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Materials

Numerical simulation of a sheet metal extrusion process
by using thermal-mechanical coupling EAS FEM
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Abstract: The thermal-mechanical coupling finite element method (FEM) was used to simulate a non-isothermal sheet metal extrusion
process. On the basis of the tinite plasticity consistent with multiplicative decomposition of the deformation gradient, the enhanced as-
sumed strain (EAS) FEM was applied to carry out the numerical simulation. In order to make the computation reliable and avoid hour-
glass mode in the EAS element under large compressive strains, an alterative form of the original enhanced deformation gradient was
employed. In addition, reduced factors were used in the computation of the element local internal parameters and the enhanced part of
elemental stiffness. Numerical results show that the hourglass can be avoided in compression region. In the thermal phase, the boundary
energy dissipation due to heat convection was taken into account. As an example, a circular steel plate protruded by cylindrical punch
was simulated. The step-wise decoupled strategy is adopted to handle coupling between mechanical deformation and the temperature

variation. By comparing with the experimental results, the numerical simulation was verified.
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Recent experiments have shown that metals are sus-
ceptible to failure in the forms of shear banding and
cracking during high speed impacting, machining and
forming processes [1,2]. Especially, in sheet metal for-
ming processes, the forming limit is governed by plas-
tic instability and fracture following strain localization.
In order to improve metal workability, considerable ef-
forts have been devoted to explore the failure mecha-
nisms in which the temperature gradient plays an im-
portant role to induce strain localization. In fact, heat
generated from dissipated plastic work in metal for-
ming processes. However, less time is available for the
heat dissipating into surrounding medium by mans of
heat transfer. This leads to the build-up of temperature
gradients within regions undergoing large inhomoge-
neous deformations. Furthermore, the thermal softe-
ning effect will reduce the flow resistance and motivate
flow localization. Decause the plastic deformation and
temperature variation in sheet metal forming are inter-
dependent, the temperature field and the distribution of
mechanical quantities such as stress, strain as well as
displacement must be solved simultaneously. There-
fore, it is necessary to evaluate the influence of tem-
perature by using the thermal-mechanical coupling
technique.

In this paper, a numerical simulation of sheet metal
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extrusion process was conducted by using thermal-
mechanical coupling finite element method. An enh-
anced strain finite element method was developed to
solve the mechanical problem accompanying with suc-
cessive remeshing operations. The standard Newton-
Raphson iteration method as well as the corresponding
consistent tangent operator was adopted to solve non-
linear elasto-plastic equations. In the thermal phase, the
transient heat transfer finite element method together
with the backward-Euler scheme was employed to de-
termine the temperature field. Numerical solutions
were verified by the recent experimental results.

1 Finite element formulation

In the present computation, the solution strategy for
coupled problems is based on the staggered scheme
proposed by Simo and Miehe [3]. This strategy yields
an algorithmic decoupling of the symmetric thermome-
chanical equations within a typical time interval [z,
t,.1] and these decoupled problems should be solved in
the following steps: Firstly, the purely mechanical
equation is solved by using large deformation elasto-
plastic finite element method together with a global
Newton-Raphson iterative algorithm at a fixed tem-
perature @, along with the given mechanical boundary
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conditions and the mechanical quantities is updated
from reference configuration into current configuration
after the iterative computation in this step. Secondly,
the thermal equation is solved by means of a standard
finite element method together with a global Newton-
Raphson iterative algorithm at fixed configuration x, ,
along with the given thermal boundary conditions.

1.1 Enhanced strain element formulation

In order to overcome the lock deficiency that fre-
quently exhibits in classic low order element, intensive
research has been carried out to develop various impro-
ved elements. In the context of large deformation plas-
ticity, the so-called enhanced strain formulation found-
ed by Simo and Armero [4.5] has shown locking-free
response in the near incompressible limit and this
method can easily accommodate general inelastic con-
stitutive relationship. However, it was subsequently
observed that this element show hourglass modes for
large strain, especially in the case of large compressive
strain [6]. To avoid this drawback. a series of improved
approaches have been proposed [7-11]. In the present
study, following the recent work by Glaser and Armero
[11], an enhanced assumed strain FEM programme has
been developed to simulate metal forming processes.
The key idea of this method is that the deformation
gradient field is enhanced by a specially designed inter-
polation, which is an alterative basis of the original en-
hance d deformation gradient proposed by Simo and
Armero [5]. Furthermore, for near incompressible
problems such as metal forming, as proposed by Na-
gtegaal et al. 8], a kinematic restriction should be plac-
ed on the enhancement. This restriction condition can
be interpreted as a requirement that the variation in the
enhancement is orthogonal to a piece-wise constant
pressure field. An approximate method to satisfy this
condition is multiplicative decomposition of total de-
formation gradient, i.e.

