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Abstract: The prediction behaviors of some coherent plane wave equations for the effective velocities and attenuations of the coher-
ent plane waves propagating through a composite material and for the effective elastic moduli of the composites are studied. The nu-
merical results obtained by Waterman & Truell’s, Twersky’s and Gubernatis’s equations for Glass-Epoxy composites with various
volume fractions are compared. It is found that the predictions by both Twersky’s and Gubernatis’s equations underestimate the ef-
fective velocities and the effective elastic moduli when compare with the predictions by Waterman & Truell’s equation. Furthermore,
the deviations are more evident for the shear wave than that for the longitudinal wave. But these deviations decrease gradually with
the increase of the frequency and increase gradually with the increase of the volume fraction.
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1 Introduction

When an acoustic or elastic wave propagates
through a composite material with randomly distribut-
ed reinforced particles or fibers, the multiple scatter-
ing amongst these scatterers arises due to the spatial
inhomogeneity. In general, the total wave field in a
composite medium can be regarded as the sum of the
mean wave field and the fluctuating wave field. The
mean wave field (coherent wave field) can be consid-
ered as the wave field propagating in the homogene-
ous medium having the effective properties of the
composite materials and the fluctuating wave field
(incoherent wave field) can be considered as the wave
field due to the randomly spatial variations of material
properties from those of the effective medium. The
propagation constants of the mean or coherent plane
wave and the dynamic effective elastic moduli of the
homogeneous effective medium are of importants and
have attracted considerably attentions [1-14]. In these
studies the main approaches to simplify the interaction
amongst the scatterers are the effective exciting field
approach [1-4] and the effective medium approach
[5,9,10,12]. For a relatively high volume fraction, the
effective medium approach and the effective field ap-
proach with the pair-correlation function involved are
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usually considered. In general, no explicit expressions
of the effective properties of composite materials can
be obtained except in the Rayleigh limits. However,
for a relatively low volume fraction, the correlatton in
the positions of the particles or fibers can be ignored,
and some explicit expressions of the effective proper-
ties are thus obtained. The prediction behaviors of the-
se expressions should be investigated by comparison.
Regretfully, such a work is rare in the literatures. It is
our purpose to study on the prediction behaviors of
these explicit equations by comparison of their nu-
merical results.

2 Far-field scattering amplitudes

In the case of an incident scalar wave
@' =il H

The scattered wave in the far-field r scattered by a
single scatterer which is located at r” can be expressed
asymptotically as

eik(|r—r'l)

@° = f(6,9)———e 2)

|r—r'

where f(6,8) is called the azimuth-dependent far-
field scattered amplitude and (@,¢) are the azimuth
angles.
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In the case of an incident vector wave
ui =geikr-a 3

where a is the unit polarization vectors of an incident
vector wave, k is the wavenumber vector. The scat-
tered wave in the far-field scattered by the same scat-
terer which is located at r’ can be expressed asymp-
totically as
eilkllr—r1

u =F (@, ¢)' - @
where F(8,¢) is called the azimuth-dependent far-
field scattered amplitude vector. The projection of this
vector in the polarization vector, f(6,¢)=F (9,¢)-a,
is defined as the far-field scattered amplitude.

In the case of the incident elastic waves which is
considered in the present work, i.e.
u' =qe!kwi=®) | peitkgz—an (5)
where a and b are the polarization vectors of the inci-

dent P and S waves, respectively; kpO and kg are the

wavenumbers of the incident P and S waves. In the
far-field, the wave scattered by a single scatterer whi-
ch is located at ¥’ can be expressed asymptotically as

FO.0 iy, L)Lk

F (kpo’kso’g 9) ikl
=

s(kpo’kso’a ¢) ik glr—r
[r-r

us(rir’y= +

()

The corresponding far-field scattered amplitudes of
the P and S waves are

{fp(9’¢) =Fp(kp();kso,e,¢)'a

7
fs(0a¢)=Fs(kp0’k50’0’¢)'b ( )

In general, the scattered wave field can be related
with the exciting wave field by

ut =Tsul 8)

where T* is the scattering operator which is depen-
dent upon the properties and shape of the scatterer as
well as the properties of the host medium where the
scatterer is embedded. For a spherical scatterer, by
employing the eighfunction expansion technique and
the asymptotic expression of the radial function
WP kr) , ie.

