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Abstract: Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles. Different from the
popular cold stamping, hot forming of boron-alloyed manganese steels, such as 22MnB5, could produce ultra-high-strength steel parts without
springback and with accurate control of dimensions. Moreover, hot-formed medium-Mn steels could have many advantages, including better
mechanical properties and lower production cost, over hot-formed 22MnB5. This paper reviews the hot forming process in the automotive in-
dustry, hot-formed steel grades, and medium-Mn steel grades and their application in hot forming in depth. In particular, the adaptabilities of
medium-Mn steels and the presently popular 22MnB5 into hot forming were compared thoroughly. Future research should focus on the tech-
nological issues encountered in hot forming of medium-Mn steels to promote their commercialization.

Keywords: medium-Mn transformation-induced plasticity steel; hot forming; mechanical properties; retained austenite; baking

  

1. Introduction

Advanced high-strength steels (AHSS) have been widely
used in  the  manufacture  of  automotive  components  to  im-
prove the crashworthiness and lightweight of vehicles [1–2].
Complicated shapes become difficult to form as the strength
increases [3]. High press force is required and large spring-
back often occurs in the cold forming of high-strength steels
because  of  their  high  deformation  resistance,  resulting  in
poor control of the dimensional accuracy of component parts
[4–5]. By contrast, hot forming can solve all these problems
because the deformation resistance of steel sheets during hot
stamping is much reduced at high temperatures [3]. In partic-
ular,  hot  forming  could  produce  ultra-high-strength  steel
parts with ultimate tensile strength (UTS) above 1500 MPa,
with high dimensional accuracy and no springback [6].

Until now,  three  generations  of  AHSS  have  been  de-
veloped  for  the  automotive  industry.  (1)  Dual-phase  (DP),
transformation-induced  plasticity  (TRIP),  complex  phase,
and  martensitic  steels  are  the  first  generation.  All  of  these
steels were developed decades ago and are now widely em-
ployed in  manufacturing  automobiles.  Their  tensile  proper-
ties usually include UTS over 600 MPa and total elongation
(TE) less than 25% [7–12]. (2) High Mn TRIP and twinning-
induced plasticity steels are the second generation. Although
they possess high-strength over 700 MPa and excellent duc-
tility  exceeding  50%  [13–14], they  have  not  yet  been  pro-

duced massively for  commercial  application because of  the
high level  of  Mn  (about  20wt%)  causing  processing  diffi-
culties and high cost. (3) Quenching and partitioning (Q&P)
[15–18] and medium-Mn TRIP steels [19] are the third gen-
eration. Compared with the first-generation steels, the third-
generation steels show a much better combination of strength
and ductility, and they have much lower manufacturing and
alloying cost  than the second-generation steels.  In  addition,
medium-Mn TRIP steels show a great potential to combine
with hot forming for manufacturing ultra-high-strength steel
components for  the automotive industry.  Therefore,  this  re-
view summarizes the relevant studies on medium-Mn TRIP
steel  for  hot  forming  in  comparison  with  the  popular  hot
forming process. 

2. Hot forming technology 

2.1. Hot forming process

Hot forming, also known as hot stamping or press harden-
ing, has two types: direct and indirect. In the direct method, a
blank  is  heated  in  a  hearth  furnace,  transferred  to  a  water-
cooled  forming  tool  for  hydraulic  press,  and  subsequently
formed and quenched in this tool until it is finally stamped to
a formed part (Fig. 1(a)) [20]. In the indirect method, a blank
is  first  transferred  to  the  forming  tool  and  subsequently
stamped to a cold pre-formed part, and then this part is heated
in the hearth furnace, transferred to the water-cooled forming 
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tool again, and subsequently calibrated and quenched in this
tool  until  it  is  finally  stamped  to  a  completely  formed  part
(Fig. 1(b)). Given its lower cost and higher production effi-
ciency than the indirect  method,  the direct  method is  much
more widely used in the automotive industry.

