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Abstract: An algorithm is presented for controlling two-dimensional motion contact bodies with conforming discretization. Since a
kind of special boundary element is utilized in the algorithm, the displacement compatibility and traction equilibrium conditions at
nodes can be satisfied simultaneously in arbitrary locations of the contact interface. In addition, a method is also proposed in which
the contact boundary location can be moved flexibly on the possible contact boundary. This method is effective to deal with moving
and rolling contact problems on a possible larger moving or rolling contact region. Numerical examples show effectiveness of the

presented scheme.
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Contact problems are often encountered in engi-
neering structures and mechanical designs. Since pres-
sure actions in the contact area, it often induces the
components and parts of mechanisms and structures to
be destroyed at local, and then causes structural in-
validation. Therefore, contact problems receive exten-
sive recognition in engineering practices and designs.
With analytical methods to tackle contact problems
has a large limitation, it can only solve these kinds of
problems which have an ideal geometrical shape with
frictionless. In recent years, using numerical methods
to solve engineering practical problems in contact has
received great development. Among these numerical
methods, two kinds of typical methods, namely, the
finite element method (FEM) and the boundary ele-
ment method (BEM), have played an important role in
solving contact problems [1-13]. With the BEM we
just require plotting meshes in those boundary zones
in which we are primarily interested, it can reduce ef-
fectively the dimension of the problems. As discreti-
zation is only done at boundary, the calculation results
are more exact than those with the FEM, especially for
boundary condition nonlinear problems as contact
cases. For the system of equations, variables are just
tractions and displacements, hence we can impress ex-
actly contact constraints on the contact interface, no
other variables needs to be introduced into the system

Corresponding author: Junping Pu

of equations. If friction conditions are considered,
then the coulomb friction law and incremental theory
have to be used. For every load increment an iterative
process has to be performed to find the separation, ad-
hesion and slipping area respectively. For the sake of
guarantee of the displacement compatibility and trac-
tion equilibrium in the contact interface, early works
is to adopt a kind of ideal discretization form (node-
to-node) in the contact surface [14,15]. Afterward, a
kind of interpolation algorithm, which utilizes the
shape function to impress interfacial constraint condi-
tions (node-to-point) so that prevents penetration be-
tween the contact surfaces, was developed [16-19].
The latter is more suitable for dealing with the non-
conforming in the contact interface, such as elastic
bodies and rigid bodies in contact, large deformation
as well as moving contact problems efc. In this paper,
a moving contact scheme, in which the displacement
compatibility and traction equilibrium can be satisfied
at an arbitrary location, has been utilized [20]. Ex-
tending the scheme to rolling contact problems is also
effective. To theoretically speaking, no matter how far
a body moving or rolling, the system of equations
should be solvable.

1 Contact constraint conditions

Two bodies A and B in contact with friction are
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considered. The contact constraint conditions, corre-
sponding to Cartesian global coordinate and local co-
ordinate systems, can be written as follows respec-
tively according to the incremental theory.

(1) In the global coordinate systems.

Traction equilibrium conditions in the y direction:
AT +AT? =0 (1)
in a sticking region,

AT +ATF =0 2
and in a slipping region,
ATX £ uAT* =0, K=A,B 3)

Displacement compatibility conditions in the y di-
rection:

Aup —Au? =8, (4)

and in a sticking region,

Au) —Aul =0 %)
Necessary conditions in the y direction:

AT¥ <0, K=A,B 6)
The conditions for determining friction direction:
MK (Au} ~AuP)<0, K=AB )

(2) In the local coordinate systems.

Traction equilibrium conditions in the normal di-
rection:

AT —AT? =0 (8)
in a sticking region,

ATH —ATP =0 )]
and in a slipping region,

ATK £t uATf =0,K=AB (10)

Displacement compatibility conditions in the nor-
mal direction:

Aup +Auf =4, (11)

and in a sticking region,

Aul +Auf =0 (12)
Necessary conditions in the normal direction:

ATF <0, K=A,B (13)
The conditions for determining friction direction:

AR (AuP +AuP)<0, K=AB (14)
2 Contact algorithm in the BEM

The boundary element method is to utilize the

weighted residual methods or Betti mutual work theo-
rem to establish the boundary integral equation of
equivalence with differential equations. For elasticity
theory problems the BEM is to substitute Kelvin fun-
damental solution into Betti mutual work theorem to
get Somigliana integral identity. For the contact prob-
lems the BEM is to assemble two sets of boundary
integral equations as a large system of equations:

