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Abstract: Although azurite is one of the most important copper oxide minerals, the recovery of this mineral via sulfidization–xanthate flota-
tion  is  typically  unsatisfactory.  The  present  work  demonstrated  the  enhanced  sulfidization  of  azurite  surfaces  using  ammonia  phosphate
((NH4)3PO4) together with Na2S, based on micro-flotation experiments, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray
photoelectron  spectroscopy  (XPS),  zeta-potential  measurements,  contact  angle  measurements,  Fourier-transform  infrared  (FT-IR)  spectro-
scopy, and ultraviolet–visible (UV–Vis) spectroscopy. Micro-flotation experiments showed that the floatability of azurite was increased fol-
lowing the simultaneous addition of (NH4)3PO4 and Na2S. ToF-SIMS and XPS analyses demonstrated the formation of a high content of S spe-
cies  on  the  azurite  surface  and  an  increase  in  the  number  of  Cu(I)  species  after  exposure  to  (NH4)3PO4 and  Na2S,  compared  with  the
azurite–Na2S system. The zeta potential of azurite particles was negatively shifted and the contact angle on the azurite surface was increased
with the addition of (NH4)3PO4 prior to Na2S. These results indicate that treatment with (NH4)3PO4 enhances the sulfidization of azurite sur-
faces, which in turn promotes xanthate attachment. FT-IR and UV–Vis analyses confirmed that the addition of (NH4)3PO4 increased the ad-
sorption of xanthate with reducing the consumption of xanthate during the azurite flotation process. Thus, (NH4)3PO4 has a beneficial effect on
the sulfidization flotation of azurite.

Keywords: azurite; ammonium phosphate; enhanced sulfidization; reagent adsorption; flotation enhancement

  

1. Introduction

Copper is one of the most common nonferrous metals and
has numerous applications in various industries and in every-
day life because of its unique properties [1–2]. Copper is typ-
ically extracted from high-grade sulfide ores, but present-day
copper sulfide ore resources are diminishing and new depos-
its are becoming increasingly difficult to discover. As such,
oxide  ores  and  sulfide-oxide  mixed  ores  are  being  con-
sidered as significant future sources of copper [3–4].  Flota-
tion is one of the most common and effective methods of en-
riching the level of copper minerals in copper oxide ores [5].
These minerals include malachite (CuCO3·Cu(OH)2), azurite
(2CuCO3·Cu(OH)2), cuprite (Cu2O), and chrysocolla (CuSiO3·
2H2O).  Flotation  techniques  can  be  categorized  into  direct
and sulfidization flotation methods, the latter of which is the
most widely used for the industrial-scale enrichment of cop-
per oxide ores [6–8].

Sulfidization  flotation  is  also  used  to  process  lead  oxide
and zinc oxide minerals [9–11]. This important process can
consist of mechanical, hydrothermal, or surface sulfidization.
Surface  sulfidization  is  regarded  as  an  especially  effective
method  because  it  is  inexpensive  and  readily  implemented

during industrial production [12–14]. Sodium sulfide (Na2S)
is the most common reagent used to supply S ions [15–16].
Feng et al. [17] studied sulfidization flotation using flotation
tests,  X-ray  photoelectron  spectroscopy  (XPS),  zeta-poten-
tial measurements, and xanthate adsorption on the surface of
malachite to investigate the interaction mechanism of S ions
on malachite surfaces. Their study showed that sulfidization
pretreatment of malachite before the addition of the xanthate
collector improved the floatability of the malachite, as well as
the  importance of  generating specific  sulfidization products
to enhance the flotation recovery. Lan et al. [18] investigated
the  surface  sulfidization  of  smithsonite  by  micro-flotation
tests, XPS, powder X-ray diffraction (XRD), thermodynam-
ic calculations, and electron-probe microanalysis at high tem-
peratures.  Their  results  showed  that  a  low  S  concentration
can  improve  the  flotation  recovery  by  approximately  65%.
Zincite  (ZnS  and  ZnS2)  was  formed  on  the  surface  of  the
smithsonite  after  interaction  with  sulfide  species  and  these
sulfides were distributed over the outer zincite layer. In addi-
tion,  the  average  S  concentration  on  the  zincite  surface  in-
creased with the increase in S dosage. The smithsonite sur-
faces were modified by various S species and the smithsonite
flotation recovery was increased after the sulfidization flota- 
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tion. Even so, it was not possible to collect a large quantity of
this valuable mineral during the sulfidization flotation of the
oxide  ore.  Therefore,  an  activator  is  needed to  enhance  the
sulfidization  of  the  oxide  mineral  surfaces  and  improve  re-
covery [19–21].

