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Abstract: Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources. However, storing hydrogen in a
compact, inexpensive, and safe manner is the main restriction on the extensive utilization of hydrogen energy. Magnesium (Mg)-based hydro-
gen storage material is considered a reliable solid hydrogen storage material with the advantages of high hydrogen storage capacity (7.6wt%),
good performance, and low cost. However, the high thermodynamic stability and slow kinetics of Mg-based hydrogen storage materials have
to be overcome. In this paper, we will review the recent advances in the nanoconfinement of Mg-related hydrogen storage materials by loading
Mg  particles  on  different  supporting  materials,  including  carbons,  metal–organic  frameworks,  and  other  materials.  Perspectives  are  also
provided for designing high-performance Mg-based materials using nanoconfinement.
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 1. Introduction

The excessive use of fossil fuels has led to concerns about
environmental  pollution  and  climate  change  [1–3].  Hydro-
gen is currently considered one of the most promising energy
carriers in the future with the increasing global demand for
renewable  energy  [4–7]  because  the  final  product  is  water
without any other pollutants [8]. Moreover, the gravitational
energy  density  of  hydrogen  is  higher  than  other  chemical
fuels, making it the best choice for future energy applications
to  meet  the  requirements  of  global  sustainability  [9–12].
However, the low-cost production and safe storage of hydro-
gen  still  require  to  be  considered  to  enable  its  wide  use  in
daily life [13–14]. The existing field of hydrogen storage can
be divided into three categories,  namely,  high-pressure gas,
low-temperature liquid, and solid hydrogen storage [15–16].
Compared  with  other  hydrogen  storage  methods,  solid  hy-
drogen  storage  has  attracted  considerable  attention  because
of its advantages of high safety and capacity and low-energy
consumption [17]. Among various solid hydrogen storage al-
loys and hydrides, including Ti-based [18–20], LaNi5-based
[21–22],  hydroborons  [23–25],  alanates  [26–28],  and  other
novel  coordination  compounds  [29],  magnesium  (Mg)  is
considered a reliable hydrogen storage material because of its
high-weight hydrogen storage capacity, good hydrogenation/
dehydrogenation reversibility, abundant resources, and cost-
effectiveness in practical applications [30–36]. However, the
slow absorption and desorption kinetics and high-adsorption
temperature induced by Mg–H bonds limit the application of

Mg [4,37]. The addition of catalysts, such as transition metals
[38–41] and their oxides [42–43], can decrease the activation
energy; thus, the kinetics can be improved. However, the hy-
drogenation/dehydrogenation  enthalpy  cannot  be  easily
changed;  thus,  the  thermodynamic properties  can hardly  be
modified  [17,44].  Experimental  and  theoretical  calculations
have shown that when the size of the particles decreases be-
low  10  nm,  and  the  enthalpy  change  value  is  found  to  de-
crease  after  thermodynamic  property  tests  [45–50],  which
leads to the conclusion that the thermodynamic properties of
Mg and its  hydrides  vary with the size  of  the nanocrystals,
and the absolute value of the enthalpy change decreases when
the nanoparticles decrease [51–52]. The high hydrogen diffu-
sion coefficient of the nanosized Mg particles can effectively
reduce  the  enthalpy  and  enhance  the  hydrogen  absorption
and  dehydrogenation  dynamics  [53–62].  During  the  hydro-
gen absorption and desorption cycle, the MgH2 nanoparticles
(NPs) without any protection tend to agglomerate and grow
to  larger  particles.  The  nanoconfinement  approach  can  ef-
fectively  solve  the  problem of  Mg-based  hydride  hydrogen
storage  materials  by  improving  their  hydrogen  absorption
performance  [63–73].  Therefore,  we  review  the  effects  of
limiting  Mg-based  hydrogen  storage  materials  to  different
nanoporous supporting materials in their properties.

