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Abstract: Based on pair potential, the Bragg Williams (B-W) model is modified to take into account the effect of the lattice parameter
on theoretical order-disorder transformation analysis. The main purpose of this work is to understand the basic aspects of this effect and
related reasonable model on order-disorder transformation. In the present approach, the configuration free energy is chosen as function
of the lattice parameter and the long-range order. This energy is calculated through Taylor's expansion, starting from the disordered state.
It was found that the configuration free energy has been strongly modified when the lattice parameter is taken into account. It was also
found only one type of order-disorder transformation exists in AB alloy and three kinds of order-disorder transformations for non-equi-

atomic alloy system such as A,B alloy. This result is in agreement with experiments.
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1 Introduction

The formation of long-range order in alloy systems
frequently produces a significant effect on some pro-
perties of alloys. Bragg and Williams first produced a
rigorous theory of order-disorder (O-D) transitions [1],
which involves the following assumptions:

(i) The atoms are at rest on the lattice sites;

(ii) The nearest neighbor interactions are taken into
account.

With the B-W theory, two types of order-disorder
transformations, first order and second order trans-
formation, can be expected. This theory has been ap-
plied to explain the order-disorder transformation in
some ordered alloys very successfully. But it is found
very difficult to interpret the O-D transformation in Ni-
Al system by using the classical B-W model. Recently,
Ni et al. has modified B-W model by using EAM po-
tential [2]. From Ni's model, a new type of O-D trans-
formation and a new ordered state could be expected.
These new results explain the experimental phenomena
observed in the O-D transformation of Ni-Al system.

The classical B-W model did not take into account
the change of the lattice parameter during the analysis
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of the O-D transformation.Based on the pair potential
model, it is well known for one atom system, the energy
of an atom is proportional to the reference number of
the neighbor atoms. This is not true for most of the
case, Ni's model found new type O-D transformation is
due to taking into account the non-linear relationship
between the energy of an atom and it's reference num-
ber by using EAM potential [2]. The purpose of this pa-
per is to analyze in a case of a modified B-W model
with lattice change, what will be the effect on the O-D
transition.

2 Model

With pair potential, the configuration energy for an
atom system should be

-1
E= 2 §ﬂ§)¢‘./‘(rnﬂ) (l)
where ¢, is the pair interaction between the type i atom
at site a and the type j atom at site .

Since the probability with a site occupied by an A
atom will be reduced to fractions of unity when an or-
der-disorder transition occurs. Bragg and William have
used this description to define the long-range order par-
ameter o as follows:

H_Cl
o=1=c 2)
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where i =a or § sublattice and j = A or B atoms, C, is the
atomic composition of type i atom. P is the probability
of type j atom occupying type i sublattice (i, = a or f).

From equation (2), P can be written as:
I,I=Ci6ij+ C/(l _5lj)+(1 - Cl)(aij— 1)‘7 (3)

where J, is the Kronecker delta function, o is long-ran-
ge order parameter. The average configuration energy
of each atom is defined as follows.

E(a, (J') = ;A: BCiEl(a’ o) (4)

where E, is the energy at the type i site and a is the lat-
tice parameter.

E(a,0)=(a,0) (5)

where @, is the contribution to the total energy for the
atom at the type i site respectively.

d-r’:(a, )——ZZ z Z Pq(d)m(l)(a)wﬂ(rv(u)(a)) (6)

u v B=AB

where « is the ith neighbor group; v the jth neighbor
atom in the uth neighbors group; dy. the sublattice of
the vth neighbor in uth group; » the total number of the
neighbors group; n,q the total number of the neighbor
atom in the wth neighbors group; @"(r) the pair poten-
tial between nA atom and »B atom, r,,, the distance of
vth neighbor atom in uth neighbor group.

According to B-W model, the configuration energy
for an ordered alloy is

E=E(o,a)=Ey(a)+ Wa)o’ N

where

/4
E@)=52 [ Clog™(r+ Cio™ )+ 2Csa Canp™(72)] (8)
and

W( ) Z CAU (ZnO CBO

Zea) o, +(r,)~20"%(1)] (9)
where Z, is the total number of unlike atomic neigh-
bors in the nth neighbor group for a type A sublattice,
r, is the distance to the nth neighbors group. This dis-
tance is a function of lattice parameter. ¢” is the pair
potential between # atom and £ atom, 7=A,B and
B=A,B.

The lattice parameter should only be a function of
the long-range order parameter (LRO) such for the AB
cubic crystal system:

a=a(o) (10)

By Taylor's expansion, the configuration energy can
be written as:

E(o,a)=E, + [ 1(38— —%—fﬁ) El,.o]a" an
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where E, is the energy of the totally disordered state.

Using the pair potential energy equation (1) and neg-
lecting the higher order coefficient, the configuration
energy can be expressed as:

E(a,a)=E0+E10+E202+E30J+E40'4 (12)
o 1 0E, da | | OEs(da}
E=Wt e 42 T 2 3a2\da) (13)

where E, is the function of ordering energy and lattice
derivative functions.

