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Abstract: An approach of adaptive predictive control with a new structure and a fast algorithm of neural network (NN) is proposed. NN
modeling and optimal predictive control are combined to achieve both accuracy and good control performance. The output of nonlinear
network model is adopted as a measured disturbance that is therefore weakened in predictive feed-forward control. Simulation and prac-

tical application show the effectiveness of control by the proposed approach.
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1 Introduction

Optimal predictive control is a popular method in the
linear system theory. It can effectively simplify the de-
sign of controller and achieve satisfied control per-
formance. Therefore, it is widely applied in such envi-
ronments as linear system or light nonlinear system.
However, it can result in large errors when used in
heavy nonlinear system.

The robust adaptive control, which has been investi-
gated since 1980s to deal with the problem of dynamic
disturbance, can in some degree guarantee the stability
of close-loop system. Unfortunately, due to the fact of
sacrificing the control accuracy to obtain the robust-
ness in the linear model, it can hardly be applied into

heavy nonlinear system.

Multi-layer feed-forward neural network (NN) is ca-
pable of identifying a nonlinear object to the most de-
gree [1,2]. By designing good network structure and
algorithms to overcome such shortcomings of tradi-
tional NN as slow-speed learning and convergence, an
accurate model can be obtained. In addition, it can be
combined with the approach of adaptive optimal pre-
dictive linear control. In this way, the new controller
based on this approach can be applied to the real online
control without undermining the control accuracy. Its
control structure is illustrated in figure 1, where NNM
is the neural network model identifier, and NNC is the
neural network controller.
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Figure 1 Control structure of a new controller.

2 Algorithm of adaptive predictive control

Consider the single-input and single-output discrete
nonlinear control objective below:

y(k) =f()’(k_ 1),)’(](‘2),, )’(k_”), u(k— 1),
u(k—2), -, u(k—m)) (1)
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where y(k) is the object output, u(k) is the system input,
and f () is a nonlinear function.

The following equation is adopted as a network
model to identify a nonlinear objective [3, 4]:

k)=D x(k—1)+Nx(k—1)+e(k)) (2)
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where

x(k=1)= k=1, y(k—2), yk—n); u(k—1),
u(k —2), -, ulk—m)]"

¢= [al’ ay 'y an; bly bZ’“.’ bm]T ’
where @ is a vector that needs to be determined for the
NN structure as shown in figure 2. N (x(k—1)) repres-

ents the network nonlinear model output. The model er-
ror is represented with ¢ (k).

Figure 2 Neural network identification model.

Through equation (2), the value of one-step forward
prediction is obtained from the following model [5, 6]:

y (k+1)= @7(k) x(k) + N (x(k)) €y

At the k-th sampling point, the control variable u (k)
is determined to minimize the following metrics [7]:

J=5G (k1) = plk+ DY = 2 d) ~ ulk=1DY (&)

where (k) is the expectation of the system output, and
p is a weighted factor.

The state variable x(k), the prediction value p(k+1)
and the control variable u(k) are all functions of invari-
able k. To simplify, when u(k) is solved from equation
(4), it will be replaced with u(k—1) in calculating N(x
k), i.e.

NE)=N (k) (5)
where

f(k)= [)’(k),}’(k_ 1), ,J’(k_n+1), u(k_ 1)’ u(k—Z), "
u( k—m+1)]".

Then it is natural to obtain the value of u(k) by min-
imizing J, i.e.

oJ _
dut)~° ©)
Wherein, the following control rule can be obtained:
_ bi(k) _
u(k) = 557) ulk=1)+ g ) vyl y(k= 1)+
~ta, (k) Yk—n+1) + by(k) u(k—1) + by(k) u(k—2) +
v+ bo(k) u(k—m+1) + pr(K) — yk+1)] @)

where a,(k) and b,(k) (i=1,2, -, n,j=1, 2, -, m) are

parameters in vector @ at k-th time point.

To implement the control goal, the steps below are
generally followed:

(1) Identify the model parameters of the non-liner
objective by the approach in reference [1] during each
sampling time interval;

(2) Compute the control variable u(k) at k-th time
point by equation (7);

(3) Use new data to identify these parameters and re-
turn to step 1 in the next sampling interval.

3 Results from simulation and analysis

Consider the following nonlinear objective

(k)=

y0.5 k— 1D yk—=2)Ak—3)— 1) s k—2)+u(k—1)]

Ty (k—2) 17k —3) ®)
and adopt the network model described in equation (2),
where @=[a,, a;, b:]" and x(k—1)=[y (k—1),y (k=2),
y(k—3)]". The structure of the neural network is with
three cells for the input layer, three cells for the first-
hidden layer, twelve cells for the second-hidden layer,
one cell for the output layer (refer to figure 2). The
learning speed is given with 0.01.

First, the network was offline trained with 100 sam-
ple-data groups. After 5000 epochs, the result was ad-
opted as the initial value to be applied into online iden-
tification of the network. Then, the above algorithm
was employed to design the controller and the adaptive
close-loop control system. Finally, the reference input
signal y,= —0.5 was adopted as the input for both tradi-
tional optimized predictive systems and modified sys-
tems, and the yields are illustrated in figures 3 and 4.

It is obvious that the system with the modified ap-
proach is with rapid dynamic response and no error in
a static state as shown in figure 3. In comparison, the
system with the traditional approach will be out of con-
trol in the end (see figure 4).

Furthermore, multiple simulation tests were carried
out to verify the anti-interference capability of the new
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Figure 3 Output results by the modified approach.
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Figure 4 Output results by the traditional approach.

approach, where the interference was caused by the
variation of the objective parameter values, the objec-
tive dimensions and the outside factors. Therefore, the
new approach is better than the traditional one in accu-
racy and computing speed.

4 Applications

It is a critical issue to control the coiling temperature
of hot rolling strip steel for best quality. The main goal
is to make actual coiling temperature as close as poss-
ible to the target coiling temperature [8]. On the one
hand, if the actual coiling temperature is much higher
than that of the target, the strip steel will turn soft into
a solid ball. On the other hand, if the actual coiling tem-
perature is too lower than that of the target, the strip
steel will turn stiff and be hard for coiling. To that end,
the error between the actual coiling temperature and the
target should be limited in the range of 30 °C. Other-
wise, the texture and performance of the strip steel will
be suffered.

It is a major concern of steel plant engineers to ac-
curately control the temperature of hot strips. However,
it is difficult to implement accurate control by the tra-
ditional method, due to the complicated onsite environ-
ment. The above control algorithms has been applied in
real production and satisfied effects has been achieved.
The average hit rate of actual measured temperature
falling in the target range is improved by 5%. The cur-
ves in figure 5 show the coiling temperature of strip
steels for the target value, the actual value before and
after the modification, respectively.
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Figure 5 The control results of the coiling temperature of
strip before (dash line) and after (real line) modification.

5 Conclusion

Traditional control methods are not sufficient to
meet the requirements of today's large-scale industrial
production. An adaptive optimal control approach bas-
ed on the artificial neural network is proposed. Simula-
tion and application demonstrate that this approach is
effective and practical for controlling non-linear sys-
tems.
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