 2. Nanoconfinement

The nanoconfinement principle method can be described 
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as follows: Mg and the related ions can be easily absorbed in-
to the pores of the obtained porous support template. Then,
the  clusters  can  be  grown to  larger  particles,  and  the  pores
can  limit  the  enhancement  of  the  existing  particles.  In  this
process,  the  size  of  the  materials  can  be  effectively  con-
trolled,  which  can  provide  a  good  environment  for  further
chemical  reactions.  The  supporting  materials  for  nanocon-
finement mainly include carbon [74], metal frames [75–76],
and polymer [77] materials. When NPs are restricted to nano-
porous  supporting  materials,  the  particles  would  be  stable
during the cycles,  and the gas–solid interface would be en-
hanced. Nanoconfinement can not only improve the dehyd-
rogenation/hydrogenation  performance  of  Mg  hydrides  but
also prevent their agglomeration, thus leading to better cyc-
ling performance [78–80].

 2.1. Methods for nanoconfinement

(1) Hydride growth in situ method. The hydride that needs
to be filled should be deposited directly in  the pores of  the
confined material through a certain chemical reaction. Zhang
et  al.  [4]  synthesized  MgH2/GR  composites  by  mixing
dibutyl  magnesium  and  graphene  in  a  pressure  reactor,
adding  hydrogen  pressure,  and  centrifuging  the  samples  to
obtain MgH2 NPs with an average particle size of 13.8 nm,
which  were  uniformly  anchored  on  graphene  nanosheets.
Bottom-up  self-assembly  of  MgH2 anchored  on  graphene
resulted in many monodisperse MgH2 NPs (5 nm) uniformly
distributed  on  graphene  [81].  More  importantly,  the  MgH2

NPs do not  aggregate  on graphene,  and the  loading weight
can be increased up to 75wt%, leading to an H2 capacity of up
to 5.7wt% for the entire system. With MgH2@graphene as a
“smart nanoreactor,” where graphene acts as a flexible struc-
tural carrier and MgH2 NPs act as effective nonuniform nuc-
leation sites to adsorb LiBH4 solutions, 2LiBH4–MgH2 nano-
composites  with  a  loading  ratio  of  up  to  80wt%  were  pre-
pared  on  graphene  in  a  controlled  manner.  The  graphene-
supported  2LiBH4–MgH2 nanocomposites  exhibited  signi-
ficantly  improved  hydrogen  storage  properties  compared
with other reported 2LiBH4–MgH2 systems. For example, at
a  temperature  of  623  K,  the  graphene-supported  2LiBH4–
MgH2 nanocomposite exhibited a reversible storage capacity
of up to 8.9wt% H2 after 25 cycles without degradation. The
important role of graphene in improving the cycling perform-
ance  of  hydrogen  storage  materials  was  further  confirmed
[82]. Nielsen et al. [83] used this method to mix carbon aero-
gel with the heptane solution of dibutyl magnesium. After the
evaporation of heptane in the glove box, dibutyl magnesium
crystallized in the pores of the carbon aerogel and was depos-
ited in the pores of the supporting material. Then, MgH2 was
produced by the reaction of dibutyl magnesium with hydro-
gen  at  a  certain  temperature  and  pressure  (443  K,  5  MPa)
and  confined  in  the  carbon  aerogel.  The  hydride  growth
in  situ method  can  effectively  increase  the  hydride  loading
rate through the chemical reaction process,  and hydride ag-
glomeration can be effectively prevented during the reaction
process.

(2) Melting method. During the heating process, Mg and
its  hydrides  will  melt  and fill  the  nanopore  channels  of  the
confined material. This method is mainly based on the capil-
lary action of the restricted material channel. De Jongh et al.
[84] used the melting method to load Mg on porous carbon
and  reduced  the  size  of  Mg  particles.  However,  with  this
method, the loading ratio of Mg particles on the carbon ma-
terial is relatively low and needs to be improved by adding a
small amount of catalyst. Because the process does not con-
tain  solvents,  the  subsequent  handling  of  the  material  be-
comes easier. However, the poor wettability of the Mg-based
materials on the confined material under the melting method
leads to a low hydride loading rate, which often requires the
addition of some catalysts to improve the situation. In the se-
lection of inert  framework materials  for  confined materials,
the oxidation of active Mg and its hydrides in the molten state
needs to be prevented [80,83].

