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Software sensor for slab reheating furnace
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Abstract: It has long been thought that a reheating furnace, with its inherent measurement difficulties and complex dynamics, posed
almost insurmountable problems to engineers in steel plants. A novel software sensor is proposed to make more effective use of those
measurements that are already available, which has great importance both to slab quality and energy saving. The proposed method is
based on the mixtures of Gaussian processes (GP) with the expectation maximization (EM) algorithm employed for parameter esti-
mation of the mixture of models. The mixture model can alleviate the computational complexity of GP and also accords with the
changes of operating condition in practical processes. It is demonstrated by on-line estimation of the furnace gas temperature in 1580
reheating furnace in Baosteel Corporation (Group).
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1 Introduction

Walking-beam reheating furnace is an important
device with lots of energy consumption in steel plants.
During the past decade, people have made many ef-
forts on it [1-5]. In order to improve the slab quality
and reduce fuel consumption, Baosteel spent a lot of
research in developing a new model for on-line opti-
mization and control of reheating processes. Since the
present furnace model, based on a complete physical
description of the furnace characteristics, is too com-
plicated for use, software sensors [6], also known for
soft sensors, provide a convenient solution to meet the
demand. And the key problem of soft sensors is mod-
eling, which has different philosophy from the first
principle model.

Most conventional industrial process models are
global, where the industrial process is assumed to be
fully characterized by a single model. However, be-
cause of multiple variables, seriously nonlinear and
multiple work modes, a large number of real industrial
processes are too complex to be described by a single
model. Furthermore, the single model method not only
reduces the estimate precision, but also increases the
computational complexity [7].

Multiple model (MM) approaches [8-10] to the em-

pirical modeling of nonlinear systems have been of
interest for many years, and have been used widely in
the last few years. The mixtures of Gaussian processes
(GP) [11-14] have appeared in various forms.

In this paper, a novel soft sensor method is pro-
posed on the basis of mixtures of Gaussian processes
with expectation maximization algorithm employed
for parameter estimation of the mixture of models.

2 Description of the reheating furnace

The structure of the walking-beam reheating furna-
ce discussed in the following sections is shown in fig-
ure 1. Slabs in the furnace move from the tail zone to
the soaking zone. And the flow direction of the waste
gas is reverse. The control area of the furnace is divid-
ed into six zones, which are denoted from zone 1 to
zone 6, respectively. The tail zone is not a control area
and has no fuel input.
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Figure 1 Structure of the walking beam reheating furnace.
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3 Mixture of GP based soft sensor

In short, multiple models involve several local

models and the output of the global model is a combi-

nation of local models using an interpolation tech-

nique.

Constructing a soft sensor can be described as fol-

(1)

where 0j(x) is the validity function for the i-th op-

erating regime and θi = [aT

i b,]T the parameter vector

of the corresponding local linear model.

The available data samples are collected in matrix

Z formed by concatenating the input data matrix X

and the output vector y:

Through clustering, the data set Z is partitioned into

c clusters. The result is a fuzzy partition matrix

U=[μi,,k]cxN, whose element μi,k represents the de-

gree of membership of the observation zk in cluster

i.

Denote P(ηi) the unconditional cluster probability

(normalized such that given by the

fraction of the data that it explains. p(z|ηi) is the

domain of influence of the cluster, and will be taken to

be the multivariate Gaussian function N(v i,F i) in

terms of a mean vi and covariance matrix Fi.

(2)

where the P(z|ηi) distribution generated by the i-th

cluster is represented by the Gaussian function
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(3)

In this paper, we propose to use the Gath-Geva (GG)

clustering [15-18] algorithm instead of the widely

used Gustafson-Kessel (GK) method, because with the

GG method, the parameters of the univariate member-

ship functions can directly be derived from the

parameters of the clusters. Through GG clustering, the

p(z) = p(x, y) joint density of the response variable

y and the regressors x is modeled as a mixture of

c multivariate n + 1 dimensional Gaussian functions.

And the conditional density p(y | x) is also a mixture

of Gaussian models. Therefore, the prediction of y

on unseen value x can be formulated:

Here, θi is the parameter vector of local models and

p(ηi|x) is the probability that the i-th Gaussian com-

ponent is generated by the regression vector x:

p(η|x) =

(5)

where Fxx

i is obtained by partitioning the covariance

matrix Fi as follows.