aa);”-*—‘:AF,,ﬂ 'F, (1)

Where subscript 'n' denotes the n1th increment step, and
AF,,, represents the current incremental deformation
gradient:

Fn+l:
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The field is 1;1' constructed between the parametric
domain and the deformed element domain:

~
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Where J, denotes the Jacobian of the isoparametric ma-
pping at the centroid of an element and j, is the deter-
minant of J,, i.e.:

. ox, .
J.7=J(q)|c:o:ﬁ;l::0, Jo=det(J,) (4)
The enhanced interpolations are of the form:
o Era
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Where a; (k= 1, 2) are the element local internal para-
meters. On the other hand, in the original formulations
proposed by Simo ef al., the element local internal
parameters are active to enrich the total deformation
gradient field during the entire deformation process.
However, due to the physical meaning of the internal
parameters is not clear, it makes the remeshing work
that is necessary for metal forming simulation more
difficult because no suitable transformation method is
available. In the present formulation, the enhanced in-
terpolation field is constructed at the beginning of each
increment so that mapping of the internal parameters
can be avoided when remeshing is involved. With the
incremental enhanced deformation gradient concept,
the formulation of enhanced strain finite element can
be developed from the two-field functional similar to
the original formulation [11]. The linearized equations
for Newton-Raphson iteration scheme can be express-

ed as:
w Ku|Ad]  |Af
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In the above equations, B and G are the linearized strain
matrix and the nonlinear strain matrix, respectively. 7 is
the Kirchhoff stress tensor. The subscript 'h' represents
the enhanced part of the matrix, ¢ denotes the spatial
elasticity tensor. On the other hand, in order to over-
come the difficulty encountered under large compres-
sive strains, reduced factors have been used in the com-
putation of the element local internal parameters and
the enhanced part of elemental stiffness. Therefore, the
influence of the element local internal parameters can
be weakened and energy distribution in element can
also be adjusted. The modifications can be expressed
as:

Aa=—A" K - (Af+ K- Au) (12)
K:Kdd_B"KL'K.;I'Km (13)
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Where 4" =0.5 and B"=0.3 are the reduced factors.
Their values are determined from numerical tests.

After the static condensation of element local para-
meters at elemental level, the assembled global stiff-
ness equations can be directly solved. Both the return
mapping algorithm for the multiplicative model of J:-
flow theory with isotropic hardening and the corre-
sponding consistent tangent operator are the same as
the one proposed by Simo and Armero [5]. During the
iteration operations, the update of unknowns is accom-
plished following the increments of the nodal displace-
ments:

Au"= Au"+ Ad* (14)

and the increments of the local internal parameters are
expressed as:

a(lt+ID=a(lt)+Aa(k+l) (15)
1.2 Heat generation and transfer

In sheet metal forming operation, the workpiece is
subjected to plastic deformation and interfacial friction
between the material and tools, which generate heat
and result in material softening. In the present work,
both strain-hardening and thermal-softening effects
were taken into consideration. The thermoelastic (Gou-
gh-Joule) effect is ignored. The basic governing equa-
tion of heat transfer is expressed as:
p-c%?—:k-(gxel—k%g—k%)-i—Q (16)
Where ¢ and p are the specific heat capacity and the
density of the material, respectively. k denotes the heat
conductivity and Q denotes the rate of heat generation.
For cold metal forming process, the heat generated by
plastic deformation work and boundary friction are ex-
pressed respectively as:

in the plastic region

Q=0n=x,0¢ (17)
and

at the contact boundary

O (18)

Where y ~0.85 to 0.95 is a factor which describes the
proportion of the dissipated energy converted into heat.
Applying the principle of virtual work, the temperature
distribution 8=0(x, y,z,f) in the work material as a
function of time 7 can be obtained by solving the ther-
mal energy equilibrium equation of heat transfer at the
frozen (current) configuration:

[K]{0} +[CRO} ={F.} +{F\} +{F}} (19)
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Where [K] and [C) are the heat conduction matrix and
the heat capacity matrix, respectively. {Fi} is the inter-
facial friction heat flux vector, and {F,} is the convec-
tive heat vector in which /# denotes the convection co-
efficient. {F.} is the mechanical dissipation heat flux
vector. The effect of the boundary radiation is neglec-
ted in the present investigation.