OW da

E =275 (14)
oW ow d
r= 5 (56 b o) 09

It is found that the coefficient E, will always turn
zero. For the structure with the equal number of sublat-
tices, i.e. B, structure, the replacement of 6 by —o will
not alter the configuration energy, so all the odd coeffi-
cient should equal to zero.

The ordering energy is defined as follows.
AE(g,a)=E(o,a) — E(0,a) (16)

The ordering condition is AE<0. For AB ordered
alloy, £,+ E, must be less than zero.

The equilibrium value of o is determined by minimiz-
ing the free energy with respect to a change in o, then:

9Ga) = 201E, +Eic?) =0 a7

The configurational part of the free energy at tem-
perature T can be calculated using the following equa-
tion:

G (6)=E (o) — TS (0) (18)
where E is the configurational part of energy and the
average configuration entropy § can be approximated
as;

Slo)=~kZ % {ClCd,+C(1 -

i=a,fj=a,p

(0, — Dalln [C4,+ C(]1 —

y)+ (1 - CI)
3,)+(1-C)6,~1)a]}(19)

3 Theoretical Analysis of Order-Disorder
Transformation

For the equilibrium, it is necessary that a—Gg;’—a)

should be zero.

So, the equilibrium value of 4 is determined by:
0G(a,
—a——G(‘; a_g (20)

The free energy difference can be approximated as
follows:
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AG(o,a,T)=G(o,a,T) — G(0,a,T) (21)
The order-disorder temperature is defined by:

_E0,a) - E(1,a)

To=""50) = S(1) @
The conditions for the critical point are:

9.0 @)

and

%gh =0 (24)

From these conditions, we found the critical point
corresponds to

_E
=% (25)

where k is a Boltzmann constant.

Using equations (23)—(25), we can write:

20 _ T

It T. (26)
Ino—

l-o

For the binary alloy with C,# Cs (A;B or AB,), C+0,
AEud(o.’ a):E(O) a) - E(l,a) (27)
It means E, + E3<0 or E,<—E, (28)

From the equilibrium condition, 0G(0,a) must be

Zero0.

Therefore, o = 0 (disorder state) or o= —3ET2 (order
J
state)at T=0K,

E,
3E,

%}gm:o if o=— (29)
4 Results and Discussion

For AB alloy, at T=0K, E, must also equal zero.

Therefore
AE(c,a)=E;(c*—1) 30)
AE. (6,a)=E(0,a) — E(1,a)= —E; 31

E, must be negative.

Figure 1 shows the free energy variation with long-
range order for different temperatures. When 7= 0K,
the stable state corresponds to the completely ordered
phase. When T increases and is less than the critical
temperature, this state become a minimum between 0
and 1.

As can be seen from figure 1, below the critical tem-
perature, the free energy decreases as o increases. The
free energy difference is positive for the temperature
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Figure 1l Free energy variation with long-range order at vari-
ous temperature for AB alloy based on EAM.

T< T.. and negative for T> T,,. When T=T,, the comple-
tely disordered state is stable.

Figure 2 shows the variation of the equilibrium
long-range order parameter with the reduced tempera-
ture T/ T.. As can be seen from the curves o decreases
with the increasing temperature. It is means the order-
disorder transformation is a second-order transition.
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Figure 2 Long-range order parameter variation with reduc-
ted temperature for AB alloy based on EAM.

For the A,B or AB, binary alloys, E, is different of
zero.

The equilibrium value of the degree of long-range
order in an alloy for a given value of the lattice par-
ameter is determined by a minimum value of the con-
figuration energy with respect to a change in o.

0E(g,a) _ 0

e (32)

Equation (32) has the solution & =0 corresponding to

a disordered state of the alloy and the solution

0= —% corresponding to the ordered state.
)

2
The equilibrium condition is a—Ea%’;—“) >0 (33)
If =0 in equation (33), £,>0 for the disordered state
and if

__2E
0= "3E,

(34)
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in equation (33), —E, must always be negative.

Following the values of E,, E,, three groups of order-
disorder transformation must exist.

Group I: E,>0 and E;<0.

Figure 3 shows the calculated results of the free en-
ergy variation with long-range order parameter for dif-

ferent temperatures and a maximum free energy change

peak located at g, = —% for all the temperatures exis-
3

ts.

It can be seen from this figure that the free energy
change decreases with the increase of temperature.
Above the critical temperature, the free energy change
is negative.

In this case, 7. is calculated by G(0, T.) = G(1, T.) and
T.=T..

Figure 4 shows the o variations with the reduced
temperature that o will always be unit and decreases
from 1 to 0 at the order-disorder temperature. The or-
der-disorder transformation is a first order transition,

Group II: E,<0 and E, = —% 2

For these conditions, the calculated AG(o, a)-o curve

is shown in figure 5. It presents an energy minimum

_ _2E
peak at g,= 3E, "

AG/eV-atom™

AG/eV-atom™!

The critical temperature was calculated from the

condition G (ay, T.)=G (0, T?).

Condition II involves the formation of 3 stages of or-
der-disorder transformation due to the effect of the in-
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Figure 3 Free energy variation with long-range order par-
ameter (group 1: E;>0, E,;<0) at various temperature for A,B
alloy based on EAM.
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Figure 4 Long-range order variation with 7/7. for group I of
order-disorder transformation A;B or AB, alloy based on
EAM.