Cls(PYAuf (p) + [1:5 (. PAuf () dslg) =

Juk (p. Atk (@) ds(9), K =AB (15)

where s is the whole borderline, Auf(p) denotes the
displacement incremental value at the point p along
the B direction, Atf(g) and Auf(g) denote the trac-
tion and displacement incremental values at the point
q along f direction, respectively, wu§(p,q) and
t.5(p,q) correlate to the displacement and traction
fundamental solutions, respectively. The coefficient
items Cj;(p) lie on the geometry shape at the point p
and can be evaluated by incorporating with the singu-
lar matrix items at main diagonal by means of the ri-
gid body displacement method. With the boundary
constraint conditions of formulas (1)-(7) or (8)-(14),
the displacement and traction components can be
solved in the whole borderline.

By discretization and interpolation for the boundary
integral equation (15), a set of matrix equations can be
written as

HXAuX =GXAt¥ |, K=A,B (16)

Hence, matrix equation (16) with the boundary con-
straint conditions (1)-(7) or (8)-(14) buildup a set of
whole numerical algorithm formulations of contact
problems. Since the traction cannot be accurately de-
scribed using a quadratic interpolation function in a
contact zone, a kind of linear element is developed in
the paper, this kind of element is simply and flexible
for dealing with moving contact problems.

3 Boundary stresses

Since boundary stresses cannot be immediately
solved according as the boundary integral equation, a
feasible way is to utilize numerical integral to get
tractions and displacements at the boundary, and then
utilize geometry equations and generalized Hooke law
to determine boundary stresses approximatively. For
planar strain problems the equations can be listed as
follows:

2Gv
Ouphp = Y naupp +Gng (ua,,; +Up,q )= t, (A7)
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aua ax,; au,,

18
axﬂ ag ag ( )

In the set of linear algebra equations (17) and (18)
there are 4 unknown quantities u, ;. After getting
hold of u, s with the numerical method, these results
are substituted into a formula with regard to the stress
and strain, and then the stress components &,z at an
arbitrary point in the boundary can be solved. With
coordinate transformation the unknown stress compo-
nents o, along the borderline can be solved accord-
ing to the state of stress at one point. In Cartesian co-
ordinate systems the coordinate, displacement and
their variety ratio can be written as

{x,} [Nl 0 N, o]x12
- = =Nxc  (19)

xz O N[ 0 NZ X1
Xn
Uy
u Nl 0 N2 0 U,
u= = =Nac (20)
u, 0 N 0 N,l|luy
Un
where
1 1
N1=§(1_§), Nz:z(“‘é) (21

the first derivative of x,, x,, #, and u, with respect to &
are, respectively

aaz.: 5(«‘&7 xn) aaxg =%(x22 -le) (22)
ou, 1 ol 1
al; 5( —uy ), uz ‘5( 2 =) (23)

substituting these derivative values into formula (24),
the stress components can be numerically solved as

ou du, du
=26 ——— 8,5 —+ G| == £
(1 2 ) ax, * (axﬂ ¥ ox, ]

a,B,k=12 (24)

4 Method for moving and rolling contact
problems

On a possible contact zone, elements are tackled as
a kind of special boundary linear elements. These
elements consist of two fixed nodes at the ends, and
the middle node of each element can be tackled as a
moveable node following the element changing (white
point). When contact taking place, the fixed node
(black point) on the surface of a body contact with the
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arbitrary point (white point) on the surface of another
body, and then this movable white point can divide the
element again and overlap with the fixed black point,
see figure 1.

Figure 1 Body B moving relatively to body A. Black point
— fixed node, and white point — moveable node.