Cold  forming  is  operated  at  room  temperature  or  below
the recrystallization temperature, whereas hot forming is im-
plemented  at  high  temperatures  (above  the  recrystallization
temperature), at which internal stress may decrease and work
hardening can be eliminated due to dynamic recrystallization
[21–22]. Fig. 2 shows the change in the mechanical proper-
ties of the typical hot forming steel, such as 22MnB5, during
hot stamping. It is initially composed of a ferrite and pearlite
with a UTS of about 600 MPa. Then, the blank is heated to
900–950°C for about 5 min for austenitization, during which
the  steel  fully  transforms  to  austenitic  microstructure  and
then  has  a  low  strength  and  high  ductility.  Afterward,  the
blank  is  stamped  and  quenched  simultaneously  in  a  water-

cooled  die  tool,  during  which  austenite  transforms  to
martensite, leading to a very high strength of about 1500 MPa.
The crucial factor is that the cooling rate of steel in the die
must exceed approximately 27°C/s [3]. This value is the crit-
ical  cooling  rate  for  a  fully  martensitic  transformation  in
22MnB5 steel, in which the martensite transformation starts
at 425°C and ends at 280°C [23]. The hot-formed steel fea-
tures the optimal microstructure and mechanical properties at
each stage of hot stamping, i.e., it is soft during forming but
hard in the final part [22]. 

2.2. Hot forming steel grade

The widely used steel grades for hot forming are Mn–B-
alloyed  steels  [24–25],  whose  chemical  compositions  and
mechanical  properties  after  quenching  are  listed  in Table  1
[20,26–27]. Among them, 22MnB5 steel is the first commer-
cial grade available and still the most widely used in the auto-
motive  industry  [3].  It  typically  has  more  than  1000  MPa
yield  strength  (YS)  and  1400–1600  MPa  UTS  [24].  Many
commercial hot forming 22MnB5 steel grades are from dif-
ferent steel  industries,  such  as  USIBOR  1500  from  Ar-
celorMittal [28] and HPF1470 from POSCO [29]. However,
all of them actually have similar chemical compositions.

Efforts  have  been  exerted  to  improve  the  mechanical
properties  of  22MnB5  by  different  alloying  strategies,  as
summarized in Table 2 [30–31]. Results show that alloying
of Mo, V, Ni, and Nb can indeed improve UTS and TE.

One effort  is  to  combine  Q&P  and  hot  forming  to  im-
prove the ductility of 22MnB5 (Fig.  3).  However,  allowing
the steel to cool to a temperature between the martensite start
temperature (Ms) and the martensite finish temperature (Mf)
during quenching  and  then  for  the  latter  partitioning  is  al-
most impossible in the real hot forming production line. In-
stead, two new grades, QFP1500 and QFP1800, were manu-
factured via a quenching and flash partitioning (Q&FP) pro-
cess,  and  they  exhibit  much  higher  UTS  and  fair  ductility
than 22MnB5 (Fig. 3).

 

(a) Direct

hot stamping

(b) Indirect

hot stamping

Blank Austenitization Transfer Forming and

quenching

Part

PartCalibration and

quenching

TransferAustenitizationCold pre-formingBlank

Fig. 1.    Schematic of hot forming: (a) direct hot stamping, (b) indirect hot stamping. Reprinted from J. Mater. Process. Technol., 210,
H. Karbasian and A.E. Tekkaya, A review on hot stamping, 2103-2118, Copyright 2010, with permission from Elsevier.
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Fig.  3.     Mechanical  properties  of  22MnB5  steels  after  hot
forming,  after  both  hot  forming  and  Q&P  processes  [32–34],
and new grades  subjected to  quenching and flash partitioning
(QFP) process [35–36].
  

2.3. Advantages and disadvantages of hot forming

Cold-rolled and -annealed steel blanks are usually formed
at ambient temperature. This process is the most popular for
manufacturing  the  white-body  components  of  automobiles
but faces great difficulties in controlling springback and ac-
curate  dimensions  of  complicated  shapes  for  ultra-high-
strength steel components. Hot forming offers an alternative
way  to  produce  ultra-high-strength  steel  components  with
UTS above 1500 MPa, with no springback and a high dimen-
sional accuracy. Steel is soft in the state of austenite at high
temperatures, where it can be easily formed; after hot form-
ing,  austenite  transforms  into  the  hard  martensite  during
quenching,  producing  the  ultra-high  strength  required  by
components. Moreover, the low resistance force and the high

formability of  steel  during  hot  forming can  solve  the  prob-
lems of severe wearing and short life of die mold, which are
common in the cold forming of high-strength steels [6]. To
further improve crashworthiness and lightweight, hot-formed
parts with tailored properties can be synthesized using differ-
ent  process  control  strategies,  such  as  using  a  furnace  with
areas  maintained  at  different  temperatures  and  using  tools
with different  temperatures  or  with  different  materials  hav-
ing different thermal conductivities [20,37–39].

