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Abstract: Alloys designed with the traditional trial and error method have encountered several problems, such as long trial cycles and high
costs. The rapid development of big data and artificial intelligence provides a new path for the efficient development of metallic materials, that
is, machine learning-assisted design. In this paper, the basic strategy for the machine learning-assisted rational design of alloys was introduced.
Research progress in the property-oriented reversal design of alloy composition, the screening design of alloy composition based on models es-
tablished using element physical and chemical features or microstructure factors, and the optimal design of alloy composition and process para-
meters based on iterative feedback optimization was reviewed. Results showed the great advantages of machine learning, including high effi-
ciency and low cost. Future development trends for the machine learning-assisted rational design of alloys were also discussed. Interpretable
modeling, integrated modeling, high-throughput combination, multi-objective optimization, and innovative platform building were suggested
as fields of great interest.
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1. Introduction

The rapid development of high-end manufacturing fields,
such as aerospace, energy and power, and electronic inform-
ation, poses huge challenges to the research and property im-
provement  of  metallic  materials  [1–4].  Examples  of  these
materials  include  corrosion-resistant  ultrahigh-strength  and
high-toughness aluminum alloys used for the structural parts
of large passenger aircraft [5], directional or single crystal su-
peralloys used for  the core hot-end parts  of  heavy-duty gas
turbines [6], and high-strength and high-conductivity copper
alloys  used  for  high-end  integrated  circuit  lead  frames  and
electronic component connectors [7].

Traditional research and development methods for metal-
lic materials mainly rely on plenty of experimental trials as-
sisted  by  instructive  theoretical  calculations  or  simulations;
this process requires long research cycles and high costs, and
the  high-efficiency  and  low-cost  design  requirements  of
high-end  key  metallic  materials  are  difficult  to  meet.  Ap-
proximately 10–20 years are needed to reach the final indus-
trial application, and the iteration of new materials seriously
lags  behind  the  product  design.  To  accelerate  material  re-
search and meet the developmental needs of high-end manu-
facturing, the United States proposed the “Material Genome
Initiative,” and  China  launched  the “Material  Genome  En-
gineering  National  Key  Research  and  Development
Program.” These strategies aim to shorten the research cycle

and  reduce  the  research  cost  by  developing  common  key
technologies,  such  as  high-throughput  computation,  high-
throughput experiments, and big data technology [8].

In recent years, data-driven machine learning-assisted ma-
terial  design  has  rapidly  developed,  and  the  research  of
metallic  material  design  based  on  machine  learning  predic-
tion has achieved important breakthroughs in material struc-
ture  and  performance  prediction,  composition  design,  and
process optimization [9–12]. In microstructure and property
prediction, machine learning models are used to directly pre-
dict  the  microstructure  and properties  of  metallic  materials.
For  example,  density  functional  theory  (DFT)  calculation
data were used by Wang et al. [13] to build a model predict-
ing the elastic constant of alloys and by Huber et al. [14] to
build a model predicting the solute grain boundary segrega-
tion  energy  of  alloys.  In  composition  design,  the  type  and
content of alloying elements are considered, and the physical
and chemical features of materials are used as input. Agraw-
al  and Choudhary [15]  applied  elemental  compositions  and
processing  parameters  as  input  and  selected  a  suitable  al-
gorithm from 40 available ones to model and predict fatigue
strength  and  optimize  steel  composition.  Huang et  al. [16]
analyzed 401 sets of sample data obtained from literature, ex-
tracted  empirical  features,  and  established  a  classification
model of the high-entropy alloy phase. Important progress in
solving the time-consuming and laborious design and para-
meter optimization of alloys has also been achieved through 
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machine learning-assisted design [9,10,17]. Chen et al. [17]
proposed a machine learning-aided process parameter optim-
ization strategy based on Pareto front analysis for Mg alloy
aging treatment.

