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Abstract: The ordinary cemented tailings backfill (CTB) is a cement-based composite prepared from tailings, cementitious materials, and wa-
ter. In this study, a series of laboratory tests, including uniaxial compression, digital image correlation measurement, and scanning electron mi-
croscope characteristics of fiber-reinforced CTB (FRCTB), was conducted to obtain the uniaxial compressive strength (UCS), failure evolu-
tion, and microstructural characteristics of FRCTB specimens. The results show that adding fibers could increase the UCS values of the CTB
by 6.90% to 32.76%. The UCS value of the FRCTB increased with the increase in the polypropylene (PP) fiber content. Moreover, the rein-
forcement effect of PP fiber on the CTB was better than that of glass fiber. The addition of fiber could increase the peak strain of the FRCTB by
0.39% to  1.45%. The peak strain  of  the  FRCTB increased with  the  increase  in  glass  fiber  content.  The failure  pattern  of  the  FRCTB was
coupled with tensile and shear failure. The addition of fiber effectively inhibited the propagation of cracks, and the bridging effect of cracks by
the fiber effectively improved the mechanical properties of the FRCTB. The findings in this study can provide a basis for the backfilling design
and optimization of mine backfilling methods.

Keywords: cemented tailings backfill; uniaxial compressive strength; combined fiber reinforcement; digital image correlation; microstructural
characteristics

  

1. Introduction

The underground backfilling technique has significant ad-
vantages  in  eliminating  tailings  on  the  surface  and  effect-
ively  controlling  ground  pressure  [1–3].  Generally,  back-
filling materials are prepared using tailings, binder materials,
and  water,  which  are  collectively  called  cemented  tailings
backfill  (CTB)  or  cemented  paste  backfill  (CPB).  Many
scholars and engineers have examined the mechanical char-
acteristics  and  microstructures  of  CTB or  CPB [4–6].  Res-
ults show that the mechanical properties of ordinary CTB or
CPB were  similar  to  those  of  concrete,  but  their  toughness
was poor [7–9]. On the one hand, the collapse of the CTB or
CPB threatened the safety of mine workers and equipment.
On the other hand, the collapse of the CTB or CPB could eas-
ily  cause  ore  dilution  when  mixed  into  the  mining  stope
[10–13].  The  collapse  of  the  filling  body  poses  a  serious
threat to the safe production of mines. Thus, it is very neces-
sary to improve the flexural and crack resistance of the back-
fill. Whether we can add fibers and other additives to prepare
CTB specimens with high mechanical strength, good flexur-
al, and crack resistance is the basis of the topic of this study.

Generally, the mechanical properties of the CTB or CPB
are affected by several factors, including tailings type, solid
content (SC), binder content and type, curing time, and cur-
ing  temperature  [14–22].  Furthermore,  scholars  and  engin-
eers  have  conducted  considerable  research  on the  improve-
ment of the CTB or CPB performance [23–26]. Additive ma-
terials  (AMs)  can  change  the  mechanical  behavior  of  the
CTB  or  CPB.  Zhao et  al. [27]  found  that  adding  a  small
amount  (<20wt%)  of  steel  slag  to  superfine  CTB  can  im-
prove the mechanical properties of the backfill. Liu et al. [28]
found that the increase in sulfur content can slightly increase
the strength of the CTB. Chen et al. [29] found that adding
CaO  to  cemented  composites  made  of  cement,  phos-
phogypsum, and phosphate tailings can greatly increase their
compressive  strength.  In  addition,  some  researchers  found
that  by changing the internal  structure of the CTB or CPB,
the  mechanical  properties  could  be  improved  [30–32].  The
addition of straw, fiber, and lattice structures in the CTB or
CPB could increase the mechanical characteristics, including
compression and flexural strength [33–35]. The bridging ef-
fect of the AM and hydration products inhibited the initiation
and propagation of cracks in the CTB or CPB and improved 
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their  mechanical  properties  [36].  Moreover,  the  reinforce-
ment effect was closely related to the content and type of the
AM  [37–40].  However,  studies  have  shown  that  straw  or
fiber could increase the ductility of the CTB or CPB but have
some minor side effects. For example, the water absorption
of  rice  straw  and  fiber  adversely  affects  the  fluidity  of  the
CTB or CPB. Chen et al. [41] found that straw can reduce the
fluidity of fresh CTB slurry by 5%.

