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Materials

Numerical simulation of strain localization and damage evolution
in large plastic deformation using mixed finite element method
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Abstract: An investigation of computer simulation is presented to analyze the effects of strain localization and damage evolution in
large plastic deformation. The simulation is carried out by using an elastic-plastic-damage coupling finite element program that is
developed based on the concept of mixed interpolation of displacement/pressure. This program has been incorporated into a damage
mechanics model as well as the corresponding damage criterion. To illustrate the performance of the proposed approach, a typical
strain localization problem has been simulated. The results show that the proposed approach is of good capability to capture strain

localization and predict the damage evolution,
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1 Introduction

In engineering application, prediction of failure due
to material damage is curial important because the oc-
currence of macroscopic fracture in metal forming
process is frequently induced by the gradual growth of
material micro-defects known as internal damage.
Therefore, the effect of internal damage resulting from
the strain localization should not be neglected. Up to
now, both theoretical analysis and numerical simula-
tion have been widely applied to describe this phe-
nomenon.

The finite-element method has long been used as a
means of reliable computation to analyze various
metal forming processes. Using the finite element
method, a complete process of complex deformation
can be simulated. In order to take material imperfec-
tions into consideration, Doege [1] and Brumet [2]
have applied Gurson’s model to simulate the deep-
drawing process and compute the forming limit dia-
gram for sheet metal forming process. When Gurson’s
model is applied to simulate the strain localization
phenomenon including diffused necking and localized
necking, one should pay attention to some problems
existing in this model. Since Gurson’s model is origi-
nally developed for porous materials, it is especially
suitable for simulating spherical voids grow during the
deformation process. However, porous materials are
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rarely used in metal forming application. In addition,
it is difficult to measure the magnitude of void growth
in a forming process.

Under large plastic deformation, the nucleation,
growth and coalescence of micro-defects take place
due to high stress triaxiality and it is usually referred
to as strain damage (3.4]. In this study, a computation-
al model based on the continuum damage mechanics
(CDM) instead of Gurson’s model has been employed
to predict the damage evolution and cracking. A dam-
age variable [5] is incorporated into the consistent
elasto-plastic constitutive equation. A typical necking
problem of the cylindrical bar under the tension is
chosen to validate the proposed model. Using the
mixed u/p finite element program together with a
damage-based criterion, the numerical simulation is
therefore performed. Damage distribution is also dis-
cussed.

2 Mixed finite element formulation

In a typical time interval [t,,t,.,], the variational

formulation of the classical weak form of momentum
balance in a spatial description restricted to the static
case leads to

J'ch,,ﬂ :8ddv =G (8d) (1)

where £,,, denotes the current configuration at time
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fw1, G 18 the Cauchy stress, d:%[Vv +(Vv)T}

denotes the tensor of the deformation rate, G** is the
virtual work of the external loading. This equation can
be treated as a variational principle equation for the
determination of the stationary point of a functional
I1,.,, in which the incremental displacement field

Au(t)= X,. —X, is taken as the only variable in the

boundary-value problem. For the high degree of non-
linearity, equation (1) needs to be linearized and
solved by iteration. By adopting incremental finite
element approach, an efficient and stable iterative
technique is employed to solve the discretized equilib-
rium equations for each time step. The linearization of
equation (1) can be formulated in terms of the Trues-
dell stress rate and the virtual displacement &u :

[, [ao™ +o:(vau)-(Vu)" v =dGi5 (8e)

where do™ is the Truesdell rate of Cauchy stress.
The Truesdell rate is related to the rotation neutralized
stress o™ by the following expression [6]:

o R =RT-an-R+CEP:j'“'dNRdr (3)

n

do™ =R-do™ -RT -0 -de-de -0 “4)
where R denotes the rotation tensor.

Starting from the decomposition of the Cauchy
stress tensor into its deviatoric component s and hy-
drostatic pressure p, i.e.

c=s—pl 5)

p=-1iu(o). For the rate-
independent metal material, a constrained condition

should be supplemented as

where s =dev(o),

div(u)+ % =0 (6)

where div(e) denotes the divergence operator, and K
denotes the bulk modulus.

The variational formulation should be recast by
taking s and p as independent variables:

Iﬂ [s :dev(VSu)—p-div(Bu)] dv=G (du) @)

jﬂm [—sp ( %+ div(u)]}iv =0 )

Furthermore, the discrete mixed u/p finite element
equations can be deduced by the linearization of the
above variational formulations. In the case of constant
pressure within a 4-node bilinear element, the equati-
on can be simplified as

J. Univ. Sci. Technol. Beijing, Vol 11, No.3, Jun 2004

(K= J{au}=([K ]+ (K ]+ [ K" ){au}={a¥}
9)

where

KS =jQGT-o,,-de (10)
KF = _[ﬂ KBT -B,dv (1)
K =[ BT-(C¥ -A) -Bdv (12)
and

_ j B.dv

B, =2 (13)

(EEP )ukl = 1_7'(81'1 8y )+ Ry Ry R Ry -C,  (14)