Ammonium salts are common activators in industry, and a
large  amount  of  research  has  confirmed  that  these  com-
pounds enhance the flotation recovery of minerals. However,
the  interaction  mechanism  has  yet  to  be  clarified  [22–23].
Shen et al. [20] used ammonium phosphate ((NH4)3PO4) as
an activator to increase the floatability of chrysocolla in sulf-
idization  flotation,  and  investigated  the  properties  of  the
chrysocolla surface. Compared with Na2S–xanthate flotation,
the  floatability  of  chrysocolla  was  greatly  improved  in  the
(NH4)3PO4–Na2S–xanthate system because more copper sulf-
ide covered the chrysocolla surfaces, thus improving adsorp-
tion of the xanthate. The flotation of malachite with ethane-
diamine  and  the  associated  mechanism  have  also  been  in-
vestigated [24]. The results demonstrated that, because of the
increased formation of copper sulfide species and greater de-
gree of attachment of the collector on the malachite surface,
malachite  floatability  was  enhanced  by  the  addition  of  eth-
anediamine.

Azurite is an important copper oxide ore and the interac-
tions of azurite with S species have been examined. Specific-
ally, azurite flotation experiments have assessed the effects of
the pH of the pulp solution and the Na2S and xanthate con-
centrations. Results have indicated that the optimum pH for

this process is in the range of 8.5–9.5 and that the use of a
suitable sodium sulfide concentration is the key to increasing
the  flotation  recovery  of  azurite.  During  a  typical  flotation
process, about 40% of the target minerals are lost in the form
of tailings [25–26]. For this reason, NH4HSO4 has been em-
ployed in the sulfidization flotation of azurite to increase the
surface  sulfidization,  and  this  technique  has  been  found  to
enhance sulfidization and improve flotation recovery [27]. In
the present work, (NH4)3PO4 was examined as an activator to
improve  azurite  floatability.  The  efficacy  of  this  technique
was  confirmed  by  performing  micro-flotation  experiments
and the  associated  interaction  mechanism was  analysed  us-
ing  time-of-flight  secondary  ion  mass  spectrometry  (ToF-
SIMS),  XPS,  Fourier  transform  infrared  (FT-IR)  spectro-
scopy,  and  ultraviolet–visible  (UV–Vis)  spectroscopy  and
elucidated by zeta potential and contact angle measurements. 

2. Experimental 

2.1. Material and reagents

In preparation for this work, azurite samples were crushed,
sieved, and gravity separated. Azurite samples with particle
sizes  in  the  range  of  37–74  or  <37 µm  were  prepared  by
grinding and sieving. XRD and chemical multielement ana-
lyses  confirmed  that  the  samples  were  highly  pure  azurite
[25].  Deionized  water  (resistivity:  18.25  MΩ·cm)  was  em-
ployed in all tests of this work. The reagents used in the tests
and their purities and functions are summarized in Table 1.

 
Table 1.    Experimental reagents and their functions and purities

Reagent Function Purity
Sodium isoamyl xanthate (NaIX, C5H11OCSSNa) Collector Commercial grade
Terpenic oil (C10H17OH) Frother Commercial grade
Hydrochloric acid (HCl) pH adjustment Analytical grade
Sodium hydroxide (NaOH) pH adjustment Analytical grade
Sodium sulfide (Na2S·9H2O) Sulfidization Analytical grade
Ammonium phosphate ((NH4)3PO4) Enhanced sulfidization Analytical grade
Sodium chloride (NaCl) Indifferent electrolyte Analytical grade
 
 

2.2. Micro-flotation experiments

The micro-flotation experiments were carried out in a 40
mL cell,  to  which a  2-g azurite  sample was added together
with deionized water. The pH of the resulting dispersion was
adjusted to the desired value by the addition of a NaOH solu-
tion  before  any  reagents  were  added.  During  each  trial,
(NH4)3PO4, Na2S·9H2O, the xanthate collector, and the froth-
er were added to the dispersion at intervals of 3, 5, 3, and 2
min,  respectively,  after  which  the  materials  that  floated  or
sank  in  the  dispersion  were  separately  gathered,  dried,  and
weighed to calculate the flotation recovery of the azurite. 