Considerable  research has  been performed on fiber-rein-
forced  CTB  (FRCTB)  or  CPB.  The  present  findings  are
mainly focused on the mechanical research of a single type of
FRCTB or CPB. However, there is still no investigation on
more than two different FRCTBs or CPBs until now. To ex-
plore the combined fiber-reinforced mechanism on the CTB,
a  series  of  laboratory  tests,  including  uniaxial  compressive
test,  digital  image  correlation  (DIC),  and  scanning  electron
microscope (SEM), were conducted in this study. Glass fiber
and  polypropylene  (PP)  fiber  were  adopted  to  prepare  the
FRCTB  specimens.  The  uniaxial  compressive  strength
(UCS),  peak  strain,  failure  evolution,  and  microstructural
parameters  of  the  FRCTB were  obtained.  The  findings  can
provide  a  reliable  reference  for  underground  backfilling

designs in the future. 

2. Experimental 

2.1. Materials
 

2.1.1. Tungsten tailings, cement, and water mixture
In  this  study,  the  tungsten  tailings  from Yunnan,  China,

were  used  to  prepare  the  CTB.  Ordinary  Portland  cement
(OPC) 42.5R from Tianjin, China, was added as the cementi-
tious binder.  The number 42.5 shows the minimum desired
strength  value  achieved  within  28  d. “R” indicates  that  the
cement has early strength. Tap water was adopted to mix the
solid compositions, including tailings and OPC 42.5R. Then,
the  chemical  compositions  of  the  tailings  and  OPC  42.5R
were measured using a  sequential  X-ray fluorescence spec-
trometer  from  the  University  of  Science  and  Technology
Beijing  (USTB),  which  are  shown  in Table  1.  The  results
show that the main oxides in OPC 42.5R are calcium oxide
(43.3wt%),  silica  (27.4wt%),  and  alumina  (11.4wt%).
Moreover,  silica  (31.3wt%),  calcium oxide  (28.2wt%),  alu-
mina (15.5wt%), and ferric oxide (13.0wt%) were the main
oxides in the tested tailings sample.

 
Table 1.    Chemical compositions of OPC 42.5R and tailings wt%

Sample CaO SiO2 Al2O3 MgO Fe2O3 SO3 Na2O TiO2 K2O
OPC 42.5R 43.3 27.4 11.4 8.7 3.3 2.2 1.1 0.8 0.6
Tailings 28.2 31.3 15.5 6.8 13.0 1.5 1.5 1.1 1.3

 

In  this  study,  the  particle  size  distribution  (PSD)  of  the
tested tailings was measured using the laser particle size ana-
lyzer LS-POP, as shown in Fig. 1.
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Fig. 1.    Particle size distribution of tungsten tailings in this study.
 

The meaning of “D10” is that the content of particles less
than 60.027 µm account for 10wt%. The meanings of other
parameters such as D25 and D50 are similar to D10. The specif-
ic surface area was 42.563 m3/kg, and the PSD of the tested
tailings vary between 7.2 and 750 µm, with the vast majority
sized between 407.8 and 655.8 µm. Thus, the tested tailings
were rather coarse and had uneven PSD. 

2.1.2. Polypropylene fiber and glass fiber
In  this  study,  two  types  of  fibers,  namely,  PP  fiber  and

glass fiber, were adopted as AMs. To reduce the influence of

interfering factors on the experiment results, the length of the
above fibers was set to 12 mm. The density values and tensile
strength values of the PP fiber were 0.91 g/cm3 and 398 MPa,
respectively, and those of the glass fiber were 2.02 g/cm3 and
324 MPa, respectively. Moreover, the elongation rate values
of  the PP and glass  fibers  were 28.0% and 36.5%, respect-
ively. 

