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Online LS-SVM for function estimation and classification
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Abstract: An online algorithm for training LS-SVM (Least Square Support Vector Machines) was proposed for the application of
function estimation and classification. Online LS-SVM means that LS-SVM can be trained in an incremental way, and can be pruned
to get sparse approximation in a decremental way. When a SV (Support Vector) is added or removed, the online algorithm avoids
computing large-scale matrix inverse. Thus the computation cost is reduced. Online algorithm is especially useful to realistic function
estimation problem such as system identification. The experiments with benchmark function estimation problem and classification

problem show the validity of this online algorithm.
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1 Introduction

Due to Vapnik and a lot of other researchers’ job,
statistical learning theory (including SVM) has expe-
rienced rapid development [1]. Based on standard
SVM, a lot of variations of SVM have been put for-
ward such as LS-SVM (Least Square Support Vector
Machine) [2]. The difference between LS-SVM and
standard SVM is that the constraint condition is ine-
quality, not inequality. LS-SVM needs only to solve
linear equations, not quadratic programming. LS-
SVM has been applied to classification, function esti-
mation and nonlinear system optimal control problems
[3-5]. But the existed LS-SVM algorithm is trained
offline in batch way. Offline training algorithm is not
fit for the practical applications such as online system
identification and control problems, where the data
come in sequentially. Therefore the online training for
function estimation and classification is needed ur-
gently.

Ahmed has brought forth an incremental training
algorithm for SVM classification problem [6]. The ba-
sic idea is that only the SVs (Support Vectors) are pre-
served, and these SVs plus the new coming data are
used for training again. The main problem is that the
training is not exactly incremental. It is approximately
incremental and the coefficients corresponding to SVs
are not updated online. To overcome this problem,
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Cauwenberghs (2000) [4] and Csato (2001) have put
forward an exact incremental and decremental training
algorithm for classification. Friess (1999) and Vijaya-
kumar (1999) proposed sequential gradient methods
[7-10], where the main drawback is that the training
process converges slowly. This article proposes the
incremental and decremental algorithm for LS-SVM,
which makes the application of online LS-SVM to
system identification and control problems possible.

2 Online LS-SVM for function estimation

2.1 Standard LS-SVM for function estimation

Firstly the standard LS-SVM for function estima-
tion is briefly reviewed as follows [3]. Consider a
training  set  containing N  data  points
{xe; e}, k=1,.., N, with input x,€ R" and output

Y« € R, the following regression model is used.

y(x)=wlp(x)+b 1

where ¢(x) maps the input data into a higher dimen-
stonal feature space, w is the coefficient, b is the
bias. In LS-SVM for function estimation, the object
function is defined as follows:

. 1 . C¥
minJ(w,e)=—w'w +— E e
w.e 2 2 P (2)

w=wle(x)+b+e, k=1,..N
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where C is the user defined constant, which balances
the model complexity and approximation accuracy.
e, is the approximation error.

The corresponding Lagrangian is given by

N
Liw.b.exa)=J(w,e) =Y 0 {w'p(x,)+b+e — v}

k=1
3

is Lagrange multipliers. According to
Kun-Tucker conditions, have

where o

oL y
—=0->w=) awx
I kz::, P (Xi)
N
oLy Yo =0
o 4)
dL
—=0->a, =Ce,
aek i k
aL =0- WT(0(xk)+b+ek — Vi =0
o,
for k=1, ..., N. Eliminate e¢,,w , Equation (4) can be

changed into:

H SN

where
Y :[.V.;...;_VNJ,7=[l;...;I]T,a ={oy;...;on ]

and Mercer condition has been applied to matrix £
with
Q. =p(x)0x), k,i=1,..,N (6)

According to equations (1) and (4), LS-SVM model
for function estimation is obtained:

N
Y = Y x, x) +b (M
k=1

where a,b are the solutions to equation (5). d(x, x;)

is the kernel function. RBF (Radius Base Function)
kernel is chosen, i.e.

[ - Anan A ]!

A= ,
[4.4," 4, - A ] As4,"

Lemma 2 For matrix A, B, C, D, where A7',C™!
exist, the following equation is true

(A+BCD)"'=A"-A"'B(C"'+DA'B)"'DA™" (17)

From lemma 1 and lemma 2, theorem | can be in-
ferred as tollows:

= _ 1
A AnAnAn s - An]
_ 1
Ary — AsA) 1A12:|>
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D(x, x, ) =exp{-

where o is the user-defined constant.
2.2 Online LS-SVM for function estimation

Considering that LS-SVM model based on the first
N pairs of data has been built, and the new data pair
(Xn41, ¥v+1) 18 cOming in.