2.3. Time-of-flight secondary ion mass spectrometry

Azurite  samples  that  had  been  subjected  to  different  re-
agent  treatments  were  characterized  by  ToF-SIMS  (ION-
TOF GmbH, Münster, Germany). In each case, a bulk azur-

Bi+3

CH+3 C4H+9

ite sample with a smooth surface was placed in a beaker, to
which  100  mL  of  deionized  water  was  added,  with  sub-
sequent adjustment of the pH to equal the value used during
the  corresponding  flotation  experiment.  The  flotation  re-
agents (NH4)3PO4 and Na2S·9H2O were then added sequen-
tially and the dispersion was allowed to stand for 3 and 5 min
after each addition, respectively. Each specimen was then al-
lowed to dry in air at room temperature. ToF-SIMS analyses
were conducted using 30 keV  ions at a current of 0.96 pA
with an analytical  area on the sample surface of  500 µm ×
500 µm and a sputter time of 62 s. The positive secondary ion
mass spectra were calibrated using C+, , and , while
the negative secondary ion mass spectra were calibrated us-
ing CH−, 37Cl−, and Cu−. 

2.4. X-ray photoelectron spectroscopy

XPS characterization of the samples was performed using
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a PHI5000 Versa Probe II instrument (ULVAC-PHI, Japan).
In each trial, 1 g of the azurite sample was placed in a beaker
and deionized water was added to give a specific concentra-
tion, after which the pH was adjusted. After this, the disper-
sion was treated with various reagents for 15 min each and
then repeatedly rinsed with deionized water, followed by sol-
id–liquid separation and drying at room temperature. 

2.5. Zeta potential measurements of azurite surfaces

The  zeta  potentials  associated  with  interactions  between
the  azurite  and  the  reagents  were  determined  using  a  zeta
probe  (Zetasizer-3000HS,  Malvern  Zetasizer  Nano  ZS90,
Malvern Instrument Ltd., United Kingdom). In these experi-
ments, 0.1 g of azurite with particle sizes of <5 µm was dis-
persed in solution with 100 mL of a 5 × 10−3 mol/L NaCl act-
ing as the electrolyte. Various pH values were used in the dif-
ferent  trials.  After  dispersion  of  the  azurite,  (NH4)3PO4,
Na2S·9H2O, and NaIX were added in order followed by stir-
ring  for  3,  5,  and  3  min,  respectively.  The  dispersion  was
subsequently allowed to settle for 10 min, after which a por-
tion of the supernatant was removed for zeta-potential meas-
urements. The final value was obtained by averaging the res-
ults from three replicate measurements for each test. 

2.6. Contact angle measurements

The floatability of a mineral can be assessed indirectly by
measuring the contact angle between the mineral surface and
deionized water. In these trials, the surface of the bulk azur-
ite sample was polished, after which the specimen was placed
in  a  beaker  containing  50  mL of  deionized  water  at  pH  of
8.5–9.5. Specific reagents were added to the beaker and al-
lowed to interact with the mineral surface for 3 min. Follow-
ing this, the azurite was removed from the solution and dried
using  a  rubber  suction  bulb,  after  which  a  JY-82  contact
angle analyzer was used to determine the contact angle on the
material using the liquid drop method. An image showing the
shape  of  a  liquid  drop  on  the  sample  surface  was  recorded
with a charge-coupled device camera system, and the contact
angle  was  calculated  from  this  image.  After  this  measure-
ment,  the  sample  surface  was  dried  and then  polished with
abrasive paper to allow for subsequent experiments to assess
the contact angles of the azurite after exposure to the other re-
agents. 

2.7. Fourier-transform infrared analysis

FT-IR  spectroscopy  was  used  to  analyze  the  chemical
compositions  of  the  mineral  surface  after  different  reagent
treatments.  The  FT-IR  spectra  were  obtained  over  the
wavenumber  range of  600–1200 cm−1.  Azurite–Na2S–NaIX
and  azurite–(NH4)3PO4–Na2S–NaIX  samples  were  prepared
by adding 1 g of azurite to a beaker containing 100 mL de-
ionized  water  and  then  adjusting  the  pH  of  the  dispersion.
(NH4)3PO4, Na2S, and xanthate were then added as required
and each was allowed to interact with the azurite under ambi-
ent conditions for 10 min. Each sample was subsequently re-
moved by filtration, rinsed twice, and air-dried, after which
FT-IR spectra were acquired. 

2.8. Ultraviolet–visible spectroscopy

The  residual  xanthate  concentrations  in  the  dispersions
after  reaction of  the  reagents  with  the  azurite  were  determ-
ined  using  a  UV–Vis  spectrophotometer  (UV-2007,  Shi-
madzu, Germany). In these experiments, 1 g of azurite was
placed in a beaker containing 100 mL deionized water, after
which  the  pH was  adjusted.  Reagent  solutions  with  the  re-
quired concentrations were added to this dispersion and the
mixtures  were stirred for  specific  time intervals.  The solids
were then separated from the supernatant by centrifugation. 