This  article  focused on the machine learning-assisted ra-
tional  design  of  alloys  and  the  related  improvement  on  re-
search  efficiency.  Combining  relevant  research  works,  this
study introduced the basic strategy for the machine learning-
assisted rational  design of alloys and reviewed the research
progress  in  the  following  three  areas:  property-oriented  re-
versal design of alloy composition, screening design of alloy
composition  based  on  models  established  using  element
physical and chemical features or microstructure factors, and
optimal design of alloy composition and process parameters
based  on  iterative  feedback  optimization.  Future  develop-
ment trends for the machine learning-assisted rational design
of  alloys  were  also  discussed.  This  paper  provides  a  refer-
ence  for  related  scientific  and  technological  workers  inter-
ested in this field. 

2. Basic  strategy  for  material  design  via  ma-
chine learning

The basic strategy of applying machine learning to metal-
lic material design includes three aspects: data collection and
processing, machine learning model construction and valida-
tion, and material design, as shown in Fig. 1. Dataset is the
basis  of  machine  learning  modeling,  and  the  amount  and
quality of data are the keys to determining the accuracy and
generalization  ability  of  the  machine  learning  model.  High
accuracy is a prerequisite for the application of the machine
learning model in the rational design of materials because this
parameter  affects  the  prediction  reliability  during  material
design.  Machine  learning  models  often  require  appropriate
algorithms based on the characteristics of the research prob-
lem. Material design is the ultimate goal of machine learning
prediction  to  find  high-performance  alloys  that  meet  the
design requirements.
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Fig. 1.    Basic strategy for machine learning-assisted metallic material design. RF—Rondom forest; ANN—Artificial neural network;
SVM—Support vector machine; GPR—Gaussian process regression.
 
 

2.1. Data collection and preparation

Data sources for metallic materials mainly include literat-
ure collection, database acquisition [11] (as shown in Table 1),
simulation calculation, or experimental acquisition. The data
types mainly include numerical data, character data, picture
data, and voice or video.

Datasets  collected  from  literature  or  databases  usually

have  problems,  such  as  data  duplication,  missing,  and  out-
liers, making them difficult to directly use in machine learn-
ing  modeling.  Hence,  data  preprocessing  is  required.  Com-
monly used data preprocessing methods for metallic material
design  mainly  include  removing  unique  attributes,  pro-
cessing missing values, and standardizing data. The data scale
is  standardized by making the data  obey a  normal  distribu-

Table 1.    Databases for metallic material design

Name Description URL
AFLOWLIB First principle high-throughput computed structures and properties of inorganic materials http://aflowlib.org
Materials
Project

Open web-based tool for first principle computed structures and properties of known and
predicted materials https://materialsproject.org

OQMD Open Quantum Materials Database, first principle computed structures and properties http://oqmd.org
ICSD Inorganic Crystal Structure Database https://icsd.fiz-karlsruhe.de
MatNavi The NIMS Materials Database including polymer, inorganic materials, metallic materials, etc. http://mits.nims.go.jp

MatWeb The online materials information resource for various engineering materials, including
thermoplastics, semiconductors, and fibers http://matweb.com
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tion to smoothly facilitate machine learning modeling [18]. 

2.2. Model construction

Machine learning modeling aims to establish a function y
= fmodel(x) between input and output and make fmodel(x) as close
to the real function relationship freal(x) as possible by optimiz-
ing  the  model  parameters.  Before  the  model  is  established,
the input variable x and output variable y of the specific re-
search problem must be clarified. In the research of metallic
materials, y commonly  includes  the  physical  and  chemical
properties, macroscopic properties, and microstructure of the
material. In the inverse design of alloy composition, the out-
put variable y is the type and content of chemical elements.
Related research [19–20] pointed out that in the study of the
influence  of  composition  on  material  properties,  extracting
the physical and chemical factors of the element and convert-
ing  the  composition  into  physical  and  chemical  features  as
input can improve the accuracy and generalization ability of
the model.