(3)  Impregnation  method.  In  this  method,  the  hydride  is
dissolved  in  the  solvent,  the  selected  confined  material  is
soaked  in  the  solution,  the  hydrogen  storage  material  is
loaded  on  the  nanopore  channels  of  the  restricted  material
through the action of the solvent, and the solvent is evapor-
ated  through  the  heating  process  to  form  the  desired  com-
pound [80,84]. The confinement of MgH2 in the pore struc-
ture of metal–organic Ni scaffolds was accomplished by Ma
et  al.  [75]  by  combining  solvent  thermal  impregnation  and
wet impregnation. The activation energies for hydrogenation
and dehydrogenation of the obtained composites were signi-
ficantly reduced. An advantage of the impregnation method
is its ease of operation; thus, it is often combined with the in
situ growth and fusion methods.

 2.2. Advantages of nanoconfinement

Various  experimental  results  have  shown  that  nanocon-
finement can reduce the particle size of hydrides [75,84], de-
crease  the  dehydrogenation  temperature  [77–85],  improve
the reversibility of the hydrogen absorption and release pro-
cesses [76,81], and reduce the activation energy of materials
[77–85]. For example, de Jongh’s study [84] showed that, by
confining Mg particles in porous carbon, the size of Mg crys-
tals was reduced from 5 nm to less than 2 nm. Ma et al. [75]
prepared Ni–MOF scaffolds with a pore size of 7.58 nm, and
the characteristics of these pore parameters clearly qualify it
as a nanoconfinement support material, and their further ex-
periments saw the successful synthesis of MgH2 particles of
approximately 3 nm in size on the Ni–MOF network, which
also  showed  that  the  activation  energies  for  hydrogenation
and  dehydrogenation  of  the  composites  obtained  using  the
nanoconfinement methods were significantly reduced to 41.5
and 144.7 kJ/mol H2, respectively. Moreover, in the work on
graphene with nanoconfined MgH2,  Yu’s group determined
that many MgH2 NPs (5 nm) were uniformly distributed on
graphene, and the loading weight of MgH2 NPs on graphene
increased to 75wt% without any aggregation [81]. This is be-
cause  that  when  the  hydride  particle  size  is  effectively  re-
duced by nanoconfinement, the hydrogen diffusion distance
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is further shortened, and the number of grain boundaries also
increases  resulting  in  the  diffusion  paths  for  hydrogen
atoms/molecules  increase.  Besides,  their  results  also  indic-
ated that in the presence of Ni catalyst, the graphene-suppor-
ted  MgH2 NPs  exhibited  excellent  hydrogen  storage  per-
formance,  with  their  actual  H2 capacity  up  to  5.7wt%.
Graphene/75wt% MgH2 composites  achieved  complete  hy-
drogenation and dehydrogenation at 323 and 473 K, respect-
ively. In contrast, complete hydrogenation and dehydrogena-
tion of  MgH2 particles  required temperatures  above 573 K.
After 100 hydrogenation/dehydrogenation cycles, the sample
showed only slight retention of capacity, but its kinetic prop-
erties still showed a high value. The emergence of graphene
as a support material provides a substrate for the growth of
MgH2 NPs, while acting as a spatial barrier to further prevent
the sintering and growth of MgH2 NPs in the hydrogenation/
dehydrogenation cycle.

 3. Supporting  materials  for  nanoconfinement
in magnesium-based materials

The micromorphology and hydrogen storage behavior of
the constrained Mg NPs mainly depend on the porous struc-
ture  of  the  supporting  materials,  and  the  loading  weight  of
Mg  NPs  generally  influences  the  storage  capacity.  Several
different types of supporting materials for nanoconfinement
are described in the following subsections.