3. Results and discussion 

3.1. Azurite flotation in the presence of (NH4)3PO4

Micro-flotation  experiments  were  performed  to  examine
the effect of (NH4)3PO4 on the floatability of the azurite. The
results  (Fig.  1)  show that  the  addition of  (NH4)3PO4 during
the sulfidization process clearly increased the flotation recov-
ery of the azurite (Fig. 1(a)). The azurite recovery was also
found to initially increase and then to decrease with the in-
crease  in  the  Na2S  concentration  regardless  of  whether
(NH4)3PO4 was present  (Fig.  1(b)).  The use xanthate  as  the
collector is vital to improving the flotation recovery of azur-
ite, and indeed, the floatability of this mineral was increased
with  the  increase  in  the  xanthate  concentration  (Fig.  1(c)).
When only Na2S was used, a low flotation recovery was ob-
tained,  whereas  addition  of  (NH4)3PO4 prior  to  the  Na2S
treatment resulted in a greatly increased recovery, providing
further evidence for the beneficial effect of (NH4)3PO4.
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Fig. 1.    Flotation recovery of azurite treated with various reagent concentrations: (a) (NH4)3PO4; (b) Na2S, and (c) NaIX (Na2S: 1 ×
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3.2. ToF-SIMS

CO−3 S−2 CuS−2 SO−3

ToF-SIMS  was  employed  to  examine  changes  in  the
chemical  species  on  the  azurite  surface  following  interac-
tions with the various reagents [28–31]. The two-dimension-
al (2D) distributions of Cu+, , S−, , , and  ions

S−2 CuS−2 SO−3

on  the  azurite  surface  after  the  addition  of  Na2S  and
(NH4)3PO4 +  Na2S are  shown in Fig.  2(a)  and  (b),  respect-
ively. The distributions of Cu+, S−, ,  and  on the
azurite surface were notably higher following the (NH4)3PO4

+ Na2S treatment than those with direct sulfidization. That is,
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CO−3

CO−3

the intensities of the peaks related to these ions were greater
after exposure to the (NH4)3PO4 + Na2S treatment compared
with the Na2S treatment (Fig. 3). This result indicates that the
addition of (NH4)3PO4 promoted the formation of S species
on the azurite surface. Interestingly, a small amount of 
was  distributed  on  the  azurite  surface  after  the  Na2S  treat-
ment (Fig. 2(a)), but very little of this ion was present after
exposure to the (NH4)3PO4 + Na2S combination (Fig. 2(b)).
Specifically, Fig. 3 demonstrates that the  peaks (which
is related to the degree of sulfidization of the mineral surface)
were weak after both the Na2S and (NH4)3PO4 + Na2S treat-
ments,  while  the  peak  intensity  was  less  in  the  latter  case.
These data demonstrate that more S species were formed on
the azurite  surface following exposure to  (NH4)3PO4 before
sulfidization  and  a  greater  amount  of  copper  oxide  species
was  transformed to  copper  sulfide  species,  thereby increas-
ing the azurite floatability.
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ments ((NH4)3PO4: 5 × 10−4 mol/L; Na2S: 1 × 10−3 mol/L).
  

3.3. XPS analysis

XPS was used to determine the chemical species and the
states of these species on the azurite surface, and thus elucid-
ate the interactions with the different reagents [32–34]. Fig. 4
shows the XPS survey spectra acquired from azurite samples
after exposure to the different reagents over the binding en-
ergy range of 0–1100 eV. The S peak was generated by the
azurite sample after treatment with Na2S, which shows that
sulfide  products  were  generated  on  the  azurite  surface.
However, the peak intensity was higher after the (NH4)3PO4 +
Na2S  treatment,  compared  with  the  Na2S  treatment,  which
confirms that more S species were formed. These species in-
crease the hydrophobicity of the azurite surface [35] and thus
increase xanthate adsorption to improve the floatability of the
azurite.

These spectra were further analyzed by deconvolution and
peak  fitting,  and  the  contents  of  C,  O,  Cu,  and  S  were  de-
termined after the effects of carbon impurities were removed
(Table  2).  The  azurite  surface  exposed  to  the  (NH4)3PO4 +
Na2S treatment showed an increase in the Cu content (based
on the Cu 2p peak)  from 11.03at% to 11.93at% and an in-

crease  in  the  S  content  (based  on  the  S  2p  peak)  from
4.67at% to  7.06at%.  These data  are  in  accordance with  the
results in Fig. 4 and indicate that more copper sulfide species
were generated on the azurite surface during the (NH4)3PO4 +
Na2S treatment than that exposed to only Na2S.
 