Although the hot forming can produce springback-free ul-
tra-high-strength  steel  parts,  it  still  has  some  drawbacks.
First, it  requires  expensive  facilities,  including  heating  fur-
naces, press tool, and laser cutting machine [40]. Second, hot
forming has lower productivity than cold forming [41] due to
its  long  heating  and  holding  time.  Third,  the  oxidation  and
decarburization of steel sheets are inevitable when heated to a
high temperature;  therefore,  a  coating is  required to  protect
the  steel  from  oxidation,  which  significantly  increases  the
cost. Fourth, the tool failure and the lubrication at high tem-
peratures  are  also  problematic.  Fifth,  the  heating  of  steel
sheets up  to  900–950°C  in  the  furnace  for  a  long  time  re-
quires  considerable  energy  consumption  [42].  Finally,  the
22MnB5 steel after hot forming shows poor ductility (TE <
8%), which cannot provide sufficient energy absorption and
limits the application of hot-stamped steels [40].  Therefore,
new steel grades possessing high strength and super ductility
are being searched. Some examples are listed in Table 2 and
shown in Fig. 3. Besides, medium-Mn steels are proposed to
have  even  greater  potential  on  improving  the  mechanical
properties for the press hardening application, which is dis-
cussed in more details as follows. 

Table 1.    Chemical compositions (Fe balanced) and mechanical properties after quenching of Mn–B steels [20,26–27]

Steel
Chemical composition / wt% Mechanical properties

C Mn B Al Cr N Ni Si Ti YS / MPa UTS / MPa TE / %
20MnB5 0.16 1.05 0.001 0.04 0.23 — 0.01 0.40 0.034   967 1354 4.7
22MnB5 0.23 1.18 0.002 0.03 0.16 0.005 0.12 0.22 0.040 1010 1478 6.3
27MnCrB5 0.25 1.24 0.002 0.03 0.34 0.004 0.01 0.21 0.042 1097 1611 4.0
28MnB5 0.28 1.30 0.005 — — — — 0.40 — 1135 1740 —
34MnB5 0.34 1.30 0.005 — — — — 0.40 — 1225 1919 —
37MnB4 0.37 0.81 0.001 0.03 0.19 0.006 0.02 0.31 0.046 1378 2040 2.5

Note: YS—yield strength; UTS—ultimate tensile strength; TE—total elongation.

Table  2.    Chemical  compositions  (Fe  balanced)  and  mechanical  properties  after  quenching  of  Mn –B  steels  with  alloy  addition
[30–31]

Steel
Chemical composition / wt% Mechanical properties

C Mn B Cr Si V Mo Ni Nb Ti YS / MPa UTS / MPa TE / %

22MnB5(Mo)
0.257 1.18 0.004 0.28 0.202 — 0.218 0.000 — 0.029 1179 1666 9.7
0.204 1.26 0.004 0.28 0.256 — 0.145 — — — 1288 1673 13.09

22MnB5(V) 0.255 1.20 0.003 0.28 0.190 0.097 0.005 0.005 — 0.024 1270 1684 11.0
22MnB5(Ni) 0.255 1.31 0.003 0.28 0.190 — 0.005 0.500 — 0.024 1261 1664 11.6

22MnB5(Nb)
0.191 1.27 0.004 0.28 0.334 — 0.140 — 0.049 — 1269 1730 14.00
0.198 1.30 0.004 0.28 0.306 — 0.144 — 0.027 — 1339 1732 13.82
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3. Application  of  medium-Mn  steel  for  hot
forming

Medium-Mn steels often contain approximately 5–12 Mn,
0.05–0.6 C,  0–3 Si,  and sometimes 1.5–6 Al  (all  in  weight
percentage unless mentioned elsewhere) [43–49]. Their mi-
crostructure is  usually martensite after  hot  and cold rolling,
and it  changes  to  dual-phased  one  after  an  intercritical  an-
nealing,  in  which  the  volume  fraction  of  retained  austenite
(RA) is in the range of 20%–50% [50]. The reverted austen-
ite can be stabilized by partitioned C and Mn [51] and then
retained at room temperature; it may transform to martensite
during  tensile  deformation  through  the  TRIP  effect,  which
promotes work hardening during deformation and improves
mechanical  properties  [7,52].  The  first  medium-Mn  steel
containing 5.7Mn–0.11C exhibits a UTS of 878 MPa and a
uniform elongation (UE) of 34% after annealing at 640°C for
1 h, as reported by Miller in 1972 [53]. Later, Luo et al. [54]
prepared  a  Fe–5Mn–0.2C  steel  possessing  850–950  MPa
UTS and 20%–30% TE. Shi et al. [55] measured 1420 MPa
UTS and 31% TE in 7Mn–0.2C steel. Recently, He et al. [56]
have managed to manufacture a deformed and portioned steel
possessing 2.2 GPa YS and 16% UE with the composition of
10Mn–0.47C–2Al–0.7V. The optimal intercritical annealing
of medium-Mn steels containing 5%–7% Mn may lead to the
product  of  UTS  and  TE  exceeding  30  GPa·%  [57].  Given
their high strength and superior ductility, medium-Mn steels
have become increasingly attractive for automobile structures.

