R. Jafariand B. Eghbali, Intermetallic growth behavior during post deformation annealing in multilayer Ti/Al/Nb composite interfaces, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1608-1617. https://doi.org/10.1007/s12613-021-2263-9
Cite this article as:
R. Jafariand B. Eghbali, Intermetallic growth behavior during post deformation annealing in multilayer Ti/Al/Nb composite interfaces, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1608-1617. https://doi.org/10.1007/s12613-021-2263-9
Research Article

Intermetallic growth behavior during post deformation annealing in multilayer Ti/Al/Nb composite interfaces

+ Author Affiliations
  • Corresponding author:

    B. Eghbali    E-mail: eghbali@sut.ac.ir

  • Received: 5 August 2020Revised: 20 January 2021Accepted: 26 January 2021Available online: 2 February 2021
  • The tri-metal Ti–Al–Nb composites were processed through three procedures: hot pressing, rolling, and hot pressing, followed by subsequent rolling. The fabricated composites were then subjected to annealing at 600, 625, and 650°C temperatures at different times. Microstructure observation at the interfaces reveals that the increase in plastic deformation strain significantly affects TiAl3 intermetallic layers’ evolution and accelerates the layers’ growth. On the contrary, the amount of applied strain does not significantly affect the evolution of the NbAl3 intermetallic layer thickness. It was also found that Al and Ti atoms’ diffusion has occurred throughout the TiAl3 layer, but only Al atoms diffuse through the NbAl3 layer. The slow growth rate of the NbAl3 intermetallic layer is due to the lack of diffusion of Nb atoms and the high activation energy of Al atoms’ reaction with Nb atoms.
  • loading
  • [1]
    A. Patselov, B. Greenberg, S. Gladkovskii, R. Lavrikov, and E. Borodin, Layered metal-intermetallic composites in Ti–Al system: Strength under static and dynamic load, AASRI Procedia, 3(2012), p. 107. doi: 10.1016/j.aasri.2012.11.019
    M.S. Abd-Elwahed and A.F. Meselhy, Experimental investigation on the mechanical, structural and thermal properties of Cu–ZrO2 nanocomposites hybridized by graphene nanoplatelets, Ceram. Int., 46(2020), No. 7, p. 9198. doi: 10.1016/j.ceramint.2019.12.172
    A.I. Khdair and A. Fathy, Enhanced strength and ductility of Al–SiC nanocomposites synthesized by accumulative roll bonding, J. Mater. Res. Technol., 9(2020), No. 1, p. 478. doi: 10.1016/j.jmrt.2019.10.077
    J.G. Luo and V.L. Acoff, Processing gamma-based TiAl sheet materials by cyclic cold roll bonding and annealing of elemental titanium and aluminum foils, Mater. Sci. Eng. A, 433(2006), No. 1-2, p. 334. doi: 10.1016/j.msea.2006.06.120
    X.P. Cui, G.H. Fan, L. Geng, Y. Wang, H.W. Zhang, and H.X. Peng, Fabrication of fully dense TiAl-based composite sheets with a novel microlaminated microstructure, Scripta Mater., 66(2012), No. 5, p. 276.