Contact elements and separate elements are consid-
ered as two sub-elements in possible contact regions
(from block end nodes to white middle nodes), the
contact state should be checked for each sub-element.
The distributing of tractions and displacements are
supposed as subsection linear interpolation functions
in these kind of special elements: there are the linear
distributing between the end nodes and movable nodes.
The displacement is continnous at each node, but the
traction can be discontinuous at each node. As a non-
linear problem, an increment algorithm is needed to
solve the system of equations. For each increment step,
the movable nodes of contact elements are on different
locations. Figure 2 shows the interpofation function
for the increment from step N to N + 1. The possible
discontinuity of tractions is accomplished by the defi-
nition of ¢~ and 1, two different variables at each
boundary node. With iteration the actual contact re-
gions will be made certain gradually. Using this
method, among the coefficient items that consist of
the sum of integration of the kernel functions multi-
plied by the shape functions in the corresponding ele-
ments, those items to be modified to make up only a
very small portion in the total coefficient matrix equa-
tions. And most of the influence coefficients are all
keep fixedness. For this contact manner of nodes to
movable points, the element variable mode can be ex-
pressed as

¢f‘,,..--"' S o, P
2 s Sl

X) X B X, X
wil 3 Ax,
1=1

Figure 2 Element variable mode and interpolation func-
tion.

¢\e) (x) = N|¢l + Nn¢n =
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2Ax—x)-wL-3 Ar,
1= = +
wL+2Ax,

1=l

2x-x)-wL- ¥ Ax,
LA :

2 1 = (25)
wL + z Ax,

i=1

where, x is a location coordinate for an arbitrary point
in the element, x, are the node coordinates, N, are the
interpolation functions, ¢; are variables including dis-
placements and tractions, L is the element length, w is
a factor of proportionality.

While the factor of proportionality w >0, the
fixed end nodes (black point) on the surface will take
place a dislocation and contact with the opposite mov-
able points (white point) on the other surface in the
contact interfaces. However, w = 0 means a traditional
node-pairs form, w = 0.5 means the movable point to
be in the middle location between the two end nodes,
this case corresponding to the primary element density
of the contact node-pairs form is increased by one
time. By virtue of this scheme, together organically
the advantage of the contact node-pairs with the agil-
ity of the interpolation function mentioned above, both
the equilibrium relations of tractions and the compati-
bility of displacements for the corresponding nodes of
a contact zone can all be guaranteed.

For the moving contact problem, if body B moves
forward but body A is fixed, then the black points on
body A keep fixedness, the black point of body B
move forward. On the contact interfaces of bodies A
and B, there have white points corresponding to the
moving and immovable black points, respectively. In
this way, the displacement compatibility and the trac-
tion equilibrium condition can be satisfied while body
B slides over body A at an arbitrary location.

——
Possible contact

Possible contact
zone

While a body moving forward, the whole slipping
contact zone must be served prior as the possible
contact zone, shown as figure 3(a). Since the freedom
degree is 4 for each node in a possible contact zone, it
is one times more than the freedom degree of the im-
possible contact zone. Thus the farther the distance of
body B moving, the larger the size for evaluating a
coupled set of linear algebra equations. If the moving
distance of body B exceeds a definite scope, then the
solving will not be performed. To solve this problem,
we develop a kind of solving scheme, in which the
possible contact boundary location can be moved
flexibly at the whole possible contact boundary,
shown as figure 3(b). Since the possible contact zone
is plotted prior too big so that the size of the set of al-
gebra equations will be huge and then the system of
equations would not be solved while body B moves in
a big scale range, the problem could be solved. By
using this method, the problem can be solved while
body B moves to an arbitrary far distance, but the size
of the system of equations is same as static contact
problems, so the computing time could be reduced
greatly. While body B is in moving, the location of a
contact point can be denoted as

X=x, + %{[1 + (=D* Jint(kw) + [1+ (= 1)* "I x
int{(k —Dw]} + [k - w—int(kw) k =1,2,--, Ny,
(26)

where, x, is a original location, w is a proportional
factor of the moving distance (see figure 1), and con-
tent to the condition 0<w<1.

For the rolling contact problem, the whole wheel
edge and the surface on which the wheel will come by
are all possible contact zones, shown as figure 4(a).
The farther the distance of the wheel rolling, the larger
the size of the coupled set of linear algebra equations,
also we can use the upper method to treat with this
problem. After the wheel was rolled some distance

Possible contact
zone

A O Hole

Figure 3 Moving contact scheme.

O Hole

Figure 4 Rolling contact scheme.
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forward, the possible contact zone on body A was
moved forward a corresponding distance along with
the wheel rolling. The possible contact zone of the
edge of wheel B would be switched back counter-
clockwise a corresponding arc length, and the arc
length is equal to the rolling distance, see figure 4(b).
In this way, no matter how far the wheel was rolled
forward, the size of the possible contact zone, which
had to be determined in advance, is equal to the size of
the static contact case. In the wheel center, after the
wheel was rolled forward an element length, the zone
on which the load was applied would be turned coun-
ter-clockwise a corresponding angle, hence the direc-
tion of load acting was always vertical downwards at
each location.