2 FE model and boundary conditions

The target material of the workpiece is SS400 steel.
The material constitutive equation has been determined
through monotonic thermal tensile testing and the true
stress versus the true strain relation has been corrected
by using the well-known Bridgeman's correction ap-
proach for large strain. The relationship can be approxi-
mated by:

o=[A-(@+a) +Hel-[1-p0—0,)] 0<600C  (23)

Where &" denotes the equivalent plastic strain. The ma-
terial properties and parameters used in equation (23)
are listed as follows: Young modulus £=210 GPa; Po-
isson ratio v=0.29; stress coefficient 4 =630 MPa; in-
itial equivalent strain &= 0.002; strain hardening expo-
nent n=0.13; linear strain hardening modulus H=—23
MPa; specific heat c=460J/(kg-K™"); density p=
7800 kg/m’; expansion coefficient a=1.5¢K™'; heat
conductivity k=45W/(m-K™'); dissipation factor
x=0.9; thermal softening modulus f=0.001 4K™". The
stress-strain curves at different temperatures with con-
stant strain rate of 0.1 s™' are illustrated in figure 1.

The sheet metal extrusion process, in which a 5 mm
thick circular plate being protruded into a fixed die, is
illustrated in figure 2. Both the punch and the die are
considered as the rigid body. The edge-geometry of the
tools is approximately simplified as a circular arc and
its radius is assumed to be 0.1 mm. The coefficient of
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Figure 1 The effective stress versus the equivalent plastic
strain curves at different temperatures.
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friction at the interface between workpiece and tools is
set to be 0.1. Due to the symmetry of the problem, only
the right half of the workpiece is modeled. Since this
sheet extrusion process is fulfilled in a short time (ab-
out 0.15 s), only the convective heat exchange between
the workpiece and the forming lubricant has been taken
into account in the thermal boundary condition. It is as-
sumed that the normal heat flux defined by g.=
h(6.—6,) on the entire contact boundary of the speci-
men. The constant convection coefficient is chosen as
h=7.6x107N/(mm-s-K). The finite element model as
well as the corresponding thermo-mechanical bound-
ary condition is shown in figure 3. It is assumed that
the contact surface is in good lubricating condition and
a simple Coulomb model with a constant frictional co-
efficient of /=0.1 is applied for calculating the friction
at the interface between the tools and workpiece. Since
the maximum friction cannot be greater than the shear
yield stress, the friction is determined as follows:

T(:f'p if’[(STy (24)
=1, if ;> 1, (25)
F. E, F
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Figure 2 Schematic diagram of the sheet metal extrusion.
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Figure 3 Tlustration of FE model and boundary condition.

Where 1, and 7, denote the shear friction stress and the
shear yield stress of material, respectively. The discrete
mesh consists of about 2 160 axisymmetric four-node
enhanced strain elements. To maintain the convergence
in the iteration process of the Newton-Raphson scheme
together with a line search solution procedure has been
employed. It is emphasized that the line search is essen-
tial to ensure the computing convergence for a robust
performance of Newton's method. In this simulation,
the equal 100 displacement increments have been ap-
plied to simulate the punch penetrated 20% of the ma-
terial thickness into the workpiece with a uniform pun-
ch velocity 15 mm/s.

3 Results and discussion

Initially, the specimen is at a homogeneous reference
temperature 8,==20°C, which equals to the surrounding
temperature 0... At the early stage of deformation, the
evolution of plastic strain is mainly concentrated near
to the comner of the head of both the punch and the die.
The progressive plastic deformation causes the local
mesh within the region to be gradually degenerated and
distorted and therefore, remeshing becomes inevitable.
A total of 7 times remeshing operations have been car-
ried out during the computation. A deformed mesh dur-
ing the simulation is shown in figure 4 and the enlar-
gement of local mesh shows the remeshing effects. As
the deformation proceeds, localized plastic deforma-
tion develops in the direction from the punch edge to-
wards to the die edge. Due to localized plastic deforma-
tion and heat energy dissipates at the convection
boundary, inhomogeneous distribution of the tempera-
ture field is therefore formed. The temperature gradient
increases obviously at two regions, i.e. region A and re-
gion B as shown in figure 5. Figure 6 shows the dis-
tribution of equivalent plastic strain of the workpiece at
the finial deformation stage when the punch has extru-
ded 20% into the thickness of material. The maximum
plastic deformation zone is located at the shoulder edge
(point C as shown in figure 6) at where the maximum
equivalent plastic strain achieved 3.16. This tests were
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Figure 4 An illustration of the deformed mesh during the FE
simnlation of sheet metal extrusion process and enlargement
of local mesh showing remeshing effects.
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Figure 5 The temperature distribution (unit: C).