 3.1. Magnesium-based  hydrogen  storage  material  con-
fined in carbon materials

Carbon materials can be effectively used as an additive or
carrier for loading metal hydrides with adjustable dynamics
and  thermodynamic  properties.  Carbon  materials  exhibit  a
large specific surface area, and their porous structure is relat-
ively stable in extreme environments. Moreover, carbon ma-
terials can act as an effective heat conductor material that fa-
cilitates  heat  transfer  during  hydride  formation  and  decom-
position  [85–87].  Carbon  nanotubes  (CNT),  carbon  nan-
ofibers  (CNF),  and  graphene  play  an  important  role  in  en-
ergy utilization, the environment, and catalysis [88]. In addi-
tion to  the role  of  the supporting material  in  improving the
hydrogen  storage  performance  of  metal  hydrides,  it  also
provides  various  active  sites  for  catalysts  with  catalytic  ef-
fects and maintains structural stability [89].

Complex CA/MgH2 with CA carbon aerogel  as  the sup-
porting material was synthesized by Paskevicius et al.  [90].
High-resolution images of the 5 nm dark regions in CA are
shown in Fig. 1(a), and each of these dark regions shows dis-
tinct  MgH2 lattice  edges.  MgH2 NPs  (black dots)  shown in
Fig. 1(b) are distributed uniformly in the CA matrix, and their
particle  size  is  as  small  as  2  nm.  The  carbon aerogels  here
play two roles: first, they provide many sites for the forma-
tion of Mg and its hydrides; second, these sites are isolated so
that the growth of MgH2 particles in any direction is limited.
Moreover, only a small fraction of MgH2 NPs can form in the
pores,  whereas  others  agglomerate  and  form  large  bulk

MgH2.  Because of the inconsistent size distribution, the en-
thalpy  and  entropy  for  hydrogenation  and  dehydrogenation
processes cannot be accurately measured. This attempt shows
that CA can be used as a supporting material to prepare NPs.

As  shown  in Fig.  1(c)  and  (d),  Jia et  al.  [91]  used  an
ordered mesoporous carbon material as the confined material
to load the MgH2 NPs. Among the various carbon materials,
CMK-3 [92] shows the best loading weight of 37.5wt%, and
the  particle  size  of  MgH2 in  the  carbon material  is  determ-
ined  to  be  1–2  nm.  The  small  particle  size  has  positive  ef-
fects on the thermodynamic properties of MgH2, resulting in
a low operating temperature for hydrogen absorption, which
indicates that hydrogen can be released from Mg-based hy-
drogen storage materials at low temperatures.

The  study  by  Cho et  al.  [8]  showed  that  Mg  with  a
nanosheet structure can be obtained using a one-dimensional
carbon substrate (Fig. 1(e)). The nanosheet was 3.6 nm thick.
Mg  with  a  nanosheet  structure  has  a  large  specific  surface
area and a short diffusion path, which can accelerate hydro-
gen  adsorption.  The  hydrogen  absorption  capacity  of  Mg
nanosheets reached 6.0wt% without the addition of a catalyst.
After  loading  Mg  nanosheets  on  various  one-dimensional
graphite  nanofibers  (GNF),  CNF,  and  CNT,  the  hydrogen
storage performance can be  further  enhanced.  As shown in
Fig. 1(f), GNF with a fishbone structure can significantly im-
prove the hydrogen storage performance of Mg nanosheets at
high  temperatures,  indicating  the  efficacy  of  this  unique
structure. The desorption activation energy of GNF carbon-
based  composite  significantly  decreased,  and  this  enhance-
ment can be attributed to the interaction between the unstable
edge  position  carbon  and  Mg  nanosheets  during  the  high-
temperature hydrogen absorption and desorption cycle.