RV (kr) ~ —eilkr-1 ("+1)"]+o( ) when r — o 9
r

The displacement of scattered waves in the far-field
can be expressed asymptotically

u, = ew +o(-)== ZZ1A,S,me“2"'+')“P”’(cos0)e"""’ e ) (10a)
r r r n=0m=0
o = Fo(0 Fo(6.0) ix,r +o( )
=1 ik ofz er-'z("*b"[ss m Pn"'(cos9)+c;,,,iP,:"(cosa)]e'w +o(l) (10b)
r n=0m=0 ks() Sin9 d9 r
Upg=——— £,(6.9) eiko" 4+ o(— )———e"c i Z (cose)’f—ecs sn Pl (cos ) 1% ""“’+o( ) (10¢)
r n=0 m=0 sin

and C;,
are determined by the continnous conditions of the
displacements and the tractions at the interface be-
tween the scatterer and the host medium, P;"(cos8) is

where the extension coefficients Aj,, B,

the associated Legendre function. The far-field scat-
tered amplitude vectors for the scattered longitudinal
and shear waves can be written as F,=F,(6,9)e,
and F, = Fy(0,0)eq + F,(0,0)e, (e,
unit polar coordinate vectors), respectively. The far-
field scattered amplitudes at two specific azimuthal
angles, #=0 and #=mn, are called the forward and
the backward scattering amplitudes, respectively, and
will play important roles in predicting the effective
properties of a composite material.

e, and e, is

F0.0)= (-i)" A,

n=0

Fo(0,6) = Z(;) )

Bj el? +kL Bs,,e7?] (11)

k sO s0

F,(0,4)= Z [n(n+1)CI,, e +Cs e ]

n=1

F (m,¢)= ii"Agn

Folmg)= Z—[”(” D preio s Lps 0] (12)
ks() ksO
Fo(m,¢)= Z - [n(n +1)Ce +C3 e ?]

n=l
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3 Coherent plane wave equations

In a composite material with randomly distributed
inclusions whose positions are denoted by (ry,---,ry ),
the total field at any point r outside all scatterers can
be given in the multiple scattering form

N
u(r;r,ry, - ry) =ui(r)+ Y T (rul(r) +
k=1

N N
DT (rm) D, T rui(r)+--
m=l k=Lk#m

(13)
where the single summation denotes the primary
scattered terms, the double summation denotes the
secondary scattered terms and so on. The primary
scattering is due to the incident waves alone, and the
second scattering represents the rescattering of the
primary scattered waves, efc. The multiple scattering
process takes into account the interaction among the
distributed inclusions accurately. However, it is diffi-
culty to deal with in order to predict the effective
properties of such a composite material. Hence the ef-
fective exciting field approximation is usually used to
describe approximately the interaction among the dis-
tributed inclusions. In this approximation it is assumed
that each inclusion is excited by an effective exciting
field u°. Then equation (13) can be approximately
replaced by

k=1
(14)

where the first coordinate r indicates the field point of
evaluation, and the (r,---ry) indicates the depen-
dence of the random function u on the specific con-
figuration chosen. Symbol “'” means the absence of
one variable. After performing the configurational av-
erage over equation (14), it follows

(u(rsry,-ry))=ui(r)+

exciting field acting on the k-th scatterer averaged
over all possible configurations of the other scatterers.
Therefore it is, in fact, the counterpart of the averaged
total field with one inclusion absent. The deviation
between the averaged total field with N inclusions in-
volved, (u(r;r;,--,ry)), and the ones with one less in-

come unnoticed as the number of inclusions are very
large. Hence, we may make the self-consistent ap-
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proximation
(wg(r\rsm,--ry)) = (U(rsn, - ry)) (16)

This approximation was proposed first by Foldy [1]
and leads to the coherent plane scalar wave equation

ki, 4an
il +22" ek 17

(
where k. is the wavenumber of the coherent wave
and k, is that of the incident wave, n is the number
density of scatterers, f(ko) is the isotropic scattering

amplitude scattered by a single inclusion embedded in
a homogenous medium. It is noted that only the iso-
tropic point scattering is considered in Foldy’s work.
This approximation was later modified by Lax [2]
with introduction of a correction parameter ¢’ and
extended to the anisotropic scattering by replacing
f (ko) with the forward scattering amplitude f(k,,0)

4nn ,

k.
—)? =1+k—ng(ko,0) (18)

(ko

where the parameter ¢’ is a measure of the ratio of
the effective field <u°> to the macroscopic average

field (u) Waterman & Truell provided a equation
where the backward scattering amplitude f(ko,n) is
also considered [3],

k. 2 2
G2 =1+ 252 f ko, O = [22 f(ko, W] (19)
ko k2 k2

By only retaining the chain-scattering (neglecting
the shuttle-scattering) in the multiple scattering proc-
esses, Twersky obtained [4,15]

h=%+%ﬂﬂhm (20)
]

Moreover, based on independent scattering ap-
proximation, Gubernatis [6] obtained

k2 = k2 + 4mnf (k«,0) (21)
But often this equation is replaced by
k% = k¢ +4nnf (ko,0) (22)