Medium-Mn steels fit the hot forming process because of
the following reasons.

(1)  Much  higher  Mn  content  in  medium-Mn  steel  than
22MnB5 leads  to  the  significant  decrease  in  austenitization
temperature. Consequently,  soaking at low temperatures re-

duces energy consumption and oxidation. The effect of Mn
content on Ac3 and A3 transformation temperatures is plotted
in Fig. 4, in which Ac3 decreases to less than 750°C when Mn
content is about 7wt% at 0.22wt% C content, which is much
lower than that of 22MnB5 (about 850°C) [59].
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(2) A high Mn content also leads to significant decreases
in Ms (Fig.  5)  and Mf,  and the  latter  can  be  lowered below
room temperature [60–61]. This phenomenon causes the in-
complete  martensitic  transformation  so  that  some  austenite
grains are retained in the martensitic matrix after hot forming,
which  may  help  improve  the  mechanical  properties  via  the
TRIP effect.

(3)  Such  a  high  Mn  content  significantly  increases  the
hardenability. Thus, a much lower critical cooling rate is re-
quired to initiate martensite transformation (Fig. 5) [60–61],
which offers  a  greater  flexibility  for  the  selection of  water-
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cooled forming dies. 

3.1. Medium-Mn steel grades for hot forming

Medium-Mn steels have been adapted to two types of hot
forming processes.  One is  the  ordinary hot  stamping but  at
relatively  low  forming  temperature  (Fig.  6(a)),  sometimes
called warm stamping [62–63]; the other is hot forming com-
bined  with  quenching-baking  and  partitioning  (Fig.  6(b))
[36]. Baking, usually at 170°C for 20 min, simulates the actu-
al paint-baking of the automotive white body. This proced-
ure exerts minimal influence on the ductility of 22MnB5 steel

but  often improves the ductility  of  medium-Mn steels  [64].
The microstructures of hot-formed medium-Mn steels often
possess the martensitic matrix (Fig. 7 [63,65]), leading to the
similar strength level to 22MnB5. In addition, the alloying of
V,  Mo,  Nb,  and  Cr  could  further  improve  the  mechanical
properties of medium-Mn steels [65–66],  as summarized in
Table 3. The mechanical properties of medium-Mn steels and
22MnB5 are compared in Fig. 8. Some have better ductility
than 22MnB5 at  the similar  UTS level;  others  even exhibit
not only higher UTS up to 1900 MPa but also much better
ductility.
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Medium-Mn steels often exhibit much better mechanical
properties than the conventional 22MnB5 steel because of the
following factors.

(1) Much larger fraction of austenite grains is retained in
medium-Mn  steels  than  in  22MnB5,  in  either  lath-like  or
granular shape (Fig. 9). RA can transform to martensite dur-
ing  deformation,  which  contributes  to  work  hardening  and
improves  mechanical  properties,  particularly  ductility  (Fig.
9(d)).

(2) The prior austenite grain size (PAGS) decreases with
the decrease in austenitization temperature in hot forming, as
shown in Figs. 10 and 11. Finer PAGS can result in refined
microstructures after quenching, including the refinements in
the  hierarchical  martensite  and  RA  grains,  which  improve
strength and toughness [71].

(3) The partition of C atoms from martensite to RA may
occur during baking, leading to high C concentration at the
martensite/austenite interface [64]. The diffusion distance of
carbon into austenite is about 2.7 nm during baking at 170°C
for 20 min, as illustrated by the kinetic calculation in Fig. 12.
This partition enhances the stability of RA grains, further im-
proving the mechanical properties of medium-Mn steels after
hot forming [51]. 

3.2. Hot forming process parameters

The hot forming process parameters include the temperat-
ure  and  period  of  soaking  for  austenitization,  deformation
temperature, and cooling rate in die. All of these parameters

affect the final microstructures and the resultant mechanical
properties. 