Table 2.    Atomic contents on the azurite surface following (a)
Na2S  and  (b)  (NH4)3PO4  +  Na2S  treatments  ((NH4)3PO4:  5  ×
10−4 mol/L; Na2S: 1 × 10−3 mol/L) at%

Sample C 1s O 1s Cu 2p S 2p
(a) 9.29 75.01 11.03 4.67
(b) 9.52 71.49 11.93 7.06

 
Peak  fitting  was  applied  to  the  Cu  2p  XPS  spectra  ob-

tained from the azurite surface after the Na2S and (NH4)3PO4

+ Na2S treatments; this process identified two doublet peaks
and a pair of satellite peaks (Fig. 5). The peaks with binding
energies of 934.84 and 954.74 eV shown in Fig. 5(a) are at-
tributed to Cu(II) species and represent the Cu 2p3/2 and Cu
2p1/2 signals, respectively. The peaks at lower binding ener-
gies of 932.54 and 952.44 eV are attributed to Cu(I) species
[36–37]. Cu(II) species were predominant on the azurite sur-
face, which suggests that Cu(I) had been reduced after expos-
ure  to  the  Na2S.  The  data  obtained  after  the  (NH4)3PO4 +
Na2S treatment (Fig. 5(b)) show a shift in the Cu 2p binding
energies. Specifically, the Cu(I) content was increased from
59.75wt%  to  63.70wt%  with  the  addition  of  (NH4)3PO4,
whereas  the  concentration  of  Cu(II)  decreased  from
40.25wt% to 36.30wt% (Table 3).  This result  indicates that
more S species were generated on the azurite surface togeth-
er  with  a  higher  content  of  Cu(I)  species  but  fewer  Cu(II)
species.  These  changes  promote  the  adsorption  of  xanthate
on  the  mineral  surface,  which  is  consistent  with  the  ToF-
SIMS results.

The XPS S 2p spectra  obtained from the azurite  surface
following the Na2S and (NH4)3PO4 + Na2S treatments  were
further analyzed and the relative proportions were calculated
(Fig.  6 and Table 4,  respectively).  The S 2p spectrum after
the Na2S treatment shown in Fig. 6(a) exhibits S 2p3/2 and S
2p1/2 spin-orbit doublet with an intensity ratio of 2:1 [38]. The
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three  peaks  in  this  spectrum were  fitted  with  binding  ener-
gies of 161.82, 163.46, and 167.68 eV, which correspond to

S2− S2−
n SO2−

n

S2−

S2−
n

, , and , respectively [39]. That is, monosulfides,
polysulfides,  and oxysulfides  were generated on the azurite
surface by exposure to the Na2S, which would be expected to
increase the hydrophobicity of the mineral to improve flota-
tion. The S 2p XPS spectrum of the azurite surface following
the addition of (NH4)3PO4 + Na2S (Fig.  6(b)) also confirms
the presence of monosulfide, polysulfide, and oxysulfide spe-
cies.  The  peak  at  161.93  eV  was  ascribed  to  monosulfides
( ), while that at 163.47 eV was attributed to polysulfides
( ). These data suggest that the extent of sulfidization was
modified  in  this  case,  which  would  in  turn  have  affected
floatability.
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Fig. 6.    S 2p XPS spectra obtained from the azurite surface following (a) Na2S and (b) (NH4)3PO4 + Na2S treatments ((NH4)3PO4: 5 ×
10−4 mol/L; Na2S: 1 × 10−3 mol/L).
 

Table 4.    Binding energies and relative S proportions based on S 2p XPS spectra obtained from the azurite surface following (a)
Na2S and (b) (NH4)3PO4 + Na2S treatments ((NH4)3PO4: 5 × 10−4 mol/L; Na2S: 1 × 10−3 mol/L)

Sample
Binding energy / eV Percentage in total S / wt%

S2− S2−
n SO2−

n S2− S2−
n SO2−

n

(a) 161.82 163.46 167.68 77.52 14.35 8.13
(b) 161.93 163.47 168.19 65.44 19.83 14.73

 

The relative S contents determined using the S 2p signals
obtained from the azurite surface are summarized in Table 4.
The  percentage  of  monosulfide  species  decreased  from
77.52wt% to 65.44wt% in the presence of (NH4)3PO4 while
the  proportion  of  polysulfide  species  increased  from

14.35wt% to 19.83wt%. From these results, it is apparent that
more copper polysulfide species were generated on the azur-
ite  surface  during  the  (NH4)3PO4 +  Na2S treatment.  On  the
basis of these data,  we can conclude that (NH4)3PO4 gener-
ated more sulfidization products on the azurite surface, which
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Fig.  5.      Cu 2p  XPS spectra  of  the  azurite  surface  following  (a)  Na2S and (b)  (NH4)3PO4 +  Na2S treatments  ((NH4)3PO4:  5  ×  10−4

mol/L; Na2S: 1 × 10−3 mol/L).