2.2. Preparation of the FRCTB specimens

The total  amount  of  the  glass  and  PP fibers  in  the  CTB
was  0.6wt%.  To  investigate  the  influence  of  the  combined
fibers on the mechanical properties of the CTB, eight groups
of fiber combination experiments were set up. Table 2 shows
the mixing ratios of the glass and PP fibers in this test. “G-
0.6-PP-0.0” was taken as an example, where “G” represents

Table  2.      Mixture  proportions  of  FRCTB  specimens  used
during the experiments wt%

Specimen ID Glass
fiber

Polypropylene
fiber

Fiber
content

G-0.0-PP-0.0 0.0 0.0 0.0
G-0.0-PP-0.6 0.0 0.6 0.6
G-0.1-PP-0.5 0.1 0.5 0.6
G-0.2-PP-0.4 0.2 0.4 0.6
G-0.3-PP-0.3 0.3 0.3 0.6
G-0.4-PP-0.2 0.4 0.2 0.6
G-0.5-PP-0.1 0.5 0.1 0.6
G-0.6-PP-0.0 0.6 0.0 0.6
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the glass fiber; “0.6” is the additional amount of glass fiber,
i.e., 0.6wt%; “PP” is the PP fiber, and “0.0” is the additional
amount of PP fiber, i.e., 0.0wt%. The SC and cement-to-tail-
ings ratio (c/t)  were 70wt% and 1:6,  respectively.  First,  the
fried tailings and fibers were stirred for 180 s. Then, tap wa-
ter  was  added  and  stirred  for  180  s.  The  mixed  slurry  was

poured into the cylindrical steel molds with a diameter of 50
mm and a height of 100 mm and immediately placed into a
constant  temperature (20±5)°C and humidity 95%±5% cur-
ing box. The FRCTB specimens were demolded after 48 h.
The curing time was set to 3 and 7 d. Fig. 2 shows the prepar-
ation process of the FRCTB specimens.

 
 

Water

Mold Curing container UCS test

CTP specimens

50 mm

1
0
0
 m

m

Fig. 2.    Preparation processes of FRCTB specimens used during the experiments.
 
 

2.3. UCS testing with DIC

In this part, the uniaxial compression test was conducted
using  the  computer-controlled  uniaxial  compressive  testing
system  WDW-200D  from  the  USTB.  The  tested  FRCTB
specimens  were  polished  to  ensure  that  their  flatness  was
±0.02 mm. The loading rate was set  as 1.0 mm/min during
the whole loading process. The load and displacement para-
meters  can be saved and recorded on the computer  in  real-
time.

A  non-contact  strain  measurement  system  (SMS)  was
used to record the deformation process of the FRCTB speci-
men  surfaces  during  the  uniaxial  compression  experiment.
The three-dimensional (3D) SMS and DIC techniques were
adopted  to  track  the  speckle  image  of  the  object  surface  to
achieve 3D strain results during the deformation process. The
strain  measurement  range  was  between  0.005  and  2000%.
Fig. 3 shows the principle of the uniaxial compression exper-
iments using DIC technology.
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Computer Two cameras Load
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Fig.  3.      Principle  of  uniaxial  compression  experiments  using
DIC technology.
 

During the laboratory test, the white paints and black spots
should be sprayed on the surface of the FRCTB specimens,
and two light-emitting diode (LED) lights  should be set  up
above  the  camera.  The  camera  was  placed  in  front  of  the
FRCTB specimens, approximately 1 m away from the speci-
men. The angle between the two cameras was between 15°
and 30°.  The camera  took one picture  every  second during

the whole loading process. The computer was used to control
the camera and collect images. Moreover, the strain measure-
ment  area was the same area captured by the left  and right
cameras. 

2.4. SEM and EDS tests

In this part, the SEM Zeiss EVO18 and X-ray energy-dis-
persive spectrometer were adopted to explore the microstruc-
ture of different FRCTB samples. The surfaces of the tested
FRCTB samples were treated with carbon spray twice to en-
hance the conductivity of the SEM sample before the obser-
vation. Then, the prepared samples were placed into the va-
cuum chamber and evacuated. The acceleration voltage was
10–20 kV,  the  magnification  was  50–2000,  and the  resolu-
tion was 3 nm. 