(6)

where Fxx

i is the n×n sub-matrix containing the

first n rows and columns of Fi, Fxy
i is an n × 1

column vector containing the first n elements of the

last column of Fi, Fyx
i is an 1×n row vector con-

taining the first n elements of the last row of Fi,

and Fyy
i is the last element in the last row of Fi.

The mixture of Gaussian processes defined by

equations (4) and (5) is in fact a kind of operating

regime based model (1) where the validity function is

(4)

chosen as

4 Parameter estimation

Through a linear transformation of the input vari-

ables [19], the antecedent partition can be accurately

lows. Give the sample where N is the

sired targets. Suppose that the input vector for a test

case is denoted x and the targets are scalar. From this

training set we wish to learn a model to make accurate

predictions of y for previously unseen x values.

The operating regime based model [8] of the sys-

tem is formulated as

Each observation thus is an n+1 dimensional co-

lumn vector

size of data samples,

sensor model, and

are the inputs of the soft

is the corresponding de-
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captured and no decomposition error occurs. Unfortu-

nately, the resulting model is not transparent as it is

hard to interpret the linguistic terms defined on the

linear combination of the input variables. In order to

form an easy interpretable model that does not rely on

transformed input variables, a new clustering algo-

rithm is proposed based on the expectation maximiza-

tion (EM) [16]. The clusters obtained by GG cluster-

ing are multivariate Gaussian functions. The alternat-

ing optimization of these clusters is identical with the

EM identification of the mixture of these Gaussian

models when the fuzzy weight exponent m = 2.

The EM algorithm is widely used for parameter es-

timation of the mixture of models, in particular the

mixture of Gaussian model. The basics of EM are the

followings. Suppose we know the observed values of

a random variable z and wish to model the density of

z using a model parameterized by 77. EM obtains

parameter estimates fj which maximize the likeli-

hood L(η) = p(z|η) of the data. The EM assumes

that this estimation is intractable and the values of a

missing or hidden random variable h would make the

problem more tractable. Let p(z,h|η) denote the

joint probability of z and h parameterized by η. It is

assumed that z and h are such that maximizing the

complete data likelihood LC(η) = p(z,h|η) is more

tractable than maximizing L(η) . However, the values

of h are unknown. The EM algorithm tackles this

problem by iteratively generating a probability over

the values h and estimating the parameters that maxi-

mize the expected value of Lc(η) with respect to h.

The optimal θi parameter vector of the local

model can be obtained as:

The weighted least-squares estimate of consequent

parameters is given by

(8)
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of the reheating furnace. The simulation experiment

presented in this paper is derived from the 1580 re-

heating furnace in Baosteel Corporation of China. We

collected 300 samples in 5 h, and the ratio of training

samples to test samples is 2:1. According to technics

analysis, the fuel flow at the current moment and the

temperature of furnace gas at previous moment are

used to the input of the software sensor. After training,

the soft sensor model can estimate the gas temperature

at the current moment online.

The test results for both the estimate output of the

soft sensor and the actual value are shown in figures

2-7 (suppose the cluster c = 4 ). The actual output is

the dotted line and the estimate output is the solid one.

Through a series of experimental simulations, we

can find that if we increase the value of c, we will

get the less generalization error with the cost of more

computational time as a balance and vice versa. With

the change of c, the results for both generalization

MSE and computational time in different zones are

shown in table 1. The computer used for all these

simulations is PIV 1.5 GHz PC with 256 MB RAM

and MATLAB version is 6.5 (R13) running under the

operating system Windows 2000 professional.

Figure 2 Test results for the estimated output and the ac-

tual output in zone 1.

Figure 3 Test results for the estimated output and the ac-

tual output in zone 4.

(7)

where .Xc=[X1] denotes the extended regression
matrix obtained by adding a unitary column to X ,
and Φi is a matrix having the membership degrees on
its main diagonal:

5 Experimental results

Furnace gas temperature is required to be computed

or monitored for real-time use in modeling and control

(9)
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Figure 5 Test results for the estimated output and the ac-
tual output in zone 5.

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6

6 Conclusions

(1) Software sensors, which provide the on-line es-
timation of process variables that are difficult or costly
to measure from available sensors, are powerful tools
in system modeling and control. Their performance
depends on both the measurement quality delivered by
available sensors and the associated estimation algo-
rithm.

(2) The proposed soft sensor can be implemented
via online computation which can be employed in re-
heating processes for optimal running and control.
Furthermore, we believe the proposed method sheds
some light on the potential application to industrial
fields.
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