(b)

T\<T=Tu<T.
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Figure 5 Free energy variation with long-
range order (group 1I) at various tempera-
ture for A;B alloy based on EAM, (a) 0 <T<
T; (b) T\<T<T; (¢) T>T,.

crease temperature as can be seen from figure 5.

Figure 5 shows the obtained results for this condi-
tion. At T=0K, figure 5 (a) shows that the free energy
change decreases monotonously with increasing o. The
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stable state isat o= 1.

When the temperature increases to 0.5T,, <7, this
state moves to a minimum sited at 0<¢ <1 and the free
energy change is negative for this minimum. From this
figure, we can see that the free energy change of the
ordered phase is lower than that of the disordered
phase. If we call T,, the temperature of the observed
minimum: 7,<7T,. When T,<T<T,, figure 5 (b) shows
a free energy change maximum peak and also the mini-
mum which characterize the stable phase. Finally in
stage III, when the temperature is higher than T., figure
5 (c) shows that the minimum and the maximum disap-
pear, and the free energy change increases with the in-
crease of 0.

Figure 6 presents the equilibrium value of o as a
function of 7'/ T, o decreases as the temperature decre-
ases until g, for T< T;; this transformation is a second
order transition and decreases abruptly from o, to 0
when the temperature reaches the critical value. This
second type is a first order transition.
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Figure 6 Long-range order variation with T/T, (groupll) of
order-disorder transformation of A,B alloy.

Group IL: E;<0 and ~+E, <E, < ~E,.

For these conditions, the AG(s, a)-0 curve is shown
in figure 7 and shows the variation of the free energy
change with long-range order parameter. There is an

AG/eV-atom™’

Figure 7 Free energy variation with long-range order (semi-
ordered alloy) at 7=0 K based on EAM.
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E,
3E;°

The order-disorder transformation is also a second-
order as in the case of AB alloy.

energy minimum peak at g, = —

For the condition of ‘_%Ez <E;<—E,, figure 8 shows

a minimum, this phase was interpreted as a partially
ordered state [ 2].

AG /eV-atom™'
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Figure 8 Free energy variation with long -range order (group
11I) at T= 0K for A;B alloy based on EAM.

As can be seen through the expansion coefficients,
the effect of the lattice parameter leads all the coeffici-
ents to vary with the lattice parameter and its deriva-
tives.

This work has developed a simple model based on
pair potential to analyse what kind of order-disorder
transformation is possible when the lattice parameter
effect is taken into account. The first important result is
the lattice parameter has a very strong effect on the con-
figuration energy. It was found that the expansion coef-
ficients of the configuration energy depend strongly on
the lattice parameter and its derivatives. It was also
found that the E; coefficient has a very strong effect on
the order-disorder transformation in the case of A;B all-
oys.

The theoretical analysis of this work, takes into ac-
count the restriction condition of the lattice parameter,
indicated that the order-disorder transformation is a
continuous second-order transformation for AB alloys.
For other alloy systems (A;B alloys), three kinds of or-
der-disorder transformations were found to be possible.

These results are the same as those obtained by EAM
potential [2]; and can be expected by taking into ac-
count the contributions of the tetrahedron pair correla-
tion energy in the expansion of the configuration en-
ergy. Daw and Baskes [3] have pointed out that, if the
embedded function is completely linear, the contribu-
tion from the embedding function can always be con-
verted into a contribution from a two body potential.

Comparing with the previous generation of pair pot-
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entials, other authors [4-7] have taken into account the
lattice parameter relaxation but never found the same
result. We know that EAM potential have been known
as one of the more powerful potential. In the case of the
binary alloys the local relaxation is of considerable im-
portance, especially where there is a large discrepancy
between atomic sizes but has no much influence on the
order-disorder analysis. The agreement of our calcula-
tion with EAM suggests that the used model has some
physical significance and the model represents a very
reliable way of exploring the properties of alloys. The
model presented here is apparently simple and has the
ability to expect the order-disorder transformation in
binary alloys from the restriction condition of the lat-
tice parameter.

4 Conclusions

The effect of the lattice parameter on the order-dis-
order transformation was analyzed theoretically. A
simple model has been developed through Taylor's ex-
pansion. It was found that the effect of the lattice par-
ameter leads all the coefficients of configuration en-
ergy expansion to vary with the lattice parameter and
its derivatives. The E; coefficient was found to have a
very strong effect on order-disorder transformation, It
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was found that only one type of order-disorder trans-
formation exists in AB alloy. It gives the same result as
that of the classical B-W model.

It was also indicated that there are three kinds of or-
der-disorder transformations for non-equi-atomic alloy
system such as A;B alloy for pair potential when the
lattice parameter is taken into account. This result is the
same as that obtained by using EAM, because our mod-
el has been extended until the fourth term of configur-
ation energy in the Taylor's expansion. The limitation
of other previous model, which takes into account the
local relaxation, is perhaps due to the non-contribution
of the higher order near neighbor.
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