In equation (5), Let

0 fT b 0
- =AN’ =aNand :YN'
I Q+CI a Y

Then equation (5) changes into
ANaN =YN :aN =AN_1YN (8)

The subscript N means that the current model is
based on the first N pairs of data. For N+1 pairs of
data, have

Ay, = AN+17IYN+I 9)
where
b
Ay =[b: J (10)
b = [1 Kinva Kowar oo KN.N+I]T (11)
b, :blT (12)
c=Kyna (13)
Ki,j :¢(xi’xj) (14)
Y
Yy ={ Y } (15)
yN+l

According to matrix textbook [11], the following
two lemmas exit:

All All

Lemma 1 For matrix Az{ } where

2 A 2
21 22

A, [' LA, exist, the following equation is true

(16)
Theorem 1 The matrix Ay, in equation (9)
can be computed from A, without the need of

computing the matrix inverse.

Proof According to equation (16), equation (10)
can be changed into
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[AN _lblb2:|
C

A "—[AN bl]l_

N+1 - -
b ~
SR | W e

Applying equation (17) to the top left sub matrix in
equation (18), have

-1
[AN —lb1b2} =Ay ' -Ayb, [— c+bAy by rbZAN_I
c

(19)

Let 4= [c—bzA,\,flb,}1 , equation (18) can changes

into:

-1 A -1
ANHI{AGN O}—A{AN lbl}bzAN_' —1] (20)

It is clear that A,\,H*1 can be computed from A,\,_1
without the need of computing the matrix inverse.

End of proof.

With equation (20) ANH*l is computed in an in-
cremental way, which avoids expensive inversion op-
eration. Therefore the corresponding coefficients and
bias ay, =[b a]"can be computed according to

equation (9). Then function estimation can work.
Given a new input x, the corresponding function
value y(x)can be estimated by equation (7). In this

way the incremental algorithm of LS-SVM for func-
tion estimation is got.

It is noted that the solutions of stand LS-SVM are
not sparse. In realistic application, there is no enough
space to store so many coefficients. And the computa-
tional cost for function estimation is very huge too. To
get sparse solutions, Suykens [3] proposed a pruning
method, which removes all support vectors whose co-
efficients a, (in equation (7)) are below some thresh-
old. When LS-SVM’ Support Vectors are pruned one
by one, this pruning method is called as decremental
algorithm.

Decremental algorithm means that a SV is removed
when a pair of training data is removed. Take an ex-
ample, if a, is below some predefined threshold,
then the kth support vector (x,,y,) must removed. At
the same time the coefficients corresponding to other
SVs need be changed too. Similar to the case of in-
cremental algorithm, to avoid compute the matrix in-

verse, A, ' must be from Ay, . Here A, is the

75

AvblpaAy B ]

le-b,4, 8]

(18)

matrix without the kth row and the kth column.

For decremental way, the update rule was obtained

[4].
a; — a; —ay Ay (21)

where, i,j=1,..,N; i,j#k. a;stands for the item
at the ith row and jth column of A,\,H_l . k stands for
the support vector to be removed. According to equa-
tion (21), A, can be obtained from A, . Then

the coefficients of LS-SVM, a, =[b a]', can be
updated with equation (8).

The incremental and decremental algorithms for
LS-SVM have been presented as above, which make
the online training for L.S-SVM possible. It is noted
that sparse approximation can’t be attained through
batch training for standard LS-SVM. Therefore the
combination of incremental and decremental algo-
rithm is needed to get the sparse approximation of
function.

The online algorithm is described as following.

Step 1 Initialize (); // Set C in equation (2) to 100;
Set the RBF kernel parameter o to 1,

/fAccording to equation (5), Y =
0 »I";4,=[0 1;1 & +1/CT":a,=A"Y,.

Step 2 Input_New_Training_data (xy.(, Yn.1)

[b,b:,c ]= Compute_Parameter (x,y) 3 // Accord-
ing to equations (11)-(13).

A,\M_l =Incremental_Add (ANfl,b] ,bo,c); 11 Ac-
cording to equation (20).

ay. = Upadate_Coefficients (Ay. ™, Yws); // Ac-
cording to equation (9). ay., =[b a]”

N = N+1; // The number of support vector;

Step3 If (Length (ay)>Thresholdl) // When

the number of support vectors exceeds a threshold
{For(i=1; i<=N; i++)

{If (a; <Thershold 2) //a;:
sponding to i th Support Vector

coefficients corre-

{AN_,_'= Decremental_Remove (i,Ay"); // Ac-
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cording to equation (21).

ay , = Upadate_Coetficients (AN,,_I,Y,M); /1 Ac-
cording to equation (8).

N=N-1; }}]

Step4 Return to Step 2.