C¥ =KI®1+2GB[I -+ 1®1]-2uN .y ® N, (15)

_ o.n+l
h= o
y=—E _(1-p) (16)
3u+h
trial
Nn+l = o'"_“_:l
|o'n+l “

(A);u=3(04 8,40, -8y +0, -8, +0, 8,) A7)

G, =(dev(0, )= Pon 1) (18)
AW = F —jﬂBT G, dv (19)

where I is a second order identity tensor and I is the
fourth order identity tensor. K® is the standard
geometrical stiffness matrix, B, denotes the dilata-
tion part of the strain interpolation matrix B,  denotes
the shear modulus, and C¥ denotes the equivalent
consistent elasto-plastic module which is rewritten
following the original concept proposed by Simo [7].
It is well known that if the incompatible element
method is employed to tackle the incompressible
problem, the Babuska-Brezzi condition must be satis-
fied [8]. For using a 4-node bilinear element with con-
stant pressure, a post-processing procedure proposed
by Hughes [9] can satisfied this requirement.

3 Integration of the constitutive equations

Up to now some well-known objective stress rates
such as the Jaumann rate and the Green-Naghdi rate
have been implemented in commercial codes, how-
ever, they exhibit the path dependence. Therefore, the
Truesdell rate may be an appropriated choice for iso-
tropic hardening materials as discussed in reference
[10]. Moreover, the corotational approach [6] provides
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a rotation neutralized strain measure and it is indepen-
dent from the rotation tensor R. In this approach, the
rotation neutralized deformation rate tensor can be
written as

d"® =R".d-R=1(UU-'+U"'U) (20)

In this equation, if the R is associated with the de-
formation of the material body between the reference
configuration £2, and the current configuration £2,,,, it
can be evaluated from the polar decomposition of the
incremental deformation gradient F

F,. =_EM
ox,
Finc = Rn+l 'Un+l (21)

T =det(Fiu)>0

where U is the corresponding right stretch tensor. Ac-
cording to the material description of motion, the rate
form of the constitutive equation can be written as

M =CF  d™ (22)

where the superscript ‘NR’ denotes the neutralization
of rotation. According to the material description of
motion, the integration of the constitutive equation by
means of rotation-neutralized transformation can be
expressed as

0,..=R,, -(RT ‘0, R, +AC j-RT

nil "

-

= Rn+% (RT O, 'Rn+% +C** :J‘IIMIdNRdT)' R:;.l

n+d 4

(23)
where R denotes the incremental rotation tensor which
is obtained from the polar decomposition of the de-
formation gradient, the subscript n+4 means that
rotation operation performed at the position of mid-
interval between the reference configuration x,and
the current configuration x,.,, and the superscript
‘NR’ denotes neutralized rotation. The velocity v of
material particles is considered to be constant and d is
also kept constant at the mid-interval. Therefore, the

integration of constitutive equation within the time
interval |r,,,.1] can be simplified as

J.I"“ d Rd7 = Ae ™R
In

~RT -[(Vx+%Au)+(VX+%Au)T]R,H%

1
n+2

=RT -Ae-R

n+d

5 (24)

where V .. is the gradient operator taken in the mid-

increment position, and Au=u,,, —u, is the incre-
mental displacement at the time 7,,,. By applying the

split of the Cauchy stress ©,. =dev(G..i)= prnl

into equation (23), the corresponding formulations can
be written as

Pri=R,- ( p1+K(I®1): J" R, d Rn,(%dr} R,

=(p, + KInJ )I (25)

dev(0 ,41)

=R, -(dev (0.n)+CE :J:” RT,d- R,,,,%dr)- R,
(26)

In deriving the above equations, the relation

1:d =d, =J/J isintroduced.

For integrating the isotropic material response
given in the rate form (26), the well-known radial re-
turn algorithm of the finite deformation [11] has been
used.

4 Damage model

For elastic deformation, the hypothesis of strain
equivalence proposed by Lemaitre is adopted. Hence,
the relationship between the effective and the true
elastic module is expressed as E =(1-D)E and

V =V . The stress-strain relation is
§=2Ge® 27
G =3KG, (28)

where s and e are the tensors of the deviatoric stress
and strain, respectively. G and K are the shear modu-
lus and the bulk modulus, respectively. For plastic de-
formation, isotropic hardening is assumed and it is ex-
pressed in terms of an internal variable, i.e. the
equivalent plastic strain. The classical hypothesis of
generalized standard materials and the associated
plasticity are adopted. With the use of the consistency
condition and normality law, the constitutive plastic
equations incorporating material damage may be de-
rived as

fe? =2 ——AF, (29)
eq

By substituting equation (29) into (27), it can be ob-

tained that

- 3§ .-

§=2G(e° |, +Ae ————AE,) (30)
204

For simplicity of notation, it is written € =e* |, +Ae.