The MgH2 NPs confined in the commercial carbon mater-
ials,  including  commercial  coconut  shell  charcoal,  multi-
walled  CNT,  graphite,  and  activated  carbon  [74],  using
simple  solid-phase  methods,  undergo  complete  desorption
below 643 K. Coconut shell charcoal (CSC) has a typical fol-
ded nanosheet structure (Fig. 2(a)). After loading MgH2 NPs,
the smooth surfaces become rough and the particles are uni-
formly  distributed  on  the  sheet  (Fig.  2(b)).  Compared  with
the  MgH2@CSC  composite,  other  composites  prepared  us-
ing  this  method  exhibit  obvious  agglomeration  and  have  a
mold/melt  boundary  between  MgH2 NPs.  A comparison  of
the  hydrogen capacity  of  all  of  the  composites  is  shown in
Fig.  2(c).  MgH2@CSC composite  has  the  highest  dehydro-
genation capacity among the composites, it can release about
6.3wt% of hydrogen, but others decrease to 5.5wt% (MgH2@
CNT),  5.3wt%  (MgH2@G)  and  5.1wt%(MgH2@AC),  re-
spectively.  Under  the  same  experimental  conditions,
MgH2@CSC can  uptake  the  most  hydrogen  (5.4wt%)  than
others of the hydrogen absorption capacity. Because the fold
structure can provide a large surface for the growth of nanos-
ized  Mg  oxide  and  maintain  the  uniform  dispersion,  the
MgH2@CSC  composite  exhibits  the  best  hydrogen  storage
performance.

Nielsen et  al.  [83]  prepared  MgH2 NPs  embedded  in  a
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nanoporous  carbon  aerogel  composite  using  the  infiltration
method to analyze their dynamics during the hydrogenation/
dehydrogenation cycles. Two different carbon aerogels were
selected to load dibutyl magnesium to compare the effects of
pore size on the hydrogen storage performance. By mechan-
ical  removal  of  excess  dibutyl  magnesium,  the  MgH2 NPs
can  be  gradually  loaded  on  the  supporting  material.  As
shown in Fig. 2(d), the particle size confined in the X1 aero-
gel  is  determined  to  be  22  nm,  and  the  filling  capacity  is
18.2wt%. The desorption curves shown in Fig. 2(e) indicate
that  X1–Mg  can  store  1.40wt%  hydrogen,  which  is  better
than  X2–Mg  (0.76wt%).  However,  the  loading  rate  de-
creases as the pores in carbons decrease, and the distribution
of  the  pores  affects  the  dynamics  of  hydrogen  desorption.
Moreover, the results showed that the desorption kinetics de-
creases with the increase in pore size. Therefore, the pore size
needs to be tuned to obtain optimal performance.

In the work of Shinde’s group [93], three-dimensional (3-
D)  structural  carbon  with  polyhedron  nanoporous  network
structure and well-dispersed metal coordination was synthes-
ized.  The unique 3-D carbon structure  has  a  larger  specific
surface  area  and  more  abundant  active  edge  sites  than  the

general porous template carbon. Then, MgH2 NPs are loaded
to achieve uniform 3-D carbon. Fig. 2(f) and 2(g) illustrates
that the particle size of Mg confined in the carbon material is
approximately 5.5 nm, and the loading weight is increased to
60wt%. The prepared model diagram of the 3-D metal-modi-
fied  active  carbon–Mg  material  is  shown  in Fig.  2(h).  The
MHCH-5  composite  can  uptake  6.5wt%  H2 within  10  min
(Fig. 2(i)).

In  summary,  carbon  materials  are  used  as  nanoconfined
domains. Thus, the particle size of MgH2 can be significantly
reduced, and the hydrogen storage kinetics can be enhanced.
Compared  with  the  ball  grinding  method,  carbon  acts  as  a
support  matrix,  and its  porous structure is  stable during the
loading process. Moreover, the morphology of carbon mater-
ials synthesized using different methods will affect the load-
ing rate and hydrogen storage performance. Furthermore, the
pore volume of the carbon material is relatively small, which
limits the space for growing nanosized hydrides [94].

