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Abstract: MgH, with a large hydrogen capacity is regarded as a promising hydrogen storage material. However, it still suffers from high
thermal stability and sluggish kinetics. In this paper, highly dispersed nano-Ni has been successfully prepared by using the polyol reduction
method with an average size of 2.14 nm, which significantly improves the de/rehydrogenation properties of MgH,. The MgH,—10wt% nano-Ni
sample starts releasing H, at 497 K, and roughly 6.2wt% H, has been liberated at 583 K. The rehydrogenation kinetics of the sample are also
greatly improved, and the adsorption capacity reaches 5.3wt% H, in 1000 s at 482 K and under 3 MPa hydrogen pressure. Moreover, the activ-
ation energies of de/rehydrogenation of the MgH,—10wt% nano-Ni sample are reduced to (88 = 2) and (87 = 1) kJ-mol ™, respectively. In addi-
tion, the thermal stability of the MgH,—10wt% nano-Ni system is reduced by 5.5 kJ per mol H, from that of pristine MgH,. This finding indic-
ates that nano-Ni significantly improves both the thermodynamic and kinetic performances of the de/rehydrogenation of MgH,, serving as a bi-

functional additive of both reagent and catalyst.

Keywords: Ni nanoparticle; kinetics; thermodynamics; MgH,; hydrogen storage performance

1. Introduction

Currently, fossil fuels provide 80% of the global energy
demand. Unfortunately, they also cause environmental pollu-
tion and greenhouse effects [1]. The need to find renewable
and clean energy to replace fossil energy has become a glob-
al consensus [2]. Hydrogen has attracted extensive interest
from all over the world as an efficient and sustainable sec-
ondary energy. The so-called hydrogen economy consists of
the production, storage, and transportation of hydrogen, as
well as hydrogen energy applications. However, hydrogen
storage has always been a bottleneck that hampers the applic-
ation of hydrogen [3-7].

During the past decade, many hydrogen storage materials
and technologies have been developed [8]. MgH, has re-
ceived much attention among these solid-state hydrogen stor-
age materials because of its light weight, abundant reserves,
non-toxic nature, and large hydrogen storage capacity, which
has considerable potential for use in hydrogen fuel cells
[9-12]. Excellent solid-state hydrogen storage materials
should be capable of absorbing or releasing a large amount of
hydrogen rapidly under low pressure and ambient temperat-
ure [13]. However, due to the high thermodynamic stability
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and retarded reaction kinetics of MgH,, the system delivers a
high operating temperature and sluggish hydrogen absorp-
tion/desorption rate, making it difficult to meet the require-
ments of practical applications [14—18]. Many efforts, such
as alloying, nanosizing, and catalyst doping, have been made
to overcome these issues [19-25]. Zhang et al. [26] success-
fully synthesized ultrafine MgH, nanoparticles of 4-5 nm,
which can achieve a reversible hydrogen storage of 6.7wt%
at room temperature. Adding catalysts could effectively
lower the working temperature of hydrogen storage, enhance
the desorption, and increase the reversible absorption rate of
hydrogen [27-30]. Theoretically, the doped catalyst can
provide favorable charge transfer and promote heat transfer
in the MgH, system by generating many defects on the sur-
face of MgH, [31-32].