For avoiding the burden of iterative process, by
comparison of these equations, it is noted that Water-
man & Truell’s equation can reduce to Foldy’s equa-
tion for the isotropic  scattering  where
f(ko,0)= f(kg,m), to Twersky’s equation when the
backward scattering amplitude is neglected, and to
Gubernatis’s equation when the second rank terms of
the number density are neglected. Because the far-
field scattering amplitudes are, in general, complex-
valued and frequency-dependent, the effective
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wavenumbers of P and S waves, kp,, and k., are

thus complex-valued and frequency-dependent. The
real part of the complex-valued wavenumber is related
to the phase velocity and the imaginary part represents
the attenuation of the coherent waves
k(@) = k(@) +ik (@) = @ c o +iax,,.
(23)
ko (@) = ki (@) +iki(w) = 0fc . +i,

where c,. and c,, are the phase velocities, and a,,
and a, are the attenuations of P and S waves, re-

spectively. Furthermore, the effective elastic moduli of
the composite material can be obtained from the ef-
fective wavenumbers by

Go(@) = GI (@) +iGi(@) = Go 2= (k2
Po kg

K@) =Kl (w)+iKi(w)= (24)

4G v k "
(Ko +250) P kg2 3, P kay,
3 Po kpx« 3 Po ks*
where G.«(w) and K.(w) are the frequency-

dependent effective shear and bulk moduli of the
composite material. Gp,and K, are the shear and

bulk moduli of host medium. The effective density of

57

the composite material, p., can be obtained ap-

proximately from the volume average,

pP+=1=-0c)po+cp (25)

where p, and p, are the densities of the host medi-

um and the scatterer, respectively. ¢ is the volume
fraction of scatterers.

4 Comparison of the prediction behavior

The dynamic effective properties of a composite
material, Glass-Epoxy, will be predicted in this section.
The mechanical properties of the constituents are
given in table 1.

In figures 1, 2, and 3, the predicted effective phase
velocities, the effective attenuations and the effective
elastic moduli from equations (19), (20) and (22),
namely, Waterman & Truell’s, Twersky’s and Guber-
natis’s equations, are compared. It can be seen that
Twersky’s equation and Gubernatis’s equation under-
estimate the effective phase velocities and the effec-
tive elastic moduli when compare with the predictions
by Waterman & Truell’s equations. However, the de-
viation decreases gradually with the increasing fre-
quency. Although the predicted effective attenuations
are also underestimated at any frequency by Twer-

Table 1 Constituent properties of composites: Glass-Epoxy [16]

Materials K/GPa G/GPa pl(kgm™) ¢,/ (ms™) ¢,/ (ms™)
Epoxy 5.49 1.59 1180 2540 1160
Glass 34.56 26.14 2492 5280 3240
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Figure 1 Effective phase velocities, effective attenuations and effective elastic moduli predicted by three coherent plane

wave equations at the volurue fraction ¢=0.05.
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Figure 2 Effective phase velocities, effective attenuations and effective elastic moduli predicted by three coherent plane

wave equations at the volume fraction ¢=0.15.
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sky’s equation when compare with the prediction ob-
tained from Waterman &Truell’s equation, but are un-
derestimated at a relatively low frequency and overes-
timated at a relatively high frequency by Gubernatis’s
equation. By comparing figures 1, 2 and 3, it can be
seen that the deviation among these numerical results
obtained by the three equations increase gradually
with the increase of the volume fraction. It is also not-
ed that the deviations of the phase velocities predicted
by the three equations are larger for the shear wave
than for the longitudinal wave. With respect to the ef-
fective elastic moduli of the composite material, it can
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be also seen that the shear moduli predicted by the
three equations have more evident deviation than the
bulk moduli. The effective attenuations predicted by
the three equations have less noticeable deviation at a
relatively low concentration. The comparison between
equations (21) and (22) is performed and is shown in
figure 4. It can be seen that the effective phase ve-
locities, effective attenuations and the effective elastic
moduli are overestimated by the Gubernatis’s equation
without iterative process when compare with the pre-
diction by ones with iterative process.
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Figure 3 Effective phase velocities, effective attenuations and effective elastic moduli predicted by three coherent plane

wave equations at the volume fraction ¢=0.3.
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Figure 4 Effective phase velocities, effective attenuations and effective elastic moduli predicted by Gubernatis’s equation

with and without iteration at the volume fraction c=0.15.
5 Conclusion

Although three coherent plane wave equations,
namely, Waterman & Truell’s equation, Twersky’s
equation and Gubernatis’s equation, are obtained un-
der the same assumption that the correlation of the
positions of scatterers can be neglected, evident de-
viations arise when they are used to predict the effec-
tive properties of a composite material. The deviations
among the prediction results are more evident for a
shear wave than for a longitudinal wave. Similarly, the
deviations among the prediction results are more evi-
dent for the effective shear modulus than for the ef-
fective bulk modulus. Generally speaking, Twersky’s
equation and Gubernatis’s equation with and without
iterative process underestimate the effective phase
velocities and the effective elastic moduli when com-
pare with the prediction by Waterman & Truell’s
equation. However, the deviations decrease gradually
with the increase of the frequency and increase gradu-
ally with the increase of the volume fraction.
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