No single strategy has been established for machine learn-
ing modeling,  and different  research objects  generally  need
different  algorithms  [21].  Therefore,  a  suitable  machine
learning algorithm must be selected according to the distribu-
tion of the dataset and the relationship between y and x when
building  a  machine  learning  model.  Commonly  used  ma-
chine  learning  algorithms  mainly  include  linear  algorithms,
decision  tree-based  algorithms  [22],  artificial  neural  net-
works  [23],  support  vector  machines  [24],  and  Bayesian-
based algorithms [25].  Linear-based algorithms are  suitable
for handling simple relationships with simple operation and
strong  interpretability.  Algorithms  based  on  decision  trees
have  strong  interpretability  and  are  suitable  for  processing
high-dimensional  data.  For  example,  random  forest  de-
creases the influence of inputs that contribute less to the out-
put  when  modeling;  this  algorithm is  appropriate  for  prob-
lems with a large number of inputs and a strong correlation
between  input  variables.  An  artificial  neural  network  re-
quires  a  certain  amount  of  sample  data  because  the  model
parameters  are  optimized  through  iteration.  Support  vector
machine maps the data to high dimensions through the ker-
nel  function  and  solves  the  model  parameters  by  convex
function; the modeling speed is fast, and the algorithm is suit-
able  for  small  datasets.  Bayesian-based algorithms describe
the problem in a probabilistic manner; for example, Gaussi-
an process regression can quantify the prediction uncertainty
through the a priori inference of the posterior and is suitable
for datasets containing noise. 

2.3. Material design and experimental verification

The  ultimate  goal  of  machine  learning  modeling  is  to
guide  the  design  and  development  of  materials.  After  the
mapping  relationship  between  material  features  and  target
variables has been established by machine learning, the tar-
get variables (such as material properties) can be predicted in
an unknown space to explore the optimal material composi-
tion and processing. In addition, machine learning modeling

can  also  be  combined  with  optimization  algorithms to  effi-
ciently  explore  the  unknown space  globally  and  realize  the
optimal design of materials. After the optimal metallic mater-
ial design is obtained using the above two ways, the reliabil-
ity of the design is experimentally verified. In alloy composi-
tion optimization and effective design of process parameters,
experimentation is an indispensable step for iterative design.
The  experimental  conditions  and  methods  used  in  experi-
mental  verification  or  iterative  experiments  should  be  con-
sistent with the dataset to reduce errors generated by the ex-
perimental system. 

3. Three typical  rational  designs based on ma-
chine learning

In recent years, machine learning-assisted material design
has  rapidly  developed  and  has  been  widely  studied  [9–17].
To change the traditional experience-based trial and error re-
search  model  and  realize  the  rational  design  of  alloys,  we
have  developed  three  typical  methods.  One  is  to  achieve
property-oriented  alloy  composition  design,  that  is,  alloy
composition inverse design with the required properties. The
second is to explore the essential physical and metallurgical
factors of composition that affect properties and create the al-
loy composition screening design on the basis of the models
using these material features as input. The third is to optim-
ize the design of alloy composition/process parameters based
on iterative feedback optimization. 

3.1. Property-oriented  inverse  design  of  alloys

Compared with the trial and error method guided by hu-
man  experience,  the  use  of  data-driven  machine  learning
methods for establishing the relationship among the compos-
ition, structure, and property of materials and guiding materi-
al  research  and  development  can  significantly  improve  the
efficiency and reduce the cost of material research, engineer-
ing,  and  application.  In  engineering  applications,  material
property  requirements  are  first  proposed  according  to  the
specific  application  environment,  and  suitable  materials  are
then  designed  according  to  the  property  requirements.  This
method  is  called  inverse  design  [26],  an  effective  way  to
break the existing material design experience and explore the
unknown  material  space  and  a  solution  for “tailor-made”
design  materials  to  meet  the  application  requirements.  At
present, studies on metallic materials have generated a large
number of candidate component spaces according to the re-
quirements  of  target  property  and  designed  materials  that
meet the performance requirements by using optimization al-
gorithms, such as simulated annealing algorithm [27–29], ge-
netic algorithm [29–30], and particle swarm algorithm [31].
Nevertheless,  the  inverse  design  of  alloy  composition  re-
mains  difficult  to  achieve  through  reverse  modeling  or  en-
coding–decoding.