In general, nanoscale catalysts can be in close contact with
MgH, to create more active sites. Therefore, nanoscale cata-
lysts can improve the hydrogen storage performance of
MgH, [33]. Many studies have been conducted on transition
metal catalysts in recent years [34—35]. Specifically, the
transition metals Fe, Co, Ni, and Cu, for example, have been
proven to play an important role in enhancing the hydrogen
storage properties of MgH, [36]. The Ni-doped MgH, com-
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posite, in particular, exhibits exceptional catalytic perform-
ance [37]. Yu et al. [38] and Xie ef al. [39] found that intro-
ducing the transition metals Fe, Co, Ni, Cu, and Zn into
MgH, during the ball milling or dehydrogenation/absorption
cycle processes will form numerous defects at the interfaces
of Fe/MgH,, Co/MgH,, Ni/MgH,, etc., respectively. Such de-
fects considerably aid the splitting of H, molecules and the
recombination of hydrogen atoms. Moreover, Chen et al.
[40] investigated the hydrogen storage performance of the
MgH,—Ni/TiO, system and found that metallic Ni particles
could easily react with Mg to yield Mg,Ni compound during
the dehydrogenation process, and the in-situ produced Mg,Ni
is converted into Mg,NiH, during the subsequent rehydro-
genation, acting as a hydrogen pump. Shao et al. [41] pre-
pared a stable Ni-metal organic framework (MOFs) catalyst
with uniform and dispersed Ni atoms that can improve the
hydrogen storage performance of the MgH, system. Huang
et al. [42] created highly dispersed metal-supported catalysts,
including a series of 3d transition elements, La and Ce, on N-
doped carbon (M-N-C). The kinetics of MgH,-M—N—Cs
were correlated with the electronegativity of M in M—N—Cs
(V, Cr, Fe, Co, Ni, Cu, Zn), indicating that M—N—Cs with
high electronegativity core elements can enhance the kinet-
ics. In addition, MgH,~Ni-N-C500 with the highest elec-
tronegativity (Ni, 1.91) was demonstrated remarkable kinetic
performance. Zhang et al. [43] synthesized a series of nickel-
based compounds (Ni;C, Ni;N, NiO, and Ni,P) and found
that the catalyst obtained by combining Ni with low elec-
tronegativity elements (Ni;C) better enhanced the hydrogen
storage performance of the MgH, system. In addition, El-
Eskandarany et al. [44] employed Ni spheres as a grinding
medium, progressively doping Ni spheres into MgH,
powder. Their samples after ball milling exhibited a low de-
hydrogenation temperature (491 K) and a dehydrogenation
activation energy (75 kJ-mol ). Recent research has found
that the size of the Ni particles has a major impact on the ad-
sorption and dehydrogenation kinetics of MgH,. Si et al. [45]
discovered that the initial dehydrogenation temperature of the
MgH,—5wt% nano-Ni/C system was significantly reduced by
453 K, and the hydrogen absorption kinetics of the system
was noticeably increased by 16-fold compared with that of
the original MgH,. Gao et al. [46] created Ni/Ti;C, catalysts
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with interfacial differences and discovered that when Ni had
the smallest particle size and best dispersibility at the Ti;C,
matrix interface, the most effective catalytic activity was pro-
duced. Chen et al. [47] synthesized Ni nanofibers with a uni-
form diameter of 50 nm and a porous structure composed of
many Ni nano-crystallites, which were easily broken into su-
perfine Ni nanoparticles with an average diameter of 17 nm
by ball milling and uniformly dispersed on the surface of
MgH,. The hydrogen storage significantly improves the per-
formance of MgH,. Zhu et al. [48] designed a self-assembled
two-dimensional MXene-based catalyst (2D-Ni@Ti;C,)
whose Ni particles had an average size of less than 50 nm,
and smaller particles were in the range of 5 nm. The MgH, +
Ni@Ti-MX composite absorbed 5.4wt% H, in 25 s at 398 K
and released 5.2wt% H, in 15 min at 523 K, demonstrating
enhanced hydrogen storage performance. Therefore, the
particle size of the catalyst and its close contact with MgH,
determine its catalytic performance. Rahmalina et al. [49]
also proved that reducing the size of Ni particles is the best
approach to enhance the thermodynamic and kinetic per-
formance of MgH,. However, the best size of Ni and its size
effect on the de/rehydrogenation performance still remain
unclear.

In this paper, we focus on the effect and mechanism of
nano-Ni particles on the thermal stability and catalytic per-
formance of MgH,. Ni particles with size of 1.5-2.5 nm have
been successfully synthesized in this work. The effect of
nano-Ni particle size on the MgH, system has been systemat-
ically studied, along with the catalytic mechanism of nano-Ni
on the MgH, system.

2. Experimental

2.1. Preparation of the MgH,—nano-Ni

The overall synthesis process of nano-Ni particles is
shown in Fig. 1. First, 1.8 g sodium hydroxide (97%, Alad-
din), 0.2241 g nickel acetate tetrahydrate (99%, Aladdin),
2.05 g oleic acid (analytical reagent (AR), Macklin), 0.5 g
polyvinylpyrrolidone (PVP, guaranteed reagent (GR), Sino-
pharm), and 150 mL of 1,2-propylene glycol (AR, Sino-
pharm) were placed in a round-bottom flask. The temperat-
ure was increased to 389 K, and the reagents completely dis-

NaBH,

Illustration of the synthesis of the nano-Ni composite.
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solved with continuous magnetic stirring. The semi-products
were obtained by dropping 30 mL of 1,2-propylene glycol
solution containing 0.486 g of potassium borohydride (98%,
Aladdin) into the solution in a glove box filled with high-pur-
ity argon. Finally, the Ni nanoparticles were collected by
centrifugation and vacuum drying at 353 K for 10 h.