3.2.1. Soaking temperature
A proper soaking temperature should ensure a full austen-

itization before hot forming. Extremely low soaking temper-
ature causes incomplete austenitization, resulting in untrans-
formed  ferrite  and  reduced  fraction  of  martensite,  which
decrease  the  tensile  strength.  Extremely  high  temperatures
produce  coarse  austenite  grains  and  coarse  martensitic
packets/laths,  which  may  decrease  strength  and  elongation.
 

(a) (b)

1 μm 2 μm

Fig.  7.     Martensite  matrix  microstructure  of  the  hot-formed
medium-Mn  steel  with  (a)  5wt%  Mn  by  TEM  and  (b)  7wt%
Mn by SEM. (a) Reprinted from Mater. Sci. Eng. A,  679, X.D.
Li, Y. Chang, C.Y. Wang, P. Hu, and H. Dong, Comparison of
the  hot-stamped  boron-alloyed  steel  and  the  warm-stamped
medium-Mn steel  on  microstructure  and  mechanical  proper-
ties,  240-248,  Copyright  2017,  with  permission  from  Elsevier.
(b)  Reprinted  from Scripta  Mater.,  162,  Z.R.  Hou,  T.  Opitz,
X.C.  Xiong,  X.M.  Zhao,  and  H.L.  Yi,  Bake-partitioning  in  a
press-hardening steel,  492-496,  Copyright  2019,  with  permis-
sion from Elsevier.

S.S. Li et al., Medium-Mn steels for hot forming application in the automotive industry 745



Therefore,  the  soaking  temperature  should  be  optimized  to
realize the finest martensitic microstructure as the mere phase
for  achieving  the  best  mechanical  properties.  For  example,
the austenitization  temperature  for  0.1C–5Mn steel  was  re-
commended at 790–840°C [62], as shown in Fig. 13(a). Li et
al.  [74] found that increasing the soaking temperature from
690  to  770°C  gradually  decreases  the  ferrite  and  austenite
fractions and increases the martensite fraction in the formed
8Mn  steel  parts.  Park et  al.  [75]  investigated  the  tensile
strength of warm-stamped medium-Mn steels as a function of
Mn  content  (3wt%–7wt%)  and  soaking  temperature  and
found  that  the  5Mn  steel  soaked  at  770°C  can  produce
martensite  without  active  auto-tempering  and  high  tensile
strength. 

3.2.2. Soaking time
A sufficiently long soaking time is required to achieve a

full and homogenous austenitization. An insufficient soaking
may  lead  to  uneven  hardness  distribution  and  then  low
strength.  By  contrast,  over-soaking  also  results  in  grain
coarsening and  reduced  hardness.  The  recommended  soak-
ing  period  is  4–7  min  to  achieve  the  desired  mechanical
properties for 0.1C–5Mn steel (Fig. 13(b)). 

3.2.3. Forming temperature
Forming temperature  hardly  affects  the  final  microstruc-

ture (full martensite) but considerably influences the formab-
ility  of  medium-Mn  steels  during  hot  forming.  The  proper
forming temperature  should  promote  a  sufficient  deforma-
tion-induced austenite grain boundary migration, which can
enclose the cracks initiated at the prior grain boundaries and
prevent the propagation of crack effectively [62]. The dimple
fracture  usually  occurs  at  the  forming temperature  between
400 and  650°C  for  5Mn  steel;  thus,  450−500°C  is  recom-
mended for the best hot ductility (Fig. 13(c)). Nam et al. [76]
described  that  stamping  temperatures  ranging  from  500  to
700°C  hardly  influence  the  strength  of  the  warm-stamped
Nb-bearing 6Mn steel, in which nano-sized Nb carbides are
dispersed  in  the  fine  martensitic  structure.  By  contrast,  the
tensile strength of 22MnB5 steel is greatly affected by the de-
formation  temperature  because  austenite  with  much  lower
stability  could  transform  to  ferrite  and  pearlite  before  die
quenching at  a  low deformation temperature,  leading to  in-
complete martensitic transformation [77]. 

3.2.4. Cooling rate of steel blanks
Due to the high hardenability of medium-Mn steels result-

ing from high Mn content, a complete martensite transforma-
tion can be easily realized during cooling in air, die, and wa-
ter  at  the  rates  of  10,  60,  and  600°C/s,  respectively  [62].
Therefore, the cooling rate exerts a marginal influence on the
final  microstructure  but  a  considerable  influence  on  the
mechanical  properties.  The  fastest  cooling  rate  in  water
quenching causes a great residual stress, reducing the ductility.
A moderate cooling rate could sufficiently release the resid-
ual stress, leading to high elongation but slightly low tensile
strength (Fig. 13(d)). By contrast, the mechanical properties
and  microstructure  of  conventional  Mn–B steels  are  highly
dependent  on  the  cooling  rate  because  the  full  martensite
transformation is achieved only when the cooling rate is more
than 27°C/s for 22MnB5 [3,78].