With reference to the idea of generative adversarial nets,
the  authors  [32]  developed  an  alloy  composition  inverse
design  system  Machine  Learning  Design  System  (MLDS)
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using  back propagation  neural  network  modeling  [33].  The
system integrates  two neural  network modules  of  composi-
tion→property  forward  model  prediction  and  property→
composition  design  to  realize  the  inverse  design  of  alloy
composition oriented to property requirements, as shown in
Fig.  2.  MLDS  includes  three  subsystems:  model  training,
composition design, and property prediction. After paramet-
er optimization based on a given sample, a C2P model with
high reliability (component→performance) and a P2C mod-
el  with low reliability (performance→component)  were ob-
tained. The P2C model was then used to screen the potential
alloy  composition  in  the  unknown  composition  space,  and
the selected alloy composition was employed as the input in

the C2P model to predict the target property. The alloy com-
position provided by the P2C model was evaluated accord-
ing to the target property using the prediction error of prop-
erty  as  the  criterion:  if  the  prediction  error  exceeds  a
threshold, then the MLDS will be trained and designed again
to screen out the appropriate alloy composition. On the basis
of  hundreds  of  collected  sample  data,  a  new  high-strength
and  high-conductivity  copper  alloy  Cu–3.00Ni–0.60Si–
0.16Zn–0.15Cr–0.03P  (ultimate  tensile  strength  775  ±  10
MPa,  conductivity  48.0%  ±  0.5%  IACS,  International  An-
nealed Copper Standard) was developed as a candidate ma-
terial for large-scale integrated circuit lead frames.
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Jiang et al. [34] used MLDS to design three groups of ul-
trahigh-strength, high-toughness aluminum alloys under ulti-
mate  tensile  strength  of  700–750  MPa,  fracture  toughness
(KIC) 33–35 MPa·m1/2, and elongation (δ) 8%–10%. In each
group of designed alloy, a typical alloy composition was se-
lected for experimental verification. As shown in Fig. 3, the
three  typical  aluminum  alloys  have  achieved  ultrahigh
strength, high elongation, and high fracture toughness. This
case study serves as a reference for the design of complex al-
loys with multi-objective property requirements  and further

confirms  the  feasibility  of  adopting  MLDS  for  the  inverse
design of alloy composition. 

3.2. Screening design of alloy compositions based on ma-
terial features

During  the  initial  application  of  machine  learning  in  the
field of metallic materials,  researchers first  tried to use ma-
chine learning methods to establish a model of the relation-
ship between material composition and microstructure/prop-
erties and then to develop new materials [35–40]. However,
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the machine learning model based on alloy element content
and property value is a model that knows the relationship but
not the reason (labeled as a phenomenological model in this
paper).  This  model  cannot  directly  reveal  the  physical  and
chemical characteristics of the elements, the interactions and
reactions between the elements,  the types and volume frac-
tions of the phases, and other physical and chemical mechan-
isms or metallurgical mechanisms that affect the properties of
materials. Therefore, the screening and replacement design of
alloying  elements  and  the  discovery  of  new  alloying  ele-
ments and new alloys will be difficult to realize with the phe-
nomenological model. Machine learning modeling (mechan-
ism  model)  based  on  the  analysis  of  physicochemical  fea-
tures  of  alloy  elements  or  material  microstructure  features
(material features) is expected to solve these problems. This
section introduces the research progress in metallic material
selection and design based on material features from three as-
pects:  construction,  screening,  and  application  of  material
features. Among these, material features can be constructed
by  applying  the  physicochemical  parameters  of  elements,
simulation calculation, and domain knowledge. Prior to mod-
eling, a large number of material features must be screened to
avoid the disaster of dimension and obtain the optimal subset
of material features for material design. 