Table 3.    Binding energies and relative Cu proportions based
on  Cu 2p  XPS spectra  obtained  from the  azurite  surface  fol-
lowing  (a)  Na2S  and  (b)  (NH4)3PO4  +  Na2S  treatments
((NH4)3PO4: 5 × 10−4 mol/L; Na2S: 1 × 10−3 mol/L)

Sample
Binding energy / eV Percentage in total Cu / wt%

Cu(I) Cu(II) Cu(I) Cu(II)
(a) 932.54 934.84 59.75 40.25
(b) 932.50 934.74 63.70 36.30
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increases the surface hydrophobicity and promotes xanthate
adsorption. 

3.4. Zeta-potential measurements

The zeta potentials of azurite particles following different
reagent treatments were determined to investigate the effect
of  (NH4)3PO4 addition  on  the  adsorption  of  S  ions  and
xanthate on the azurite surface in the pH range from 5.5 to
11.5. These data are presented in Fig. 7. The results demon-
strate  that  the  zeta  potential  became  increasingly  negative
with gradual increases in pH regardless of the reagents that
were  used.  However,  compared  with  the  azurite–Na2S  sys-
tem, the increased amount of ROCSS− in the azurite–Na2S–

NaIX system resulted in a more negative zeta potential. The
azurite–Na2S system also showed higher zeta potentials than
the azurite–(NH4)3PO4–Na2S system in the pH range from 5.5
to 11.5. More sulfide ions were adsorbed on the azurite sur-
face  when  (NH4)3PO4 was  added,  which  suggests  that  this
compound enhances the sulfidization of the azurite surface.
The specimen from the azurite–(NH4)3PO4–Na2S–NaIX sur-
face  was  found  to  have  a  highly  negative  zeta  potential,
which indicates that xanthate was adsorbed on the negatively
charged azurite surface. Therefore, the addition of (NH4)3PO4

increases the flotation recovery of the azurite  by enhancing
the sulfidization of the azurite surface and increasing the ad-
sorption of the xanthate collector.
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(Na2S: 1 × 10−3 mol/L; (NH4)3PO4 and NaIX: 5 × 10−4 mol/L).
 
 

3.5. Contact-angle measurements

The floatability of a mineral is correlated with its hydro-
phobicity, and the wettability of a mineral surface generally
can  be  assessed  on  the  basis  of  its  contact  angle  [40–41].
Therefore,  the  contact  angles  of  azurite  surfaces  after
Na2S–NaIX and (NH4)3PO4–Na2S–NaIX treatments were de-
termined to characterize the effect of (NH4)3PO4 on the azur-
ite floatability during sulfidization at the pH of 8.5–9.5. The
resulting contact angles for the Na2S–NaIX system with dif-
ferent NaIX concentrations and the Na2S concentration of 1 ×
10−3 mol/L are  provided in Fig.  8(a).  The  contact  angle  in-
creased from 73.74° to 83.97° as the NaIX concentration was
increased from 1 × 10−5 to 1 × 10−3 mol/L. In the presence of
(NH4)3PO4, NaIX concentrations of 1 × 10−5, 5 × 10−4, and 1

×  10−3 mol/L  gave  contact  angles  of  79.77°,  91.18°,  and
93.44°,  respectively (Fig.  8(b)).  The increase of  the contact
angle  with  the  increase in  the  xanthate  concentration indic-
ates  that  the  hydrophobicity  of  the  azurite  surface  was  also
increased,  resulting  in  improved  flotation  recovery.  In  the
case  of  the  azurite–Na2S–NaIX  system,  the  contact  angles
were  small,  while  5  ×  10−4 mol/L  (NH4)3PO4 gave  a  large
contact  angle.  Specifically,  the  (NH4)3PO4 pretreatment  in-
creased the contact angles from 73.74°, 81.39°, and 83.97° to
79.77°,  91.18°,  and  93.44°  for  NaIX concentrations  of  1  ×
10−5, 5 × 10−4, and 1 × 10−3 mol/L, respectively. These data
show that  the  (NH4)3PO4 pretreatment  of  the  azurite  before
the  addition  of  Na2S  improved  collector  attachment  to  the
azurite surface to increase floatability. These phenomena are
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(b)