3 Online LS-SVM for classification
3.1 Standard LS-SVM for classification

Firstly stand LS-SVM for classification is reviewed
as follows [2]. Consider the case of two classes, given
a training set of N pairs of data points {y.,x },,
where x, € R*is the input, y, € Ris the output pat-

tern. The support vector method aims at constructing a
classifier of the following:

N
v(x)= sign[Zakyké(x, X )+ b] (22)
A=l

where a; is support value and b is a constant bias. As
tor @d(x, x, ), RBF kernel function is also selected.

For the case of two classes, assume

v vla) i
, e (23)
Y ZZ'+y7'1|a| |1

where

Y =[vieova ] Z =[0(x)" viy e @(xy) vy |,
Y={viean ' Y =i,
e:[é’l ----- 6)N]va—[al ..... aN]

Mercer’s condition is applied to the matrix
Q= v, vox) ox) =y, yPx,x) 4)

The support values a, are proportional to the er-
rors at the data points in the LS-SVM case.

3.2 Online LS-SVM for classification

Assume that a LS-SVM model based on the first N
data points have been built, and now the new data
point (xy,..Vvy.) is coming in, equation (23) can

change into
Ay =By =ay :ANA]BN (25)

The subscript N suggests that the current model is
based on the first N data points. For N+1 data points,
have

Ay, :ANHVIBNH (26)

where
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Ay b
Ay :{bj LJ 27
b, :[yN+I Kina Kayir o KN‘NH]T (28)
b, =b,' (29)
1
c=Kynnt+t— (30)
)4
Kl._] :qxhxj)yiyj (31)

B
By, :|: lNiI (32)

Similar to the function estimation case, the incre-
mental and decremental forms for classification can be
obtained (similar to equations (20) and (21)).

4 Experiments

To verify the proposed online training algorithm,
experiments with benchmark function estimation and
classification data were presented. One is Boston
Housing regressing problem and the other is the two-
spiral classification problem. The online training algo-
rithm is compared with batch training algorithm. The
code is written in Matlab 5.3, under P3 450, Windows
2000, which is available by mailing a request to
jhliu99@163.com.

4.1 Benchmark dataset for function estimation

The benchmark dataset “Boston Housing” {10] was
chosen. 350 data points are randomly selected for
function estimation. The input is 13 dimensional and
output is 1 dimensional. The parameter C in equation
(2) is set to 10, and the parametero in RBF kernel
function is set to 1. The online estimation result is the
same as batch training, and MSE (Mean Square Error)
is 0.6182. But online algorithm is faster than batch
training. The estimation result is shown in figure 1.
The x axes stands for 350 data points, and the y axes
stands for the corresponding estimated output. The
dashed line is the real data. The dot is the real data
point. And the solid line stands for the estimated data.
Using online decremental way (equation (21)), a spare
approximation can also be obtained. When the thresh-
old is set as 0.6, the number of SV can be reduced to
250 (71.4% of total 350 sample points). And MSE is
6.0150.

4.2 Two-spiral benchmark classification problem
To test the incremental LS-SVM algorithm for clas-
sification, the two-spiral benchmark classification
problem was used [2]. The training data are shown as
figure 2, where tow classes are individually indicated
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by ‘00" and ‘+’ (194 points with 97 for each class) in a
two dimensional input space. The excellent generali-
zation performance is clearly shown from the decision
boundaries (the white line as shown in figure 3). In
this case o =1and y=1. The incremental LS-SVM
gets the same results as the standard LS-SVM classifi-
cation algorithm (100% correct recognition rate). The
incremental LS-SVM is shown to be with low com-
putational cost for the avoidance of matrix inverse.
LS-SVM gives good results over a wide parameter
range of oand 7 values. The shortcoming of LS-
SVM is that the sparse feature has been lost compared
with standard SVM, which can be remedied by the
pruning rule and decremental updating way as the case
of function estimation. When the threshold is set as
0.5, the number of SV can be reduced to 173 (89.18%
of total 194 data points). And the same 100% correct
classification rate can also be obtained.

50

45

Log ( house value)

0 S0 100 150 200 250 300 350
Data point No.

Figure 1 The Boston Housing data.

G

Figure 2 The two-spiral benchmark classification prob-
lem.

From above two experiments it is shown that online
algorithm can reach the same performance and be
faster than batch offline algorithm. But it is more im-
portant that online algorithm fits for real application,

that is, the data is input one by one.

5 Conclusions

This article proposes an online LS-SVM training
algorithm for function estimation and classification.
Incremental and decremental means for the update of
LS-SVM are inferred. Therefore an online and sparse
approximation can be obtained. This algorithm
provides a preparation for the application of LS-SVM
in online system identification and control problems.
Future job is to find the online algorithms for the cases
of multi-input-multi output and multi-class.
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