3.2.1. Construction of material features
The  informatic  description  of  materials  contains  the  fol-

lowing: description of alloy element types and physicochem-
ical  characteristics;  direct  description of  material  structures,
such as cell  constants;  indirect  description of organizations,
such as phase volume fractions; and description of material
system characteristics,  such as entropy and enthalpy related
to  thermodynamics.  These  descriptions  are  collectively  re-
ferred to as material features. Pearson manual [41] provides a
variety  of  physicochemical  characteristics  corresponding  to
each  element,  including  atomic  size  factor,  electrochemical
factor, thermodynamic factor, Mendeleev number factor, and
cohesive energy factor. Some studies [42–45] used these ele-
mental  physicochemical  characteristics  and  material  com-
position to construct the factors representing the material by
calculating  the  mean  and  standard  deviation,  known  as
“descriptors.” The descriptors constructed by this method ex-
hibit stability and strong interpretability. Stability is reflected
as the ability to always map the components to the material
feature space in the same dimension, regardless of changes in
the element type. Interpretability is reflected as the intrinsic
relationship between the basic features of materials and prop-
erties and can be used to intuitively analyze the mechanism
of components affecting properties.

In addition to the physicochemical characteristics of ele-
ments used to construct descriptors, the features representing
the inherent properties of materials can also be established by
simulation  calculation.  For  example,  material  features  such
as  energy,  electronic  structure,  stability  of  precipitates,  co-
herent relationship with matrix and material elastic modulus
can  be  obtained  by  first-principles  calculations  [46–48].
However, simulation calculation often requires large calcula-

tions and time costs.  By contrast,  the use of domain know-
ledge is a convenient and effective way to guide the selection
of material features. For example, in the phase classification
of high-entropy alloy, multiple empirical parameters are se-
lected as material features on the basis of the ideal mixing en-
tropy that can reflect the mixing degree of each phase or oth-
er  related  domain  knowledge;  good  results  have  been
achieved with this approach [49–51].

With the use of the above methods to construct  material
features, the obtained material features can also be combined
with basic mathematical operators; the space of material fea-
tures can be further expanded through nonlinear operations,
which can be applied to the mining of other nonlinear rela-
tionships [52–53]. 

3.2.2. Screening of material features
With the continuous development of computer algorithms

and material science knowledge, many material feature con-
struction methods have been developed and applied to the ra-
tional  design  of  alloys.  However,  dimension  disaster  arose
from the huge set of material features. A solution is to estab-
lish an accurate model that efficiently and quickly screens the
features  with  an  important  effect  on  the  target  parameters.
Therefore,  material  feature  screening  methods  based  on
mathematical statistics and machine learning algorithms have
been  developed  rapidly.  Some  examples  include  filter
screening, embedded screening, and wrapper screening.

Filter screening considers the information gain or Pearson
correlation [54] between the material characteristics and tar-
get parameters. Features are sorted by importance, and those
not  linearly  related  to  the  target  parameters  are  eliminated.
Although this method can quickly eliminate a large number
of material features, the nonlinear relationship between fea-
tures and target parameters has not been taken into consider-
ation.  Embedded  filtering  aims  to  select  material  features
while  constructing  classifiers;  examples  include  least  abso-
lute shrinkage and selection operator [55] and random forest
importance ranking [56]. The above two screening methods
focus on the importance of the influence of features on target
parameters,  but  the  dependence  between  features  is  neg-
lected. Considering the coupling effect between multiple ma-
terial features, the wrapper screening method is often used in
greedy search strategies, such as backward recursive feature
elimination [57], which fully considers the impact of feature
subsets on target parameters but has a relatively low screen-
ing efficiency. This method screens features by judging the
accuracy  of  the  model,  and  each  feature  is  treated  equally.
Domain knowledge can also be filtered until the features are
selected to retain the focus on features. For example, a data-
driven multi-layer feature selection method incorporating do-
main expert knowledge (DML-FSdek) was proposed [58], in
which  the  domain  expert  knowledge  is  quantified  by
weighted scoring and integrated into the selection process to
eliminate the risk of key features being deleted. 