1 × 10−5 mol/L (73.74°) 5 × 10−4 mol/L (81.39°) 1 × 10−3 mol/L (83.97°)

1 × 10−5 mol/L (79.77°) 5 × 10−4 mol/L (91.18°) 1 × 10−3 mol/L (93.44°)

Fig.  8.      Contact  angles on the azurite surface following (a)  Na2S–NaIX and (b)  (NH4)3PO4–Na2S–NaIX treatments using different
NaIX concentrations (Na2S: 1 × 10−3 mol/L; (NH4)3PO4: 5 × 10−4 mol/L).
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consistent with the results of the micro-flotation experiments.
Fig. 9 provides the contact angles of the azurite surface for

different Na2S concentrations. The contact angle was 73.96°
at 2 × 10−4 mol/L Na2S and 5 × 10−4 mol/L NaIX (Fig. 9(a)),
and increasing Na2S concentration initially increased the con-
tact angle, but then decreased. Similarly, azurite surfaces ex-
posed to the (NH4)3PO4–Na2S–NaIX treatment (Fig. 9(b)) ex-
hibited contact angle first increased but then decreased with
the  Na2S  concentration  raised  from  2  ×  10−4 to  2  ×  10−3

mol/L. It is apparent that the optimal Na2S concentration im-
proved the azurite flotation. Combining the results shown in
Fig.  9(a)  and  (b),  it  can  be  seen  that  the  azurite  surface

showed a smaller contact angle in the absence of (NH4)3PO4,
which indicates  lower hydrophobicity  at  a  given Na2S con-
centration. The addition of (NH4)3PO4 before the Na2S treat-
ment increased the contact  angles from 73.96°,  83.76°,  and
78.68° to 76.47°, 93.03°, and 89.44° for Na2S concentrations
of 2 × 10−4, 1 × 10−3, and 2 × 10−3 mol/L, respectively. The
contact  angle  of  the  azurite  surface  treated  with  (NH4)3PO4

before sulfidization was relatively high, which indicates good
hydrophobicity,  possibly  because  more  copper  sulfide  was
generated  on  the  surface.  These  contact  angle  data  are  in
agreement  with  the  results  of  the  micro-flotation  experi-
ments.

 
 

(a)

(b)

2 × 10−4 mol/L (73.96°) 1 × 10−3 mol/L (83.76°) 2 × 10−3 mol/L (78.68°)

2 × 10−4 mol/L (76.47°) 1 × 10−3 mol/L (93.03°) 2 × 10−3 mol/L (89.44°)

Fig.  9.      Contact  angles on the azurite surface following (a)  Na2S–NaIX and (b)  (NH4)3PO4–Na2S–NaIX treatments using different
Na2S concentrations ((NH4)3PO4 and NaIX: 5 × 10−4 mol/L).
 
 

3.6. FT-IR and UV–Vis spectroscopy

The interaction  between NaIX and the  sulfidized  azurite
was investigated in the presence of (NH4)3PO4 by FT-IR and
UV–Vis spectroscopy, and the results are shown in Figs. 10
and 11,  respectively.  The  characteristic  FT-IR  spectrum  of
the  xanthate  collector  was  acquired  over  the  wavenumber
range of 600–1200 cm−1. In the FT-IR spectrum of the azur-
ite–Na2S–NaIX specimen (Fig. 10), the peak at 1091.03 cm−1

can be ascribed to the C–O stretching vibration, while that at
1034.62 cm−1 may have resulted from the C=S stretching vi-
bration, which suggests interactions between the reagents and
azurite surface [42]. The peak at 836.69 cm−1 can be attrib-
uted  to  C–H  symmetric  stretching  vibrations  and  those  at
951.43 and 769.45 cm−1 correspond to the C–S stretching vi-
bration [43–44]. However, compared with treatment by Na2S

alone,  these  peaks  were  shifted  in  the  spectrum  of  the
(NH4)3PO4–Na2S–NaIX  system,  such  that  the  C–O  peak
moved  from  1091.03  to  1090.06  cm−1 and  the  peak  at
1034.62  cm−1 shifted  to  1033.18  cm−1.  These  changes
demonstrate increased sulfidization of the azurite surface in
the presence of (NH4)3PO4, possibly because the surface be-
comes more hydrophobic. In addition, a more intense charac-
teristic peak was obtained from the azurite surface after the
(NH4)3PO4–Na2S–NaIX  treatment,  which  indicates  that  ad-
sorption of xanthate on the azurite surface was enhanced by
the addition of (NH4)3PO4 before the Na2S treatment.