 3.2. Magnesium-based  hydrogen  storage  material  con-
fined in the metal–organic framework structure

The  metal–organic  framework  (MOF)  material  is  a  new
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2011 American Chemical Society. (c, d) Reproduced from Ref. [91] with permission from the Royal Society of Chemistry. (e, f) Re-
printed with permission from H. Cho, S. Hyeon, H. Park, J. Kim, and E.S. Cho, ACS Appl. Energy Mater., vol. 3, 8143-8149 (2020)
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multifunctional porous material with high porosity, large spe-
cific  surface  area,  and  structure-rich  features  and  has  been
widely  used  in  the  adsorption  and  catalytic  fields  [95–99].
Chemically stable porous materials are considered ideal sub-
strates for nanocomposites to prevent adverse reactions with
highly  active  Mg-based  compounds  (such  as  dibutyl  mag-
nesium).  MOFs  with  potential  catalytic  effects  (because  it
contains metal ions) can be designed as a functional support-
ing material for Mg/MgH2 nanocomposites [100]. Mg/MgH2

nanoclusters  can  be  confined  in  the  pore  structure  of  MOF
materials,  which  can  effectively  inhibit  the  growth  and  re-
union of particles.

A combination of  solvent  thermal  and wet  impregnation
can be applied to produce MgH2 and Mg2NiH4 clusters, and
the reaction mechanism diagram is shown in Fig. 3(a).  The
nanoconfined  domain  of  MgH2 was  detected  in  the  pore
structure  of  the  metal–organic  Ni  scaffold,  and  the  size  of
MgH2 was reduced to 3 nm [75]. Meanwhile, the porous Ni-
MOF shown in Fig. 3(b) acts as an “aggregation blocker” to
prevent the growth and aggregation of Mg/MgH2 nanocrys-
tals  during  the  hydrogenation/dehydrogenation  cycles,  thus
obtaining excellent  cycling stability.  The unique morpholo-

gical  features  of  Ni-MOF  with  a  large  proportion  of  the
mesoporous interface can provide more H2 dissociation/com-
posite active and nucleation sites for Mg/MgH2.  This nano-
confinement method can reduce the hydrogenation enthalpy
of the composite. As shown in Fig. 3(c) and (d), the activa-
tion energies for hydrogenation (41.5 kJ/mol H2) and dehyd-
rogenation  (144.7  kJ/mol  H2)  are  significantly  reduced,
which  is  lower  than  that  of  pure  Mg  hydrogenation
(92  kJ/mol  H2)  and  pure  MgH2 dehydrogenation  (199.8
kJ/mol H2) in the work.

Mg(BH4)2 with a high hydrogen capacity was introduced
into UiO-67bpy by solvent impregnation, and the NPs were
decorated  on  the  surface  of  the  frame  material  (Fig.  3(e))
[76]. As shown in Fig. 3(f), the particles are uniformly dis-
tributed in the MOF without large aggregates. This nanocon-
finement  method  can  considerably  improve  the  hydrogen
storage  properties  of  Mg-based  hydrides.  Mg(BH4)2 can
completely  release  hydrogen  at  temperatures  as  low  as
473 K. The desorption kinetics can also be improved accord-
ing to the thermodynamic measurement (Fig. 3(g)), and hy-
drogen is released at 393 K, approximately 423 K lower than
the bulk material. The hydrogen atoms on the surface can be
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controlled; thus, the growth of hydride in different directions
can be restricted. Therefore, reversible hydrogen absorption
and desorption can be eventually achieved.

Ren et al. [101] proposed the use of MOF-derived porous
CNF, which was prepared using a combination of chemical

and physical adsorptions, as a restricted skeleton. As shown
in Fig. 3(h), MgH2/Ni NPs are thermally decomposed in the
MOF to obtain MgH2/Ni@pCNF. The X-ray diffraction pat-
tern of MgH2/Ni@pCNF shows that MgH2 has a broad char-
acteristic  peak,  indicating  the  complete  hydrogenation  of
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MgBu2 and the small grain size of MgH2 (Fig. 3(i)). Because
of the electron-donating ability of N atoms and the “hydro-
gen  pump” function  of  Mg2Ni/Mg2NiH4 for  MgH2,
MgH2/Ni@pCNF  nanocomposites  exhibit  a  low  hydrogen
absorption temperature and a high hydrogen storage capacity
(4.1wt%) (Fig. 3(j)) [101].