3.2.3. Application of material features
Clarifying the key material  features that  affect  the target

parameter is conducive to mining the impact mechanism of
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composition  on  target  parameters  such  as  physicochemical
properties  and  realizing  a  rational  and  efficient  design
through key feature modeling. By using material feature ana-
lysis combined with correlation screening, recursive elimina-
tion, and exhaustive method, the authors [59] found that the
key features affecting the properties of solution-strengthened
conductive  copper  alloys  are  absolute  electronegativity,
atomic radius, and nuclear electron distance. They then pro-
posed a new method to design high-performance alloys ac-
cording  to  the  influence  of  key  material  features  on  alloy
properties. A new alloy element, indium, which can signific-
antly improve the tensile strength and conductivity of the al-
loy, was found by screening the possible solid solution ele-

ments in the periodic table. Four new solution-strengthened
conductive  copper  alloys  with  indium  content  less  than
0.7wt% were designed and prepared, and their comprehens-
ive properties were significantly higher than those of the ex-
isting  solution-strengthened  conductive  copper  alloys,  as
shown in Fig. 4. The key material features were used to pre-
dict  the  properties  of  the  solution-strengthened  conductive
aluminum alloy,  and  the  prediction  model  with  an  error  of
less than 10% was established. This study shows that these
material  features  are  also  the  key  intrinsic  factors  affecting
the properties of solution-strengthened conductive aluminum
alloys.
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Material features guided by domain knowledge have been
widely used. Yeh [60] proposed the use of various empirical
material features to find the rules controlling the phase stabil-
ity of high-entropy alloys, including mixing enthalpy (ΔHmix)
and mixing entropy (ΔSmix). Wen et al. [61] constructed the
material  features  of  solution-strengthened  high-entropy  al-
loys  using  domain  knowledge  and  screened  those  features
and the key parameters of the traditional solution strengthen-
ing models (S-, T-, and V-models) by applying a variety of
machine  learning  algorithms.  They  found  that  poor  atomic
electronegativity  is  the  control  parameter  of  solution-
strengthened  high-entropy  alloys.  Finally,  the  mathematical
expression  of  solution  strengthening  based  on  poor  elec-
tronegativity  was  established.  The model  is  simple,  easy  to
use, and has improved accuracy compared with the tradition-
al model. 

3.3. Optimization  design  of  alloys  based  on  iterative
feedback optimization

A machine learning model with high prediction accuracy
and great generalization ability is difficult to establish using
existing data, especially when a new alloy or a new process is
being developed or when the sample data are difficult to ob-
tain due to experimental difficulties or high costs. Hence, the
active  learning  method  that  uses  the  experimental  iterative

feedback  optimization  method  to  reduce  the  number  of  re-
quired experiments has attracted attention. The main point of
this technique is to design experimental points according to
the  predicted  value  and  prediction  uncertainty  of  the  ma-
chine learning model  and then iteratively optimize the next
modeling and material design through the feedback of the ex-
perimental  results  until  the  model  prediction  meets  the  re-
quirements [9]. The specific method includes four steps: data
acquisition,  machine  learning  model  construction,  experi-
mental point design, experimental testing, and data feedback.
Among these,  the  experimental  point  design  strategy  is  the
key to improving design efficiency.