The purchased MgH, (95%, Alfa Aesar) was mixed (QM-
1SP, Nanjing) with the prepared xwt% nano-Ni (x =0, 3, 5,
10, 15) at 450 r/min with a 40:1 ball-to-powder ratio for 5 h.
All samples were treated in a glovebox (Mikrouna Super
1220/750), and their H,O and O, levels were below
0.0001%o.

2.2. Structural and morphology characterization

The phase structure of the composite system was determ-
ined by X-ray diffraction (XRD) and in-situ XRD (Rigaku)
patterns. The morphology was characterized by transmission
electron microscopy (TEM) and scanning electron micro-
scopy (SEM), respectively. High-magnification images were
obtained by using a high-resolution transmission electron mi-
croscope (HRTEM, FEI Tecnai G2 T20). The microstructure
of the phases was analyzed by selected area electron diffrac-
tion (SAED).

2.3. De/rehydrogenation performances

The non-isothermal dehydrogenation performance was
evaluated by using the volume release method (VR), from
which the initial dehydrogenation temperature, the final de-
hydrogenation temperature, and the dehydrogenation capa-
city of the samples were identified. Dehydrogenation onset,

Int. J. Miner. Metall. Mater., Vol. 30, No. 1, Jan. 2023

peak, and cut-off temperatures were determined by temperat-
ure-programmed desorption (TPD) with online mass spectro-
metry (MS, Hiden, UK). The isothermal hydrogenation
curves of the MgH,—nano-Ni system were measured at 394,
421, 450, and 482 K, respectively, under 3 MPa. The pres-
sure-composition isotherm curves (PCI) of MgH, and
MgH,—nano-Ni were tested at different temperatures. Differ-
ential scanning calorimetry (DSC) was performed on a TA
Q2000 instrument, and approximately 5 mg of each sample
was heated from room temperature to 773 K at 5, 10, 15, and
20 K-min ', respectively.

3. Results and discussion

3.1. Characterization of nano-Ni

The TEM images in Fig. 2(a) and (b) show that the pre-
pared catalyst powders are nanoclusters of extremely fine
particles formed by agglomeration. The calculated average
particle size is 2.14 nm, as indicated by the Nano Measure
software, and the particle size is concentrated at 1.5-2.5 nm.
This finding indicates that the particle size is relatively uni-
form, much smaller than that reported in many previous
works [44-45,49-50], which should benefit the catalytic
activity of the catalyst. The XRD pattern of the nanoparticles
is displayed in Fig. 2(c), and all diffraction peaks correspond
to Ni (111), Ni (200), and Ni (220), respectively. This find-
ing demonstrates that the Ni precursor is completely reduced
to metallic Ni after preparation. In addition, the diffraction
peaks broaden while their intensities weaken, further indicat-
ing that the Ni nanoparticles are relatively small.
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Fig. 2.
as-prepared nano-Ni.

3.2. Effects of nano-Ni on the MgH, system

Fig. 3(a) displays the VR curves at a heating rate of
5 K'min' of MgH,~xwt% nano-Ni (x = 0, 3, 5, 10, 15)
samples. Its initial desorption temperature, final desorption
temperature, and desorption capacity can be calculated as
summarized in Table 1. Evidently, the system MgH,—xwt%
nano-Ni (x = 3, 5, 10, 15) starts to release hydrogen in the
temperature range of 492-518 K, which is remarkably lower
than the 580 K for the original MgH, sample. MgH,—3wt%
nano-Ni begins to release hydrogen at approximately 518 K,
which is 62 K lower than that of undoped MgH,. In addition,
the dehydrogenation temperatures of MgH,—5wt% nano-Ni,

0.4 -(b)Mean particle size =2.14 nm

(©) #Ni
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Intensity / a.u.
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0 n n n n n
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(a) TEM image of the as-prepared nano-Ni. (b) Particle size distribution of the as-prepared nano-Ni. (¢) XRD pattern of the

20/(°)