    Q. Peng, B. Yang, L.B. Liu, C.J. Song, and B. Friedrich, Porous TiAl alloys fabricated by sintering of TiH2 and Al powder mixtures, J. Alloys Compd., 656(2016), p. 530. doi: 10.1016/j.jallcom.2015.09.259
    W. Sun, F.H. You, F.T. Kong, X.P. Wang, and Y.Y. Chen, Fracture mechanism of a high tensile strength and fracture toughness Ti6Al4V–TiAl laminated composite, J. Alloys Compd., 820(2020), art. No. 153088. doi: 10.1016/j.jallcom.2019.153088
    G.P. Chaudhari and V.L. Acoff, Titanium aluminide sheets made using roll bonding and reaction annealing, Intermetallics, 18(2010), No. 4, p. 472. doi: 10.1016/j.intermet.2009.09.008
    F. Appel, J.D.H. Paul, P. Staron, M. Oehring, O. Kolednik, J. Predan, and F.D. Fischer, The effect of residual stresses and strain reversal on the fracture toughness of TiAl alloys, Mater. Sci. Eng. A, 709(2018), p. 17. doi: 10.1016/j.msea.2017.10.010
    X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su, and G.L. Chen, Microstructural control of TiAl–Nb alloys by directional solidification, Acta Mater., 60(2012), No. 2, p. 498. doi: 10.1016/j.actamat.2011.10.009
    R.G. Zhang and V.L. Acoff, Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils, Mater. Sci. Eng. A, 463(2007), No. 1-2, p. 67. doi: 10.1016/j.msea.2006.06.144
    X.J. Xu, L.H. Xu, J.P. Lin, Y.L. Wang, Z. Lin, and G.L. Chen, Pilot processing and microstructure control of high Nb containing TiAl alloy, Intermetallics, 13(2005), No. 3-4, p. 337. doi: 10.1016/j.intermet.2004.07.007
    R. Jafari, B. Eghbali, and M. Adhami, Influence of annealing on the microstructure and mechanical properties of Ti/Al and Ti/Al/Nb laminated composites, Mater. Chem. Phys., 213(2018), p. 313. doi: 10.1016/j.matchemphys.2018.04.001
    Y.Q. Zhao, D. Zhang, Y.B. Sun, Z.J. Wang, R.X. Zheng, and C.L. Ma, Fabrication of TiAlNb alloy sheet by sintering pure metal foils, Rare Met., 30(2011), No. 1, p. 331.
    Y.B. Sun, Y.Q. Zhao, D. Zhang, C.Y. Liu, H.Y. Diao, and C.L. Ma, Multilayered Ti–Al intermetallic sheets fabricated by cold rolling and annealing of titanium and aluminum foils, Trans. Nonferrous Met. Soc. China, 21(2011), No. 8, p. 1722. doi: 10.1016/S1003-6326(11)60921-7
    A.M. Patselov, V.V. Rybin, B.A. Grinberg, M.A. Ivanov, and O.V. Eremina, Synthesis and properties of Ti–Al laminated composites with an intermetallic layer, Russ. Metall., 2011(2011), No. 4, p. 356. doi: 10.1134/S003602951104015X
    H.L. Yu, C. Lu, A.K. Tieu, H.J. Li, A. Godbole, and C. Kong, Annealing effect on microstructure and mechanical properties of Al/Ti/Al laminate sheets, Mater. Sci. Eng. A, 660(2016), p. 195. doi: 10.1016/j.msea.2016.02.087
    E. Basiri Tochaee, H.R. Madaah Hosseini, and S.M. Seyed Reihani, Fabrication of high strength in situ Al–Al3Ti nanocomposite by mechanical alloying and hot extrusion: Investigation of fracture toughness, Mater. Sci. Eng. A, 658(2016), p. 246. doi: 10.1016/j.msea.2016.02.010
    M. Shaat, A. Fathy, and A. Wagih, Correlation between grain boundary evolution and mechanical properties of ultrafine-grained metals, Mech. Mater., 143(2020), art. No. 103321. doi: 10.1016/j.mechmat.2020.103321
    D.S. Chung, M. Enoki, and T. Kishi, Microstructural analysis and mechanical properties of in situ Nb/Nb-aluminide layered materials, Sci. Technol. Adv. Mater., 3(2002), No. 2, p. 129. doi: 10.1016/S1468-6996(02)00007-4
    K.R. Coffey, K. Barmak, D.A. Rudman, and S. Foner, Thin film reaction kinetics of niobium/aluminum multilayers, J. Appl. Phys., 72(1992), No. 4, p. 1341. doi: 10.1063/1.351744
    G. Lucadamo, K. Barmak, D.T. Carpenter, and J.M. Rickman, Microstructure evolution during solid state reactions of Nb/Al multilayers, Acta Mater., 49(2001), No. 14, p. 2813. doi: 10.1016/S1359-6454(01)00176-8
    L. Xu, Y.Y. Cui, Y.L. Hao, and R. Yang, Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Mater. Sci. Eng. A, 435-436(2006), p. 638. doi: 10.1016/j.msea.2006.07.077
    D. Zhang, Y.B. Sun, Y.Q. Zhao, T.T. Wang, J. Chen, H.X. Li, and C.L. Ma, Interfacial products in SiC fiber reinforced Ti–Al based intermetallic alloys, Rare Met., 30(2011), No. 1, p. 524. doi: 10.1007/s12598-011-0338-x
    H. Wu, G.H. Fan, X.P. Cui, L. Geng, S.H. Qin, and M. Huang, A novel approach to accelerate the reaction between Ti and Al, Micron, 56(2014), p. 49. doi: 10.1016/j.micron.2013.10.005
    Y. Mishin and C. Herzig, Diffusion in the Ti–Al system, Acta Mater., 48(2000), No. 3, p. 589. doi: 10.1016/S1359-6454(99)00400-0
    F.J.J. Van Loo and G.D. Rieck, Diffusion in the titanium-aluminium system—I. Interdiffusion between solid Al and Ti or Ti–Al alloys, Acta Metall., 21(1973), No. 1, p. 61. doi: 10.1016/0001-6160(73)90220-4
    J.G. Luo and V.L. Acoff, Interfacial reactions of titanium and aluminum during diffusion welding, Weld. J., 79(2000), No. 9, p. 239.