σ

Commonly  used  experimental  point  design  methods
mainly include selection according to model prediction and
selection  based  on  Bayesian  optimization  utility  function.
The  Bayesian  optimization  method  calculates  the  utility
function through the model uncertainty and uses the value of
the  utility  function  to  design  experimental  points,  thereby
balancing  exploration  and  exploitation  and  exhibiting  high
optimization efficiency. One example is the widely used ex-
pected improvement (EI) utility function. EI obtains the pre-
dicted  value µ and  prediction  uncertainty  by  employing
modeling  algorithms,  such  as  Gaussian  process  regression,
and  then  calculates  the  target  expected  improvement  using
the  model  predicted  value  and  prediction  uncertainty  as
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shown in Eq. (1).
EI = σ

[
φ
(
z)+ zϕ(z )] (1)

φ (z) ϕ (z)
z = (µ−µ∗)/σ

where  and  are the standard normal density and dis-
tribution functions (integral in (z, +∞)), , and µ*

is benchmark target.
The  authors  [62]  used  the  Bayesian  optimization  al-

gorithm  to  balance  global  optimization  and  local  optimiza-
tion by calculating and comparing utility functions. As a res-
ult,  the optimization efficiency was improved. Given its ef-
ficacy in solving the design problem of insufficient data, this
method is  often applied to  the  rapid optimization design of
the composition and process parameters for complex alloys.
In this paper, this method is labeled as optimization design. 

3.3.1. Composition design
Experimental  iterative  active  learning  has  less  depend-

ence on the amount  of  data  and high design efficiency and
has  a  substantially  effect  on  the  metallic  material  composi-
tion  design.  This  method  has  been  applied  to  the  composi-
tion  design  of  various  metallic  materials,  such  as  shape
memory alloys [63–64] and high-entropy alloys [65]. Xue et
al. [63] used the active learning strategy to optimize the com-
position of Ti–Ni-based shape memory alloys with minimal
thermal hysteresis of phase change. On the basis of 22 exper-
imental  data,  a  Support  Vector  Machine  model  was  estab-
lished using features such as valence electron concentration
and electronegativity  as  inputs.  Afterward,  the  EI  values  of
candidate compositions were calculated, and the alloy com-
position  with  the  largest  EI  value  was  selected  for  experi-
mental  verification.  The  verification  value  was  fed  back  to
the machine learning model for iteration. After six iterations
of feedback, a new type of shape memory alloy, Ti–Ni–Cu–
Fe–Pd,  was  successfully  developed;  this  alloy  has  a  phase
change thermal hysteresis value (1.84 K) lower than that of

the existing samples in the original data set.
Owing to the complexity of the composition–process–mi-

crostructure–property  intrinsic  relationship  and  application
scenarios  of  metallic  materials,  attention  must  be  paid  to  a
variety of property indicators during design and preparation.
Some of the properties often show conflicting relationships,
such  as  the  strength  and  plasticity  of  steel  and  the  strength
and  conductivity  of  copper  alloys.  Therefore,  traditional
design  methods  cannot  be  applied  to  simultaneously  im-
prove  the  conflict  properties  of  mechanical  and  electrical
conductivity of complex alloys. The authors [62] proposed an
alloy design strategy based on Bayesian optimization: com-
bining key alloy factor screening with Bayesian optimization,
constructing a multi-objective utility function to design alloy
composition, and iteratively optimizing the properties of the
alloy.  One  example  is  the  aging  precipitation-strengthened
complex  copper  alloy.  First,  the  combination  of  correlation
screening,  recursive  elimination,  and  exhaustive  screening
was used. Five key alloy factors that affect alloy hardness and
six  key  alloy  factors  that  affect  electric  conductivity  were
screened.  The  relationship  models  for  hardness–key  alloy
factor and electrical conductivity-key alloy factor with errors
less than 7% and 9%, respectively, were then established. Fi-
nally,  the  Bayesian  optimization  algorithm  was  used  to
design  the  composition  of  the  copper  alloy.  After  iteration
through  experimental  tests,  the  Cu–1.3Ni–1.4Co–0.56Si–
0.03Mg alloy  with  excellent  comprehensive  properties  was
found. The measured tensile strength and electric conductiv-
ity reached 858 MPa and 47.6% IACS, respectively, which
are better than those of the previously reported high-strength
and  medium-conductivity  Cu–Ni–Co–Si  alloy.  Therefore,
the  simultaneous  improvement  of  contradictory  mechanical
and electrical properties has been achieved, as shown in Fig. 5.
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3.3.2. Process parameter optimization
Process  parameter  optimization  is  another  important  ap-