performed at the ambient temperature (about 20°C) un-
der good lubrication condition. Figure 7 shows a pic-
ture of the extruded specimen with deformation grids.
In this picture, the localized plastic deformation exhibi-
tes the 'M' pattern. By comparing the numerical result
with the experimental observation, it is found that the
deformation pattern is similar. It also reveals that the
temperature gradient plays an important role to induce
the strain localization.

Figure 7 A extruded specimen showing the localized
deformation. '

4 Conclusions

To cope with the near-incompressible problems in
metal forming processes, an improved enhanced strain
finite element method has been used. Based on the lar-
ge deformation plasticity of the multiplicative decom-
position of the deformation gradient, this method ex-
hibits a locking-free performance to simulate large de-
formation and a good performance to capture strain
localization. It may be a kind of useful approach to
simulation thermal-mechanical coupling metal forming
processes.

When remeshing operation become inevitable, it
may be appropriate to construct the enhanced deforma-
tion gradient in the rate form because the transferring
of the local internal parameters can be avoided. How-
ever, this study shows that too many remeshing opera-
tions still led to accumulative error of the deformation
gradient and it will make the computation unreliable.
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Figure 6 The equivalent plastic strain distribution.

References

[1] JF. Kalthoff, Shadow optical analysis of dynamic shear frac-
ture [J], SPIE, Photomechanics and Speckle Metrology, 814
(1987), p.531.

[2] E. Bayraktar and S. Altintas, Some problems in steel sheet
forming processes [J1, J. Mater. Proc. Tech., 80-81 (1998), p.
g3.

[3] M. Zhou, A.J. Rosakis, and G. Ravichandran, Dynamically
propagation shear bands in prenotched plates-1. experimental
investigations of temperature signatures and propagation
speed [J], J. Mech. Phys. Solids, 44 (1996), p.981.

[4] J.C. Simo and C. Miehe, Associative coupled thermoplasti-
city at finite strain: formulation, numerical analysis and im-
plementation [J), Comput. Mech. Appl. Engng, 98 (1992), p.
41.

[5] J.C. Simo and F. Armero, Geometrically non-linear enhanced
strain mixed methods and the method of incompatible modes
[}], Int. J. Numer. Meth. Engng, 33 (1992), p.1413.

[6] J.C.Simo, F. Armero, and R.L. Taylor, Improved versions of
assumed enhanced strain tri-linear elements for 3D finite de-
formation problems [J], Comput. Meth. Appl. Mech. Engng,
110 (1993), p.359.

[71 E.A. Souza Neto, D. Peric, G.C. Huang, and D.R.J. Owen,
Remarks on the stability of enhanced strain elements in finite
elasticity and elastoplasticity [J], Commun. Numer. Meth.
Engng, 11(1995), p.951.

[8] J.C.Nagtegaal, and D.D. Fox, Using assumed enhanced stra-
in elements for large compressive deformation [J}, Int. J. So-
lids Struc., 33 (1996), p.3151.

[9]1 P. Wriggers and S. Reese, A note on enhanced strain methods
for large deformations [J], Comp. Meth. Appl. Mech, 135
(1996), p.201.

[10] J. Korelc and P. Wriggers, Consistent gradient formulation
for a stable enhanced strain method for large deformations
[J1, Engng. Comput., 13(1996), p.103.

[11] S. Glaser and F. Armero, On the formulation of enhanced
strain finite elements in finite deformation [J], Engng. Com-
put., 14(1997), p.759.

[12] E.P. Kasper and R.L. Taylor, A mixed-enhanced strain meth-
od part [I: geometrically nonlinear problems [J], Computers
& Structures, 75(2000), p.251.