MgH,—10wt% nano-Ni, and MgH,—15wt% nano-Ni are fur-
ther lowered to 510, 497, and 492 K, respectively. Further-
more, the three samples are dehydrogenated by the addition
of nano-Ni before 672 K, with hydrogen releases of 6.5wt%,
6.2wt%, and 5.9wt%, respectively. The MgH,—15wt% nano-
Ni sample delivers an end temperature higher than the
MgH,—10wt% nano-Ni sample; thus, the MgH,—10wt%
nano-Ni sample seems to be the best choice for this work.
Fig. 3(b) shows the TPD-MS curves of the MgH, and
MgH,—10wt% nano-Ni samples at a heating rate of
5 K-min™". For the sample doped by the nano-Ni catalyst, the
dehydrogenation peak is apparently shifted to a lower tem-
perature. The peak dehydrogenation temperature of the
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Fig. 3. (a) Volumetric release curves of as-milled MgH,—xwt% nano-Ni (x = 0, 3, 5, 10, 15); (b) TPD-MS curves of the samples of
MgH,~10wt% nano-Ni and MgH,. The temperature ramping rates are all 5 K-min™'. DSC curves of the (c) as-milled MgH, and (d)
MgH,-10wt% nano-Ni, respectively; the insertion plots show the activation energies of the samples. (e) Isothermal hydrogenation
curves of MgH,—~10wt% nano-Ni at different temperatures; inset is their Arrhenius plots. (f) The fitted lines reflecting the relation-
ship of In[-In(1-@)]-In# built on the basis of the JMA equation; the slope stands for the activation energy E3.

Table 1. Volumetric release curves of as-milled MgH,—-xwt% nano-Ni (x =0, 3, 5, 10, 15)

Sample Initial desorption temperature / K End desorption temperature / K~ Dehydrogenation capacity / wt%
MgH, 580 672 7.2
MgH,-3wt% nano-Ni 518 621 6.6
MgH,—5wt% nano-Ni 510 605 6.5
MgH,—10wt% nano-Ni 497 583 6.2
MgH,—15wt% nano-Ni 492 585 5.9

MgH,—10wt% nano-Ni sample is significantly reduced by 87
K compared with that of pure MgH,. In addition, a minor de-
hydrogenation peak occurs at 673 K after ball milling of pure
MgH,, which is probably caused by the heterogeneous distri-

bution of magnesium hydride particle size according to Ref.
[51].

To further investigate the desorption kinetics, DSC meas-
urements of MgH, and MgH,—10wt% nano-Ni samples were
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performed, as displayed in Fig. 3(c) and (d). The dehydro-
genation temperature of MgH, is significantly lowered by
nano-Ni. The endothermic peak of MgH,—10wt% nano-Ni is
112 K lower than that of the original MgH,. According to the
different heating rates of DSC curves, the activation energy
for desorption was calculated by Kissinger’s equation [52], as
shown in Eq. (1),

=

where S represents the heating rate, E¢ denotes the activation
energy for desorption, 7, stands for the endothermic peak
temperature, and R is the gas constant. The activation energy
of the MgH,—10wt% nano-Ni system decreased to (88 + 2)
kJ-mol ™, indicating that the nano-Ni additive could alleviate
the kinetic barrier of MgH, dehydrogenation and greatly im-
prove the MgH, dehydrogenation kinetics.

Aside from the remarkable improvement in the dehydro-
genation properties, the hydrogen adsorption kinetics of the
MgH,—10wt% nano-Ni sample were also investigated. Iso-
thermal hydrogen absorption measurements are shown in
Fig. 3(e) and (f). An Arrhenius equation [53] could be estab-
lished according to the following equation (Eq. (2)):

M

lnk:—ﬂﬂnA 2)
RT

3)
where £ is the reaction rate constant, £2 denotes the activa-
tion energy of hydrogen absorption, 7 is the temperature, R
stands for the gas constant, and 4 is the pre-exponential
factor. In Eq. (3), « is the hydrogen absorption rate, which
represents the ratio of the sample hydrogen absorption capa-
city to the saturation hydrogen absorption capacity at a cer-
tain time, n is Avrami index, and ¢ is the reaction time. The
activation energy (E?*) was calculated as (87 + 1) kJ-mol™' by
using the Arrhenius formula and the John—Mehl-Avrami
(JMA) formula (Eq. (3)) [54]. As shown in Fig. 3(e), as the
hydrogen absorption temperature of MgH,—10wt% nano-Ni
increases, the saturated hydrogenation capacity gradually in-
creases. In particular, the sample could rapidly absorb
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5.3wt% H, within 1000 s at 482 K and under 3 MPa hydro-
gen pressure. In addition, the sample could absorb a total of
3wt% H, at 394 K. However, Fig. 4 shows that under the
same conditions (482 K, 3 MPa H,), reabsorbing hydrogen is
difficult for MgH, after dehydrogenation, which indicates
that the hydrogen absorption performance of MgH, can be
significantly improved by the addition of nano-Ni.