3. Results and discussion 

3.1. Effect of fiber content on the UCS

Fig.  4 shows the relationship among the specimen num-
ber,  UCS,  and  UCS  increment.  The  UCS  value  of  non-
FRCTB (NFRCTB) was 0.59 MPa, and the UCS values of
the  FRCTB  specimens  were  between  0.49  and  0.67  MPa
when the curing time was 3 d. Moreover, the strength change
of  the  FRCTB  was  less  than  0.1  MPa  compared  with  the
NFRCTB.  The  UCS  increment  values  were  between
−16.95% and 13.56%. Hence, the glass and PP fibers had no
evident enhancement effect on the UCS of the FRCTB, and
the content change of the two fibers had no clear effect on the
UCS of the CTB when the curing time was 3 d. The possible
reason was that the hydration reaction in the CTB was insuf-
ficient  within  three  days.  The  UCS of  the  FRCTB was  the
same  as  those  of  the  NFRCTB  specimens.  However,  the
UCS value of the NFRCTB was 1.16 MPa when the curing
time was 7 d. The UCS values of all the FRCTB specimens
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were larger than those of the NFRCTB. Among them, the av-
erage UCS value of G-0.0-PP-0.6 was the largest (1.54 MPa),
and the UCS increment was 32.76%. The average UCS val-
ues  of  the  FRCTB  specimens  increased  with  the  PP  fiber
content  increase.  The  average  UCS  values  of  the  FRCTB
specimens increased from 1.31 to 1.54 MPa, and the UCS in-
crement increased from 12.93% to 32.76% when the PP con-
tent increased from 0.0wt% to 0.6wt%. The results showed
that the fibers have a significant strengthening effect on the
UCS. The possible reason is that a large number of hydration
products,  including  ettringite  and  calcium  silicate  hydrate
(C–S–H),  were  generated,  and  the  bridging  effect  between
the hydration products and fibers was enhanced. 

3.2. Effect of fiber content on the peak strain

The relationship among the specimen number, peak strain,
and  peak  strain  increment  is  shown in Fig.  5.  All  the  peak
strain values of the FRCTB specimens were larger than those
of the NFRCTB. For example, when the curing time is 3 d,
the  average  peak  strain  values  of  G-0.0-PP-0.0,  G-0.0-PP-
0.6,  and  G-0.6-PP-0.0  were  1.09%,  1.30%,  and  4.76%,  re-
spectively. Moreover,  the peak strain and peak strain incre-
ment of the FRCTB specimens increased with the glass fiber
content  increase.  The  average  peak strain  increments  of  G-
0.0-PP-0.6  and  G-0.6-PP-0.0  were  19.27%  and  336.70%
when the curing time was 3 d. However, the peak strain of the

glass fiber reinforced CTB decreased with the curing time in-
crease.  Taking G-0.1-PP-0.5 as an example,  the peak strain
values were 2.59% and 1.60% when the curing times were 3
and 7 d, respectively. Moreover, the peak strain values of G-
0.6-PP-0.0  were  4.76%  and  2.08%  when  the  curing  times
were 3 and 7 d, respectively. 

3.3. Strain development and fracture analysis of the CTB
specimens

To show the strain development and fracture analysis  of
the  NFRCTB  and  FRCTB  specimens,  the  stress  and  strain
curves of the G-0.0-PP-0.0, G-0.6-PP-0.0, and G-0.1-PP-0.5
specimens are shown in Fig. 6. The peak stress of specimens
G-0.6-PP-0.0  and  G-0.1-PP-0.5  were  1.31  and  1.45  MPa,
which were 1.16 and 1.28 times that of specimen G-0.0-PP-
0.0  (without  reinforcement),  respectively.  Moreover,  the
ductility  of  the  FRCTB  was  clearly  better  than  that  of  the
NFRCTB. To obtain the characteristics of the crack develop-
ment during the whole loading process, four points A, B, C,
and D were considered. The strains in the X and Y directions
are represented by εx and εy, respectively. The evolutions of
the strain contour corresponding to the featured points (A–D)
at different loading levels obtained by the DIC system during
uniaxial compression are shown in Figs. 7–9, respectively.