While wheel B is in rolling, the locations of various
points can be described as follows (see figure 5), re-
spectively. Hereinto, the locations of the reference
points 1 and 3 can be written as

K K
xll_% =X +RZA(P, +0CSIn((P() _ZA(P, )i
i=l =l

K
r cos((p0 - Ao, ]
=1

y& =H,+R-
K K
OC-cos((po —ZA(p,- J¢ rsin[(po —ZA(P,- ] ,
=1 =1
K=12-.n @7

and that the locations of the reference points 2 and 4
will be denoted as

K K
xfo=xo+RY, Ap, +(0C r)sin[(po —ZA(p,)

i=l i=1

K
y£\4 = HA +R —(OCi r)COS((P() _ZA(p, }
i=1

=12,---,n (28)

>

Figure 5 Determining of the location of various points.

where, A, is a rotational increment of wheel B
while the wheel is in rolling, R is a radii of wheel B, r

J. Univ. Sci. Technol. Beijing, Vol.9, No.2, Apr 2002

is a radii of a small hole on the wheel, ¢, is a original
angle with respect to the original location, H, is a
plane altitude of contact body A, and n is the node
number on the edge of the hole in the wheel. If
OC=R and r=0, the above-mentioned formulas
will be reduced into the coordinates of the point of
edge on the wheel as follows:

K K
.xK =Xy + RZA(P, + Rsln[(PO - ZA(P: )
i=1

i=l

’ K
yK =H, +R(1—cos(<p0 —ZA(p,- j} K=12,---.m
i=1

(29)

where, m is the node number on the edge of the wheel.

5 Numerical examples

Wheel B rolls on an elastic foundation at a uniform
speed at a horizontal distance of 15.912 mm from the
hole center of body A. There is a circular hole inside
body A near the contact interface, the radii r = 0.125
mm, and the vertical distance from the hole center to
ground is 39 mm. Along the hole edge there are 20
linear elements, and on body A there are 120 linear
elements. However, on body B there is a circular hole
near the wheel edge, the distance from the hole center
to the wheel center is 9 mm, the radii r of hole is
0.125 mm, and the external load P is applied over the
21 linear elements in the center of the wheel. There
are merely 24 linear elements on the possible contact
Zone, 145 linear elements are divided on wheel B, and
the rest parameters refer to figure 6. Now let us seeing
about the stresses changing of nodes on the edge of
both hole bodies A and B while wheel B rolls on the
surface of elastic foundation A.

Possible contact
o zong

P=5N/mm,R=10mm,r=0.125mm , H =40 mm
h=39mm.v, =vy, =03, E, = E;y =4 kN/mm?
Hertz: G . =18.69 N/mm?

Figure 6 Wheel B with a circular hole rolls on the surface
of body A with a circular hole.

By calculation it is known that on the point ¢ of the
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edge of hole along the tangent direction, there are the
maximum tensile stresses, but on the point d of the
edge of hole along the tangent direction there are the
maximum compress stresses on foundation A. After

3
L C
o~~~ O r
|5
g L
b
-8+ d
_9 B I I— I I S
-20 0 40 80 120

Location / mm

Figure 7 Stress changing of the hole edge on foundation A
after two circle rolling of wheel B.

6 Conclusions

A kind of method, which can flexibly transform
contact element length, has been given. A unable
overcoming difficulty using the conventional node-
pairs contact method, in which the displacement com-
patibility and the traction equilibrium conditions can-
not be satisfied while contact bodies moving, is solved.
The method provides a means for moving contact
problems while nodes dislocate continuously from a
node to another in the contact zone.

Another kind of method in which the contact
boundary location can be moved flexibly at a possible
contact zone is also put forward. By means of the al-
gorithm, the problem, since the possible contact zone
has to be setup more larger in advance so that the size
of the coupled set of algebra equations is huge and
that has a difficulty for solution of moving problems
at a great scale range, is solved. Extending this
thoughtway to the rolling contact problems, a difficult
problem, of which the whole wheel edge will be re-
gard as the possible contact boundary so that the free-
dom degree of the system of equations is too big, is al-
so solved.
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