N

482K 3 MPa

W

N

W

N

—— MgH,-10wt% nano-Ni

Hydrogen absorption capacity / wt%

— MgH,
0 Y a— 1 1 1 1 1
0 100 200 300 400 500 600
Time / s

Fig. 4. Isothermal rehydrogenation curves of as-milled MgH,
and MgH,-10wt% nano-Ni composite at a temperature of 482
K under 3 MPa H,.

The PCI curves of MgH, were measured at 647, 676, 681,
and 698 K, and the MgH,—10wt% nano-Ni sample was
measured at 565, 587, 591, and 604 K, as shown in Fig. 5(a)
and (b). Their Van ’t-Hoff plots are shown in the insets of
Fig. 5(a) and (b). The dehydrogenation enthalpy of MgH,—
10wt% nano-Ni and original MgH, were calculated by using
the Van ’t Hoff equation (Eq. (4)) [55].

P\ 1(-AH
In|—|==—==]+C
P T\ R

where P and P, represent the equilibrium atmosphere and the
normal atmosphere (100 kPa), respectively; T is the temper-
ature; AH means the enthalpy of desorption; R is the gas con-
stant; C represents a constant whose value is equal to AS/R,
where AS is the entropy change (the value of the metal hy-
dride is usually 130 J-mol"-K™". The dehydrogenation en-
thalpy value shifts slightly from (77.7 £+ 0.5) kJ per mol H,
for the original MgH, to (72.2 + 0.5) kJ per mol H, for the

“
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PCI curves of (a) as-milled MgH, and (b) MgH,—-10wt% nano-Ni sample; the inserted Van ’t Hoff plots show the dehydro-
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MgH,—10wt% nano-Ni sample, as shown in Fig. 5(a). Hence,
additional nano-Ni should be the main cause of the lower ini-
tial dehydrogenation temperature of the dehydrogenation.
Therefore, we can conclude that nano-Ni might play a role in
destabilizing MgH, during dehydrogenation.

3.3. Reaction mechanism

The diffraction peaks of the metallic Mg phase appear at
503 K, indicating that the MgH,—10wt% nano-Ni sample be-
gins to decompose and release hydrogen at this temperature,
as shown in Fig. 6. The diffraction peaks of the Mg phase
(PDF: 017-0902) gradually become noticeable with increas-
ing temperature. Meanwhile, the MgH, phase (PDF: 002-
6624) gradually weakens and finally disappears at 673 K,
suggesting that the dehydrogenation is completed. Small
traces of MgO and Mg(OH), are also detected in the XRD
patterns, which could be attributed to the sample’s brief ex-
posure to air while transferred from the glove box to the
holder.

The SAED patterns from TEM image and inverse Fourier
transform are shown in Fig. 7(a) and (b). The plane with a
spacing of 0.225 nm can be considered as lattice fringes of
the MgH, (110) planes (Fig. 7(c)). Crystal planes with spa-
cing up to 0.205 and 0.178 nm correspond to the (111) and
(200) planes of Ni, respectively. Such results confirm that no
intermediate phase is formed during the ball milling and the
ball milling products are Ni and MgH,. On account of the
high surface free energy of small particles, the sample after
ball milling presents an aggregation distribution of small
particles, as shown in Fig. 7(d). The TEM and Fourier trans-
form images of the MgH,—10wt% nano-Ni composite after
dehydrogenation are shown in Fig. 7(e) and (f). They con-
firm the presence of Mg (101), Mg (103), Ni (220), and
Mg,Ni (114) planes in the dehydrogenated products, as
shown by the in-situ XRD in Fig. 6. We can speculate that
nano-Ni is involved in the MgH, dehydrogenation.

Furthermore, as shown in Fig. 7(g) and (h), the (002)
plane of MgH,, the (111) plane of Ni, and the (220) and (400)
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Fig. 6. In-situ XRD patterns of MgH,-10wt% nano-Ni from
room temperature to 673 K.

planes of Mg,NiH, can be recognized in the SAED patterns
of the rehydrogenated sample. The appearance of the
Mg,NiH, phase indicates that the product Mg,Ni, as an inter-
mediate phase in the absorption/desorption process, could
promote the reversible absorption and desorption of the sys-
tem. This result is consistent with the PCI measurement res-
ults, where the system is slightly destabilized during dehyd-
rogenation. For MgH,—Ni, the dehydrogenation is as follows:

3MgH, + Ni —» Mg + Mg, Ni+3H, %)
The rehydrogenation could be expressed as follows:

Mg +H, —» MgH, 6)

Mg,Ni +2H, — Mg,NiH,4 @)

For this system, the dehydrogenation for the second time
is described as follows:
MgH, + Mg,NiH, — Mg+ Mg,Ni + 3H, ®)

In addition, the Ni phase is identified during the dehydro-
genation and rehydrogenation processes, indicating that some
nano-Ni still plays a catalytic role in the system.

Previous work by Chen et al. [50] indicated that the onset
dehydrogenation temperature of MgH, doped with 20-30 nm
Ni particles is 490 K, and the final temperature is about 643
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Fig. 7. (a) TEM, (b) SAED patterns, (c¢) HRTEM, and (d)
SEM images of MgH,-10wt% nano-Ni after preparation. (e)
TEM image and (f) SAED patterns of the sample after dehyd-
rogenation; those clusters are identified as Mg, Mg,Ni, and Ni
according to their SAED image. (g) TEM image and (h) SAED
patterns of the sample after rehydrogenation remaining MgH,,
Mg,NiH,, and Ni phases.
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K. As shown in Table 2, compared with their study, the final
temperature in this work is decreased by 60 K, although the
onset dehydrogenation temperature of MgH, catalyzed by
nano-Ni with an average particle size of 2.14 nm is 497 K.
This finding suggests that the Ni nanoparticles tend to ag-
glomerate in the reaction and weaken the catalytic effect be-
cause of the loss of great active surfaces.

From the results obtained by Chen et al. [50], the dehyd-

Int. J. Miner. Metall. Mater., Vol. 30, No. 1, Jan. 2023

rogenation enthalpy of the MgH,—Ni/CMK-3 system is de-
creased by 3 kJ per mol H,, which is still 2.5 kJ per mol H,
higher than that of the MgH,—nano-Ni system. This result
means that after ball milling, the small Ni nanoparticles
should have a larger interface and be in closer contact with
MgH,, thus more actively participating in the reaction with
MgH, and more effectively destabilizing the MgH, system
than the large Ni nanoparticles can.

Table 2. Initial desorption temperature, end desorption temperature, and Eg of MgH,-10wt% nano-Ni, MgH,-10wt% Ni, and
MgH,
Sample Initial desorption End desorption ES/ AH/
temperature / K temperature / K (kJ-mol ™) (kJ per mol H,)
MgH, (This work) 580 672 170 77.7
MgH,—10wt% nano-Ni (This work) 497 583 88 72.2
MgH,—10wt% Ni [50] 490 643 121.8 —
MgH,—10wt% Ni/CMK-3 [50] 433 568 43.4 74.7

4. Conclusion

Nano-Ni with an average particle size of 2.14 nm has been
synthesized via the reduction method. The optimal
MgH,—10wt% nano-Ni starts to release hydrogen at 497 K
and offers a dehydrogenation capacity of 6.2wt% below 583
K. The dehydrogenated MgH,—10wt% nano-Ni system can
absorb 5.3wt% H, in 1000 s at 482 K under 3 MPa hydrogen
pressure. More remarkably, even at 394 K and 3 MPa hydro-
gen pressure, MgH,—10wt% nano-Ni can uptake 3wt% hy-
drogen. In summary, the synthesized nano-Ni mainly exhib-
its excellent performance in reducing the enthalpy of dehyd-
rogenation of MgH, and its decomposition. However, the
catalytic activity is degraded as a result of the easy agglomer-
ation of particles. Supporting materials such as CMK-3, re-
duced graphene oxide (rGO), and other carbon materials can
be added to the support to disperse the catalysts and produce
steady catalytic activity. Further work to avoid particle ag-
glomeration is underway.
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