    D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, and P. Zieba, Structural properties of Ti/Al clads manufactured by explosive welding and annealing, Mater. Des., 91(2016), p. 80. doi: 10.1016/j.matdes.2015.11.087
    N. Bay, Mechanisms producing metallic bonds in cold welding, Weld. J., 62(1983), No. 5, p. 137.
    G. Slama and A. Vignes, Coating of niobium and niobium alloys with aluminium: Part II. Hot-dipped coatings, J. Less Common Met., 24(1971), No. 1, p. 1. doi: 10.1016/0022-5088(71)90163-9
    M. Ma, P. Huo, W.C. Liu, G.J. Wang, and D.M. Wang, Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding, Mater. Sci. Eng. A, 636(2015), p. 301. doi: 10.1016/j.msea.2015.03.086
    M. Nofar, H.R. Madaah Hosseini, and N. Kolagar-Daroonkolaie, Fabrication of high wear resistant Al/Al3Ti metal matrix composite by in situ hot press method, Mater. Des., 30(2009), No. 2, p. 280. doi: 10.1016/j.matdes.2008.04.071
    D.J. Goda, N.L. Richards, W.F. Caley, and M.C. Chaturvedi, The effect of processing variables on the structure and chemistry of Ti-aluminide based LMCS, Mater. Sci. Eng. A, 334(2002), No. 1-2, p. 280. doi: 10.1016/S0921-5093(01)01894-9
    V.P. Dybkov, Growth Kinetics of Chemical Compound Layers, Cambridge International Science Publishing Ltd, 1998.
    M. Mirjalili, M. Soltanieh, K. Matsuura, and M. Ohno, On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple, Intermetallics, 32(2013), p. 297. doi: 10.1016/j.intermet.2012.08.017
    X.Y. Liu and P. Bennema, Morphology of crystals: Internal and external controlling factors, Phys. Rev. B, 49(1994), No. 2, p. 765. doi: 10.1103/PhysRevB.49.765
    P. Villars and H. Okamoto, Al–Nb Binary Phase Diagram 0–100 at.% Nb, Springer Materials, Japan [2016-06-02]. http://materials.springer.com/isp/phase-diagram/docs/c_0103042
    X.P. Cui, G.H. Fan, L. Geng, Y. Wang, L.J. Huang, and H.X. Peng, Growth kinetics of TiAl3 layer in multi-laminated Ti–(TiB2/Al) composite sheets during annealing treatment, Mater. Sci. Eng. A, 539(2012), p. 337. doi: 10.1016/j.msea.2012.01.107
    Y. Nakayama and H. Mabuchi, Formation of ternary L12 compounds in Al3Ti-base alloys, Intermetallics, 1(1993), No. 1, p. 41. doi: 10.1016/0966-9795(93)90020-V
    T. Takemoto and I. Okamoto, Intermetallic compounds formed during brazing of titanium with aluminium filler metals, J. Mater. Sci., 23(1988), No. 4, p. 1301. doi: 10.1007/BF01154593
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(493) PDF Downloads(7) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint