ¢ = w,, d = w,, and set

Vs -1 Vs -1

5 (d=0o),y,= ct———(d - ¢).

(b) If Z(y,) > Z(»)), then

yl = d——

d=y,elsec =y,
© Ify,—y, < g, then

Wty
outputZI( 12 - a));

else go to (a).

2 Application to 2-dimensional Chua's
Circuit

A 2-dimensional Chua's (piecewise-linear) circuit
is a parallel RLC circuit with a piecewise-linear nonlin-
ear resistor N, shown in figure 1 (see reference [6] for
details).

The state equations of the Chua's circuit may be
described via

%= lfé;

¢ |
1, 0y, GG, (V, < —E)
c’? C, 2 C2 2

dv, 1 , G, Vi<

dr = Cz 3_62 2 (l 3|\E)
1 Gl; a~ Jb
—I—V——F (V.>
Cz 3 C., 2 ; ( 2 E)
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Figure 1 2-Dimensional Chua's circuit

where G, = (G+G,) and G, = (G+G,).Let L =0.36
mH, ¢, =100 nF, G,= —757.576 uS, G, = 45.455 puS,
£=0.47 V. Then for G =1 mS and G = 500 pS.

The state equations can be written as

X = AX0D+b (Vi) < - E) (4)
= A1) Vol <) (5)
=AX0 +b, (VD) > E) (6)

where X(7) = [£,(), V.0, b, = [b,. 6] = [0, (G,—
GYEICT. b =[b,b]" =10,(G,—G)E/C]", and

0 -1
dy, ), L
-1 = =

l l:“m ":::l L _ﬂ
¢ c |
[ 1

[T 0 —

dy dy, L

Au = |:l¢:1 ; (:: :| = L _G.'.

¢, C,

Hence o(4)) = {1287.9 + 166661.71} and o(4,) =
{—2727.3 £ 166644.4 1} .

The good region und bad region for the linear
system (5) should be taken as

C

g

I

{z Re(z) < 0, z€C},

C,.= 14z Re(n) = 0, e},

tih

and the ones for the semi-linear systems ((4) and (6))
should be taken as

C, =1z Re(x) <0, -eCy,

Ly

C, = 1{= Re(r) 20, zeC}.

Lh
o(4,) C CLg and o(4) C C,. The virtual cquilibrium
points of equations (4) and (6) are P = ((G,—G ) E,0)
and P, = ((G,—G,)E,0), which are in the region |V| <
E; the virtual equilibium point of equation (5) is
located at (0, 0).
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These conditions guarantee that the steady-state solu-
tion converges to a limit cycle (see figure 2).
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Figure 2 Steady-state solution of Chua's circuit converges
to a limit cycle
From Proposition 1, the accurate stability radius for
system (5) is

dy(4, C,) = 128788 x 10 (7)

0
and the one for the systems (4) and (6) is
dy(A,C,) = 2727275 X 10° (8)

Now using the algorithm presented in Section | to
compute the stability radii of systems (5), (4) and (6)
(taking ¢ = £, = 107°) yields two minimum singular
value curves shown in figures 3 and 4, and obtains

—A, —ywl
v 'l -4,
([ -4, —ya)lﬁ)
=~ -1
14 wl _A“ A/ w=leveol 2

1.287879998 x 10° ")

. —A, —ywl
min max o, "
iw€iR ye(0,1] Yy wl —A,

( [ : A[: . yw] | )
~ -1
y @l —A, A4/ 0~ 1000043

~ 2.727274999 x 10° (10)

dp(A4, C)) = min max o,

iw€iR y€(0,1]

1%

¢ R(AI;’ C[:‘b)

Comparing (7), (8) with (9) and (10) shows that the
computation error of the algorithm is extremely small
so that our algorithm is reliable and efficient.



248

| 400

1200

*

(7 ')

800
z
z
100
() | | 1 !
0 0.2 0.4 0.6 0.8 1.0
}/
Figure 3 The computed minimum y — o (/l(y. w ")) curve,
wherew ™ = 166661

Furthermore, let
r=min {d (A4, C,), d(A.C ) = 1278 (rn

From formulas (12) and (13) given in reference [4], it
can be checked that r, > r and r. > r. So that by
it can be concluded
that the stability radius of the 2-dimensional Chua's
circuit is given by

e = rl((‘{b’ "1 lbh

Finally, consider perturbed state equations correspond-
ing to the nominal state equations (4)~(6):

Lemma 2 given in reference [4],

C,)=1287 (12)

X(1) = (A, + )X +b_ (x(1) < —E)
(I (0] < E)

() > b).

= (1, +A)X(7)
= (A, + D)Xy +h_

Suppose that a perturbed matrix 4 has the form
0 —1000
A= .
1100 300

Then the corresponding operator norm satislies

= 12188 < r,.

The orbit of the solution of the disturbed circuit is
shown in figure 5, which kecps the essential character-
istics of the orbit given in figure 2.

3 Application to 3-dimensional Piecewise
Linear System

Consider 3-dimensional piecewise linear system ol
the form
A =

AN +h (x(D) < —F) (13)
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Figurc 4 The computed minimum y — o,(/ly, ")) curve,

where w * = 166664
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Figure 5 Steady-state solution of the
circuit still converges to a limit cycle

perturbed Chua's

X = 4,30
()

(IxI< B 4
() > E) (15)

AXD+D,

where Y1) = [x().x5(0,0(0]"€RYLA, = [160,80,90]",
h = ~/>’, =1,

150 —40 —320 150 —40 —160
A= | 85 =30 -160 |, 4, = [ 85 —30 —80

0

85 =20 —180 85 =20 -90

T

IJO

1) = 1—10, 20 £ 101} and o(A4,) = {-20.

ce of
01 }

The good region and bad region for the linear

system (14) should be taken as
C, =1z Re(z) < 0orRe(z) >0, z€C},
C, = {z z€i R},

th
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and the ones for the semi-lincar systems ((13) and
(15)) should be taken as

C,. = |z Re(n) < 0, z€C},
C, =1z Re(z) =20, z€(},

o) C C, and o(A) C C_ . The virtual equitibrium

points of equations (13) and (15) arc P, = [0,0,0.5]"
and P = —P_, which are in the region | x| < [ the
virtual equilibrium points of equations (14) is located
at (0,0). These conditions might guarantee that the
steady-state solution converges to a limit cycle (see
figures 6 and 7). Now us the algorithm presented in
Section 1 to compute the stability radii of systems (14),
(13) and (15). Taking £ = 107" and &, = 107", the
minimum unimodal inter-vals can be determined [rom
figures 8 and 9, that is, [0, 0.02] for A, and [0, 0.01]
for A,. In fact it can be judged that minmimu Z (w)’s
for both cases are taken when w = 0, the algorithm

yields
dy(A,C,) ~ 1.658501 (16)
R
l —
o 0r
_l =
75\‘\‘\"/’4//;,’,;—,—’420
0 —10 0 0
A v

Figure 6 Steady-state solution of the piccewise lincar

systems
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Figure 8 The computed w—/7 (w) curve for i
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d(A,.1C,,) = 1.81601884 (17
Suppose a perturbed system ol the form
Xy = (A+DXD+h_ () < —E) (18)
= (A, A)X() (nnl<kB ()
= (A, +H)X+h, () > E) (20
where
0.1 =0.50.3
A=10.6 09 05
0.4 0.7 0.6
Thercfore,

HAllL = 1.561 < min {d (A, C,), d(A, C,)}.

The virtual cquilibrium points of cquations (1%)

02

~(20) are stll the region | x| < £

The orbits of the solutions of the disturbed systems
are shown in figures 10 and 11, which have the essen-
tial characteristics of the orbits given in figures 6 and
7.
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Figure 7 A limit cycle solution of the piecewise linear

systems
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Figure 9 The computed w—7(w) curve for .1,



Figurc 10 Steady-state solution of the perturbed piccewise
linear systems also converges to a limit cycle

In summary, the algorithm for the computation of
the unstructured real stability radius of high dimen-
sional linear system may also be helpful for the study
the properties of steady-solution of high dimensional
piece-wise linear system.
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[continued from puge 240]
deep-drawing given in the paper is quite accurate, espe-
cially that of the wrinkle limit.

(2) The limit deep-drawing coefficient should be
defined with both the wrinkle limit and fracture limit.

(3) The forming zone determined by the prediction
and control of both the wrinkle limit and fracture limit
is Q€[OO 1, generally 0=1.20% or Q€[1,1.2] X
Qi

(4) The prediction and control diagram of both the
wrinkle limit and fracture limit changes with the differ-
ent material, but its law is all the same.
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