Moreover, the Mn content of medium-Mn steels also af-

Table 3.    Chemical compositions and mechanical properties of different hot-formed medium-Mn steels

Steel
Chemical composition / wt%

AT / °C
Mechanical properties

Ref.
C Mn Al Nb Mo Si V Cr YS / MPa UTS /MPa TE / %

1# 0.08–0.2 4–7 0.03 — — — — — 790–840 1220 1418 11.8 [62]
2# 0.1 5 0.03 — — 0.23 — — 800 1050 1520 11.3 [63]
3# 0.14 7 — — — 0.22 — 0.08 800 — 1565 11.7 [64]
4# 0.19 7.5 — — — 1.2 0.15 — 780 — 1805 16 [65]

5# 0.19 5.6 1.2 0.05 0.22 — — —
700 709 1424 22 [66]
760 852 1717 16 [66]

6# 0.1–0.3 5–8 0.23 0.05–0.15 — 0.38 0.05–0.15 2–4 750 1420 1700 11.8 [67]
7# — 5–8 — — — — — — 760 1442 1880 16 [68]
8# — 9.67 — — — — — — 750–800 642 1409 21 [69]
9# — 5–12 — — — — — — 780–850 915 1800 >10 [70]

Note: AT—heat temperature during hot forming
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fects the microstructure after hot forming. Windmann et al.
[79]  reported  that α-martensite  is  the  mere  phase  in  6Mn
steel, while RA and ε-martensite appear in 7.5Mn and 9.5Mn
in addition to α-martensite, respectively.

Orthogonal experiments can be used to optimize the above
process  parameters  for  outstanding  mechanical  properties
[80–81]. 

3.3. Numerical  simulation  for  hot-formed  medium-Mn
steel

Hot forming can be numerically simulated using the finite
element method. However, hot forming is much more com-
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Fig. 10.    Prior austenite of the hot-formed Medium-Mn (7wt%
Mn) steel at (a) 780°C [65] (reprinted from Scripta Mater., 162,
Z.R. Hou, T. Opitz, X.C. Xiong, X.M. Zhao, and H.L. Yi, Bake-
partitioning  in  a  press-hardening  steel,  492-496,  Copyright
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printed by permission from Springer Nature: TMS 2020 149th
Annual Meeting & Exhibition Supplemental Proceedings, A nov-
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sheet requiring no Al–Si coating, S.S. Li and H.W. Luo, Copy-
right 2020).
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plicated than cold  forming because  the  former  involves  the
couple of the thermal, mechanical, and microstructural fields,
as  illustrated  in Fig.  14.  When  the  blank  sheet  is  heated,
formed, and cooled, all the physical parameters change with
phase transformations. Jin et al. [6], Karbasian and Tekkaya
[20], and Mori et al. [40] have summarized the advances in
the numerical simulation of hot-forming steels, including the
thermal analysis, material constitutive models, modeling mi-
crostructural  evolution,  and  the  hardness  prediction  on  the
product.

Numerical simulation on the hot forming of medium-Mn
steels has just started recently. Zheng et al. [82] established a
numerical model using LSDYNA and simulated the critical
values of ductile fracture to predict the hot forming limit of
medium-Mn steel. They demonstrated that the flow stress of
medium-Mn steel at an elevated temperature is independent
of  strain  rate  and  that  its  formability  increases  rapidly  first
and then decreases gradually with the increase in temperat-
ure.  Chang et  al.  [83]  studied  the  interfacial  heat  transfer
coefficient (IHTC) of warm-formed medium-Mn steel using
simulation and  experiments  and  found  that  the  IHTC  in-
creases with the increase in stamping pressure and stamping
temperature. Zheng et al. [84] built finite element simulation
models  of  square-cup  deep  drawing  for  medium-Mn  and
22MnB5 steels and found that the former has better formab-
ility and smaller impact of blank holder force and fillet radi-

us of tools on the hot-formed product than the latter. Chang
et al.  [85] simulated the shearing procedure of medium-Mn
steel and found that large shearing clearance deteriorates the
macro/micro performance of sheared edge. Chang et al. [86]
also  simulated  the  one-step  formation  of  medium-Mn  steel
and found that  the part  can be formed successfully  without
cracking.  The selection  of  the  deformation temperature  can
also be determined by numerical simulation [87]. 
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3.4. Advantages of medium-Mn steels for hot forming

Hot-formed medium-Mn  steels  are  superior  to  the  con-
ventional 22MnB5 steel,  such as  lower austenitization tem-
perature,  more  austenite  retained  in  the  martensitic  matrix,
greater  hardenability  and  wider  cooling  rate  range  [88],  all
resulting  from high  Mn content,  as  mentioned  in  the  “Sec-
tion 3” above. These properties may reduce the energy con-
sumption during heating, improve mechanical properties, and
decrease the requirement for water-cooled forming dies.