Because  FT-IR  showed  that  the  addition  of  (NH4)3PO4

was an important factor enhancing the adsorption of xanthate
on the azurite surface, the associated adsorption mechanism
was  investigated  by  UV–Vis  spectroscopy.  The  residual
xanthate concentrations in the dispersions after azurite inter-
action with the flotation agents were determined and the up-
take of xanthate was calculated (Fig. 11). The data show that
increasing the initial xanthate concentration in the dispersion
increased the uptake of xanthate by the azurite (Fig. 11(a)).
Compared  with  Na2S  treatment  alone,  the  consumption  of
xanthate  was  also  increased  in  the  presence  of  (NH4)3PO4,
which indicates that more S species have been formed on the
azurite  surface.  Furthermore,  uptake  of  the  collector  de-
creased with increasing addition of Na2S to the azurite–Na2S
system (Fig. 11(b)), which demonstrates that the addition of
Na2S increased  the  stability  of  the  azurite  surface  and  con-
sequently  reduced  the  surface  adsorption  of  the  collector.
Furthermore, the consumption of xanthate was lower in the
presence of (NH4)3PO4, which further verified that (NH4)3PO4

increased  the  extent  of  sulfidization  of  the  azurite  surface
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such  that  the  stability  of  the  mineral  surface  was  enhanced
during the flotation process. This effect explains the greater
flotation recovery obtained after incorporating (NH4)3PO4 in
the dispersion. The uptake of xanthate increased with the in-
crease in the (NH4)3PO4 concentration from 5 × 10−5 to 5 ×
10−4 mol/L,  although  further  increase  in  the  amount  of
(NH4)3PO4 had no effect on the consumption of NaIX (Fig.
11(c)). These results confirm that a suitable (NH4)3PO4 con-
centration can enhance the stability of the azurite surface and
also decrease the uptake of the xanthate collector. Therefore,

we consider that addition of (NH4)3PO4 to the pulp solution
not only improves the flotation recovery of azurite but also
decreases the amount of xanthate that  must be used, poten-
tially making the process more economical.

The  enhanced  sulfidization  of  the  azurite  surface  by  the
(NH4)3PO4 increased the adsorption of the xanthate collector
on the azurite surface, and consequently improved the flota-
tion of the azurite. On the basis of the above data, a model is
proposed  to  explain  the  enhanced  sulfidization  obtained  by
adding (NH4)3PO4 during the azurite flotation process (Fig. 12).
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Fig. 11.    Consumption of xanthate by azurite surfaces treated with different (a) NaIX, (b) Na2S, and (c) (NH4)3PO4 concentrations
(Na2S: 1 × 10−3 mol/L; (NH4)3PO4 and NaIX: 5 × 10−4 mol/L).
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Fig. 12.    Diagram showing the enhanced sulfidization of the azurite surface by ammonium phosphate.
 
 

4. Conclusion

This  work  investigated  the  enhanced  sulfidization  of  the
azurite surface obtained by the addition of (NH4)3PO4 to the
flotation system. Numerous tests and surface analysis meth-
ods were used to verify the effect of this reagent during the
sulfidization flotation process. The results of micro-flotation
experiments  indicated  that  the  flotation  recovery  of  azurite
increased  following  the  addition  of  (NH4)3PO4.  ToF-SIMS
and XPS analyses showed that, compared with the azurite +
Na2S  system,  more  sulfide  species  were  generated  on  the
mineral surface in the azurite + (NH4)3PO4 + Na2S system to-
gether  with  a  higher  content  of  Cu(I)  species,  which  im-
proved the adsorption of xanthate. Zeta-potential and contact
angle  measurements  confirmed  that  the  incorporation  of
(NH4)3PO4 improved the surface sulfidization of the azurite,
thereby increasing the hydrophobicity of the mineral and aid-
ing  in  flotation  recovery.  Adsorption  experiments  showed
that  the  (NH4)3PO4 +  Na2S  treatment  not  only  increased

xanthate adsorption on the azurite surface but also decreased
the  consumption  of  the  xanthate  collector.  Hence,  surface
modification of the azurite by (NH4)3PO4 increased the num-
ber  of  copper  sites  on the  azurite  surface and formed more
CuS species compared with the use of only Na2S. This inter-
action promoted further adsorption of the collector and resul-
ted in increased azurite floatability in the azurite + (NH4)3PO4

+ Na2S system. 
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