Fig. 7 shows the development of the strain counter evolu-
tion before the peak UCS value. The strain distribution on the
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surface  of  the  G-0.0-PP-0.0  specimen was uniform without
clear concentrations at the beginning of the loading. The ini-
tial cracks did not substantially develop, as reported by Liu et
al. [42]. As the load increased (when the stress was less than
0.79 MPa), the cracks on the surface continued to expand, but
they  were  not  connected.  The  corresponding  stage  was  the
linear elastic stage in the stress–strain curve. Moreover, as the
load continued to increase (when the stress was less than 1.06
MPa), the cracks on the surface continued to expand and pen-
etrate. When the stress exceeded 1.06 MPa, the crack propaga-

tion rate accelerated, a large number of main cracks and sec-
ondary cracks were generated, and some CTB bulks fell off
from the surface of the tested G-0.0-PP-0.0 specimen.

As shown in Figs. 8 and 9, the strain counter development
evolutions of the G-0.1-PP-0.5 and G-0.6-PP-0.0 specimens
were similar to that of the G-0.0-PP-0.0 specimen. However,
the strain in the X and Y directions corresponding to the peak
value  of  the  FRCTB was  larger  than  that  of  the  NFRCTB.
For example, the strain values in the X and Y directions cor-
responding  to  the  peak  strength  of  the  G-0.6-PP-0.0  speci-
men  were  18.652%  and  4.696%,  respectively,  whereas  the
strains  in  the X and Y directions  corresponding  to  the  peak
strength  of  the  G-0.0-PP-0.0  sample  were  2.408%  and
0.107%, respectively. Compared with the G-0.0-PP-0.0 spe-
cimen, the strain value in the X and Y directions of G-0.6-PP-
0.0 increased by 6.7 and 42.9 times, respectively, which in-
dicated that the additive fiber improved the deformation res-
istance of the CTB.

Fig. 10 shows the final failure pattern of all the CTB spe-
cimens and DIC strain measurement results. The DIC results
accurately calibrated the location of the cracks on the surface
of the CTB specimens. The failure pattern of the G-0.0-PP-
0.0  specimen  was  mainly  tensile  failures,  and  two  main
cracks parallel to the load direction appeared on the surface.
However, cracks parallel and perpendicular to the load direc-
tion were observed on the surface of the FRCTB specimens.
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Thus,  the  failure  patterns  were  mainly  tensile  failure  and
shear  failure,  and  the  tensile  crack  and  shear  crack  inter-
twined on the surface. Based on the DIC measurement res-

ults, the maximum strain values at the location of the crack of
the FRCTB were larger than those of the NFRCTB. This res-
ult is attributed to the bridging effect of the fiber that limited
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the propagation of cracks, thereby improving its resistance to
deformation. 

3.4. Analysis of the SEM–EDS measurements

In  this  section,  the  microstructural  characteristics  of  the
FRCTB are investigated. The effect of the interaction of the
glass  and  PP  fibers  on  the  mechanical  properties  of  the
FRCTB was examined. Fig. 11(a)–(d) show the distribution
of the glass and PP fibers on the fracture surface of the failed
FRCTB.

As shown in Fig.  11(a),  the glass fiber is  evenly distrib-
uted at the cross-section of the FRCTB, and the diameter (d)
of the glass fiber after pulling out is between 18.33 and 23.08
µm. This finding indicates that there is no significant change
in the diameter and shape of the glass fiber after being drawn.
Moreover, the morphology of the PP fiber at the fracture sur-
face  was  different  from  that  of  the  initial  shape  of  the  PP
fiber. Part of the PP fibers was bent and deformed after being
stretched, and the diameter became smaller, with a minimum
diameter  of  26.88 µm,  which  indicated  that  the  PP  fiber  is
prone to deformation. In addition, there were some cracked
PP fibers on the fracture surface of the FRCTB samples. Fig.
11(b) (Areas 1 and 2) shows the microscopic morphology of
the cracked PP fibers. The diameter of the cracked PP fiber
became  much  larger  than  before,  and  the  largest  diameter
was 198.65 µm. A large number of hydration products and
unhydrated tailings particles were attached to the inner wall
of the cracked PP fiber. This phenomenon was possibly re-

lated to the poor heat resistance of the PP fiber, which was af-
fected by the exothermic heat of the hydration reaction and
caused expansion and cracking. As shown in Fig. 11(c) and
(d), there are evident scratches on the surface of the FRCTB
samples after the fiber was pulled out. A large number of hy-
dration  products  were  attached  to  the  PP  fibers.  However,
there was only a small amount of hydration products on the
surface of the glass fibers, which was relatively smooth. This
finding indicates that the reinforcement effect of the PP fiber
was better than that of the glass fiber.