Moreover, the hot forming of medium-Mn steels has more
advantages.  First,  the  forming  temperature  and  strain  rate
only exert marginal influence on the Ms temperature of medi-
um-Mn  steels,  thereby  promoting  the  even  distributions  of
martensite and mechanical properties and then the manufac-
turing of complex-shaped automotive parts [63,89]. Second,
the high hardenability of medium-Mn steels leads to a wide
window  for  choosing  alternative  cooling  approaches  and
easy forming [62–63]. Third, the oxidization and decarboniz-
ation on the surface of hot-formed medium-Mn steels can be
significantly reduced and even avoided [90]. Fourth, the low
soaking temperature results in fine-grained microstructure in
medium-Mn  steels,  thereby  improving  total  elongation  and
tear toughness [62]. Fifth, Zheng et al. [84] demonstrated that
medium-Mn steels  have  better  formability  and  smaller  im-
pact of blank holder force and fillet radius of tools on the hot-
formed product than 22MnB5. Li et al. [91] and Chang et al.
[62] indicated that the high UE and hardening index value of
medium-Mn  steels  can  reduce  the  fracture  caused  by  local
necking during hot forming. Wang et al. [92] compared me-
dium-Mn and 22MnB5 steels for hot forming and found that
medium-Mn steels  possess  low yield ratio,  high impact  ab-
sorbing energy, good connection behavior with other materi-
als through resistance spot welding, fine cold bending prop-
erty,  enhanced  collision  safety,  and  superior  capability  to
produce ultra-large and ultra-thin automobile sidewall parts. 

4. Future research for hot-formed medium-Mn
steels

Although the hot forming of medium-Mn steels has many
advantages as discussed above, it is still an immature techno-
logy. Several technological issues need to be tackled before
its successful commercialization. 

4.1. Bendability

The cold bendability of automotive part reflects the crush
energy absorption capability and is usually examined in ac-
cordance  with  the  VDA238-100  three-point  bending  test
standard, issued  by  German  Automobile  Industry  Associ-
ation  [93].  Wang et  al.  [92]  demonstrated  that  hot-formed
medium-Mn steel features better cold bending properties than
22MnB5  steel  because  of  the  refined  microstructure  of  the
former. Yi et al. [36] and Lu et al. [94] also reported that the

bendability  and  fracture  strain  of  hot-formed  medium-Mn
steel are notably superior to those of 22MnB5 steel.  There-
fore, additional studies are required to confirm the factors af-
fecting the cold bendability of medium-Mn steels. 

4.2. Role of RA on tensile properties

Although many studies revealed a simple relation between
large RA fraction and high ductility, others sometimes repor-
ted contradictory findings [95]. Therefore, how the fraction,
size,  morphology,  distribution,  and  mechanical  stability  of
RA grains can affect the tensile properties is still crucial for
designing  the  composition,  process,  and  microstructures  of
hot-formed medium-Mn steels [96–97]. 

4.3. Hydrogen embrittlement

Hydrogen  embrittlement  decreases  the  toughness  and
fracture strain of steel parts, leading to severely deteriorated
mechanical  properties.  Han et  al.  [98] found that  hot-rolled
and  cold-rolled  Fe–7Mn–0.1C–0.5Si  steels  have  relatively
high sensitivity to hydrogen embrittlement, which is denoted
by plasticity loss and strength loss. Li et al. [99] also presen-
ted that  medium-Mn steels  are highly susceptible to hydro-
gen embrittlement, particularly when a large fraction of RA is
transformed during deformation. The present strategy to im-
prove  resistance  to  hydrogen  embrittlement  is  to  tailor  the
morphology  and  distribution  of  RA  in  medium-Mn  steels.
Therefore, the relation of hydrogen embrittlement susceptib-
ility and RA should be further investigated in hot-formed me-
dium-Mn steels. 