Hence the above equation becomes

[1+3GAEp ]§=ZGé 31)

O

The inner product of this equation with itself gives
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0o +3GAE, =3G(1-D)é (32)

where é= %e,-j-e,-j. The tangent elasto-plastic-

damage coupling stiffness matrix can be set up by
taking the effect of the damage into equations (11) and
(12). In this case, the modulus in equations (11), (15)
and (16) should be replaced in terms of the effective
modulus, i.e.,

K=K(1-D), h=h(1-D) (33)

It is obvious that the elasto-plastic-damage coupling
stiffness matrix is still a symmetric matrix.

5 Damage evolution

For the isotropic materials, it is reasonable to use
Lemaitre’s damage evolution that is valid for most en-
gineering applications [2-5]. The incremental relation
between damage and stress is given as

. (YYdE, _ _
o3
In the above equation, g is the material dependent pa-

rameter, Ep|Ddenotes the strain threshold for micro-

cracking. H is a step function and Y is defined as
€ 1

Yy =-oW =——gT:E: 35
/4D 2 € (35)

where W* is the elastic strain energy density. For line-
ar isotropic elasticity, ¥ is the damage strain energy
release rate. This quantity may be used as a damage
criterion by the definition from a one-dimensional
equivalent stress [S5]. The damage evolution equation
is obtained by substituting equations (35) into (34)
: ok, Ydg, , _ _

Dz(—ZES(T—D)ZJ T:'H(gp_gpiD) (36)
where R, denotes the stress triaxiality. In order to per-
form the finite element analysis, the incremental form
of the above equation is required. By applying the
backward Euler method for the state at the end of the
increment, the damage increment can be expressed as

_[ OR,

q
=\ 3Es0-D)7 ] AEH(E, -5, ) (37

Next, the attention is devoted to determine the incre-
mental equivalent plastic strain AE, . The von Mises

equivalent stress must satisfy the uniaxial form, so
that from equation (32) .

3G[(1-D)é-AE, |=0., = (I-D){R, +R(E,)}  (38)

This nonlinear equation can be solved by the local
Newton’s method:
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AE,| , =AE,| +ci. AE[, =0 (39)

k+1
accompanying with
(1-D){R +R(E,)}1-3G[(1-D)é- A7, |
c, =
* 3G+(1-D)H,

(40)

Once AE, is known, the damage increment AD and
the damage variable D can be determined in terms of
equation (37). This method is suitable for non-
proportional loading as well as proportional one. It is
assumed that ductile failure would occur if the damage
D reaches its critical value D_, i.e.,

D=D, (41)

In this study, D, = 0.46 is obtained from the standard
tensile tests. This value is taken as the critical damage
parameter and it may be considered as a material
property.

6 Numerical examples

To validate the mixed FEM, a representative exam-
ple proposed by Simo [7] was selected. The example
is the necking of a cylindrical bar under the finite
stretching. Due to the symmetry, only quarter of the
bar is modeled with 6.413 mm in width and 26.667
mm in length. To trigger necking, a width reduction of
1.8% is introduced in the center of the bar. The finite
element mesh consists of 2x12x12 elements. The
material is assumed to obey the general saturation
isotropic hardening constitutive equation:

0, =0y +(0'oo—Uo)[l_eXP(_5'§p)]+H'§p (42)

The values of material parameters used in the compu-
tation are the same as those published in reference [7],
ie., E =206.9 GPa, v =0.29, g,= 045 GPa, 0.. =
0.715 GPa, 8 = 16.93, H = 0.12924 GPa. Totally 50
uniform time steps were applied to simulate a pre-
scribed vertical displacement ¥ = 7.0 mm on the top
edge of the mesh. The simulation result is illustrated
in figure 1. The load-displacement curve of the prob-
lem solved by using the proposed element has been
compared with Simo's work as shown in figure 2. The
present approach has good performance to capture
strain localization in spite of its slight more rigid stiff-
ness. It should be noticed that no spurious hourglass-
ing in the localized region has been observed even the
tremendously deformation.

With the consideration of damage, necking takes
place in the mid-plane of the bar. This localization
phenomenon occurs due to micro-void and micro-
crack nucleation, growth and coalescence that reduce
the effective area of load bearing. Consequently, the
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deterioration of material properties inevitably happens,
this may be referred to as damage softening. The dam-
age distribution under given displacement is illustrated
in figure 3. It is observed that the damage concen-
trates near the mid-plane of the bar. There is almost no
damage occurring outside this region. Damage devel-
ops rapidly during the later part of the loading history.
Finally, damage reaches its critical value at the center
of the bar where the material rupture occurs.

(b) © 0.095

(a) , 0435

Figure 1 Axisymmetric necking: (a) initial geometry and
finite element mesh; (b) final deformed mesh (#=7.0); (¢)
distribution of equivalent plastic strain.
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Figure 2 Load-displacement curves for the axisymmetric
necking problem.

7 Conclusions

A mixed u/p finite element method based on Trues-
dell stress rate has been developed successfully for
simulating large plastic deformation problems in-
cluding strain localization and material damage. Nu-
merical results show that this approach is of good
ability to capture strain localization and predict the
damage evolution. This approach is suitable for simu-
lation of metal forming problems especial when the

effect of damage cannot be neglected.
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Figure 3 Damage distribution in deformed bar.
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