The  initiation  and  expansion  of  the  internal  cracks  were
the  main  reasons  for  the  failure  of  the  CTB.  Many  studies
showed that the essence of the FRCTB strength was achieved
by the fiber’s inhibitory effect  on the crack propagation in-
side  the  backfill  materials. Fig.  12 shows  the  microscopic
morphology of the internal microcracks of the FRCTB with
different fiber combinations. The widths of the microcracks
in the FRCTB were larger, which was caused by the bridging
effect  of  the  fibers.  The  hydration  products  were  the  main
substance connecting the fiber and cemented composite mat-
rix.  The fibers on both sides of  the connecting cracks were
subjected to friction to inhibit  the crack propagation during
the crack expansion process, which led to the excessive dam-
age of the FTCTB from brittle failure to ductile failure. Fig.
12(c)  (Areas  1,  2,  and  3)  also  shows  that  the  width  of  the
cracks connected by the PP fiber was larger than those con-
nected by the glass fiber.

Fig. 13 shows the distribution of the main elements in the
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G-0.0-PP-0.0 specimen. The microscopic image shows that a
large amount of gelling substances were attached to the sur-
face of the tailings particles. Generally, the O, Ca, Si, Al, K,
Mg,  and  other  elements  were  uniformly  distributed  on  the
surface of the tested sample. However, the O, Ca, Si, and Al

were dense in the hydration products. The content of hydra-
tion products was directly related to the strength of the CTB.
Fig. 14 shows the EDS value of the hydration product in the
CTB. The main hydration products were needle-shaped and
sheet-shaped  ettringite  (AFt:  3CaO·Al2O3·3CaSO4·32H2O)
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and floc-shaped C–S–H gels. The mass fractions of O, Ca, Si,
and  Al  in  the  hydration  products  were  relatively  large,  and
these elements were the main elements in AFt and C–S–H. 

4. Conclusions

In this study, a series of experimental tests, including uni-
axial  compression,  failure  evolution,  and  microstructural
characteristics of CTB, was conducted to explore the mech-
anical  behavior  of  combined  PP  and  glass  fiber-reinforced
CTB. The main conclusions were drawn as follows.

(1)  The  UCS of  the  FRCTB was  larger  than  that  of  the
NFRCTB. Adding fibers can increase the UCS values of the
CTB by 6.90% to 32.76%. The UCS value of the FRCTB in-
creased with the PP fiber content increase. Moreover, the re-
inforcement effect of the PP fiber on the CTB was better than
that of the glass fiber. The ductility of the FRCTB was signi-
ficantly better than that of the NFRCTB. The addition of fiber
could  increase  the  peak  strain  of  the  FRCTB  by  0.39%  to
1.45%, and the peak strain of the FRCTB increased with the
glass fiber content increase.

(2) The cracks of the CTB were mainly generated at the
stress concentration position of the strain cloud counter. The
failure pattern of the NFRCTB was a tensile failure, and the
failure  pattern  of  the  FRCTB was coupled with  tensile  and
shear failure. The hydration product was the main substance
that connects the fiber and CTB matrix. The addition of fiber
effectively  inhibited  the  propagation  of  cracks,  and  the
bridging effect of cracks by the fiber effectively improved the
mechanical properties of the FRCTB.

The addition of combined fibers improved the mechanical
strength of the CTB and increased the ductility. The obtained
results are valuable for the development and field application
of  the  technology of  the  CTB.  However,  the  reinforcement
mechanism of the combined fibers, pipeline transportation of
the  FRCTB slurry,  and on-site  industrial  application are  all
key problems that need to be considered in the future. In fu-
ture  research,  more  experimental  methods  will  be  used  to
study these issues in depth. 
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