4.4. Blank coating and oxidation

In the hot forming of 22MnB5 steel, Al–Si coatings have
been  widely  employed  to  protect  blanks  from  oxidation
[100], which  usually  entails  a  high  cost.  Hot-formed medi-
um-Mn steels have much reduced oxidization and almost no
decarbonization on the surface [63]. Whether the coatings are
required for medium-Mn steels during hot forming remains
to be verified. In addition, Li et al. [67,101] designed a new
medium-Mn  steel  with  superior  resistance  to  oxidation  for
hot forming by combining low heat temperature and the ad-
dition of alloying elements resistant to oxidization. The new
steel  indeed  exhibits  a  better  resistance  to  oxidation  than
22MnB5 steel  at  a  high  austenitization  temperature.  Addi-
tional  studies  are  expected  to  develop  medium-Mn  steels
with extraordinary resistance to oxidization and outstanding
mechanical properties. 

4.5. Weldability

High Mn content apparently increases carbon equivalent,
which often deteriorates weldability [102]. Thus, the weldab-
ility of medium-Mn steel is inferior to that of 22MnB5. Park
et al. [103] revealed that the cross-tension strength of medi-
um-Mn  steel  weldments  is  lower  than  that  of  conventional
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TRIP steel  with  low carbon  equivalent  and  that  the  brittle-
ness of martensite is the main factor controlling the fracture
path. Jia et al. [104] indicated that the desired pull-out failure
is absent in the tensile test of the resistance spot weldments of
0.1C–5Mn steel. Lun et al. [105] investigated the laser weld-
ing of Fe–10.4Mn–0.15C steel and observed a brittle fusion
zone, leading to the limited stretch formability.

Efforts  have  been  exerted  to  improve  the  weldability  of
medium-Mn steels. Li et al. [106] designed a novel shim-as-
sisted resistance spot welding process that greatly improved
the mechanical properties of 7Mn–0.14C steel weld by enlar-
ging the nugget size and diluting the alloying elements. Park
et  al.  [107]  also  significantly  improved  the  cross-tension
strength of  the  dissimilar  medium-Mn  steel/DP  steel  weld-
ment  by  the  transition  of  brittle-to-ductile  fracture  in
martensite  through  a  special  heat  treatment.  However,  few
studies focused on the medium-Mn steel weldment. Di et al.
[108] found that the ductility of the weld joint in the gas met-
al arc welding of Fe–6.5Mn–0.98C steel could be improved
by  refining  dendritic  grains  via  adding  pulse  current.  They
also pointed out that the microhardness and tensile strength
of  the  simulated  heat-affected  zone  (HAZ)  in  Fe–8.1Mn–
0.98C  steel  could  be  improved  by  the  precipitation  of  VC
nanoparticles [109]. Nevertheless, an efficient welding tech-
nology for  achieving the adequate  mechanical  properties  in
the weld and HAZ of medium-Mn steels is still under devel-
opment and requires further study before its successful com-
mercialization. 

5. Summary and outlook

This paper reviewed the hot forming process in automot-
ive,  hot-formed  steel  grades,  and  medium-Mn  steel  grades
and their application in hot forming. Future researches on the
hot forming of medium-Mn steels are suggested. These can
be summarized as follows.

(1) Hot forming fully utilizes the different microstructures
and mechanical properties of Mn–B alloyed steels at low and
high  temperatures  and  is  an  ideal  process  of  producing
springback-free ultra-high-strength steel parts.

(2) The strength and ductility of medium-Mn steels after
hot forming can be higher than those of 22MnB5, the typical
steel grade for hot forming. This result is mainly attributed to
the TRIP  effect  during  deformation,  resulting  from  the  re-
fined  and  mechanically  stable  RA grains  in  the  martensitic
matrix.

(3) The application of medium-Mn steels in hot forming
has many advantages over 22MnB5. First, both oxidation on
surface and  energy  consumption  are  reduced.  Second,  im-
proved mechanical properties can contribute to the enhanced
collision  safety  and  lightweight.  Third,  medium-Mn  steels
have  much  reduced  demand  for  water-cooled  forming  die,
offering much more flexibility during the cooling process.

(4)  The cold bendability,  weldability,  blank coating,  and
resistance  to  oxidation  and  hydrogen  embrittlement  of  hot-
formed medium-Mn steels have to be evaluated systematic-
ally before they can be used in the automotive industry.

In particular, the standard methods of evaluating the cold
bendability,  the  resistance  to  hydrogen  embrittlement,  and
weldability for  hot-formed  medium-Mn  steels  are  still  ur-
gently in demand for their commercialization. 
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