plication  field  of  experimental  iterative  feedback  optimiza-
tion. The fabrication of metallic materials is complex, and the
formulation and optimization of process parameters are time-
consuming and laborious,  especially for newly designed al-
loys that often lack sufficient data support. Therefore, redu-

cing the number of process optimization experiments through
experimental feedback active learning is important to rapidly
achieve  the  design  and  optimization  of  process  parameters.
Liu et al. [66] used active learning to optimize the hardness
of  Mg–Al–Sn–Zn–Ca–Mn  alloy  and  established  an  XG-
Boost  machine learning model with variables such as com-
position, aging temperature, and aging time. The alloy com-
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position and process parameters exceeding the highest hard-
ness value in the initial dataset were found after only two ex-
perimental iterations.

The authors [67] established a dual-utility function optim-
ization design based on the Bayesian optimization adaptive
iterative algorithm by using mechanical and electrical prop-
erties as the optimization objectives. They quickly designed
the deformation–aging process parameters for Cu–Ni–Co–Si
alloy,  as  shown in Fig.  6.  After  four  iterations,  the  process
parameters that can simultaneously improve the mechanical
and electrical properties were obtained (cold rolling deform-

ation 90%, aging temperature 450°C, and aging time 1.25 h).
The alloy hardness, tensile strength, and electric conductivity
reached HV 285 ± 4, 872 ± 3 MPa, and 44.2% ± 0.7% IACS,
respectively;  the  product  of  strength  and  conductivity  in-
creased  by  7.8%;  and  the  number  of  experiments  was  re-
duced  by  99.4%  compared  with  that  in  the  traditional  trial
and error method. This research has overcome the problems
of the long experiment design cycle, low efficiency, and high
cost  of  alloy  deformation–aging  parameters  and  provides  a
new  idea  for  the  rapid  design  of  material  processing
parameters.
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4. Summary and outlook

Data-driven machine learning has rapidly developed into a
disruptive method for rational design and efficient research of
metallic  materials  and  effectively  broke  through  the  limita-
tions of traditional experience-based trial and error methods.
Through relevant research, this article reviewed the machine
learning-assisted rational and efficient design of alloys.  Re-
search progress was reviewed by focusing on three aspects:
the inverse design of alloy composition for property require-
ments, the screening design based on the physical and chem-
ical features of alloy elements or the structural factors of ma-
terials,  and the alloy composition and processing parameter
optimization based on iterative feedback.

Future research on the machine learning-assisted rational
design of alloys may focus on the following: (1) combining
the mechanism of material science with data models to estab-
lish an interpretable machine learning model that reveals the
intrinsic characteristics of material composition–process–mi-
crostructure–property relations and to achieve the alloy ele-
ment screening design, alternative design, and rapid discov-
ery of new alloys; (2) developing research methods that in-
tegrate  computational  material  engineering  and  machine
learning, break through the cross-scale modeling and design
problems  of  alloys,  and  realize  the  integrated  design  of
metallic  material  composition–process–property;  (3)  com-
bining machine  learning with  material  high-throughput  cal-
culations and experiments to quickly and efficiently discover
and verify new alloys; (4) developing multi-objective collab-
orative  optimization  algorithms  for  engineering-applied  al-
loys according to the comprehensive service performance re-

quirements; and (5) building data-driven innovative research
software and platforms for alloys and promoting the industri-
al application of machine learning. 
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