 3.3. Magnesium-based  hydrogen  storage  material  con-
fined in the template material

A novel  method  for  loading  Mg particles  in  anodic  alu-
minum  oxide  (AAO)  template  nanopore  was  proposed  by
Cui et  al.  [63].  The  preparation  process  is  systematically
shown in Fig. 4(a), indicating that the Mg NPs nucleate along
the  AAO  tube  wall  and  generate  by-products  of  MgO  and
Mg17Al12 . The growth of Mg NPs was limited by optimizing
several  parameters,  such as  the argon flow rate,  AAO tem-
plate  temperature,  and  transport  distance  between  the  Mg
source and the AAO template. Under further optimization of
the deposition conditions, the particle size of the loaded Mg

was less than 100 nm. Partial particles can be observed in the
SEM image shown in Fig. 4(b), and the loading weight is de-
termined to be 35wt%. The AAO template can keep the NPs
stable and improve the hydrogen storage kinetics. The nanos-
ized Mg/MgH2 still showed good kinetic properties after ten
dehydrogenation/hydrogenation  cycles,  as  shown  in Fig.  4
(c). The desorption entropy of MgH2 was also decreased by
this process.

Furthermore,  MgH2 particles  were  loaded  on  the  meso-
porous  structure  (MgH2@CoS-NBs)  using  template  deple-
tion.  The  CoS-nanocassette  (CoS-NBs)  scaffold  was  de-
veloped as a multifunctional supporting material (Fig. 4(d))
[102]. During the confinement process, a small amount of the
MgS phase was also formed in situ and exhibited an import-
ant  catalytic  role  in  the  desorption  properties.  Moreover,
MgS controls the growth of MgH2 nanocrystals on CoS-NBs.
A  square  shape  with  a  rough  surface  can  be  observed  in
Fig. 4(e) after the addition of MgH2 particles in the template.
The high-resolution image shown in Fig.  4(f)  indicates that

 

Stainless

steel tube
(a) (c)

(d) (e)

(g) (i)
(j)

Infiltration of MBH4 MBH4@CuS

CuS

spheres

Partial H2

uptake

300℃
6 MPa H2

H2

Release
50℃

HRTEM
5 nm

5 μm

(f)

200 nm

3.0

2.5

2.0

1.5

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0

t / h

1.2 1.4 1.6 1.8 2.0

(1)
(2)
(3)

(b)

Mg vapor Ar

TMg

T

Alundum

tube

As synthesized ZIF-67

MgH2@CoS-NB MgBu2@CoS-NB

Hydrogenation

Nanoconfined

MgH2

Hollow CoS-NB scaffold

Wet impregnation

MgBu2 MgBu2

Nanopores in

vacuum
Sulfidation

with Ns2S

D

AAO template

Low temperature
region

High temperature
region

Tantalum
boat

Mg

C
o
n
ce

n
tr

at
io

n
 /

 w
t%

100 nm 373 473

Temperature / K

In
te

n
si

ty
 /

 a
.u

.

573 673 773

200 nm

(h)

Mg(BH4)2@Cu2S Mg(BH4)2 + Cu2S

Ca(BH4)2@Cu2S

Ca(BH4)2 + Cu2S

Fig. 4.    (a) Schematic diagram of the process used to restrict Mg to the AAO template (TMg is the temperature of Mg vapor, D is the
distance between the Mg vapor source and the AAO template D), (b) TEM diagram of the original AAO template cross-section, (c)
isothermal dehydrogenation curve of MgH2 at  573 K in the AAO template,  (d) schematic diagram of the process flow of synthetic
MgH2@CoS-NBs composites, (e) TEM images of the MgH2@CoS-NBs composites after several hydrogen cycles, (f) HRTEM micro-
graphs of the MgH2@CoS-NBs complexes after several hydrogen cycles, (g) preparation mechanism of the complex borohydrides of
magnesium  (Mg(BH4)2),  (h)  SEM  images  of  Mg(BH4)2@Cu2S,  (i)  TEM  images  of  Mg(BH4)2@Cu2S,  and  (j)  hydrogen  desorption
curve of Mg(BH4)2@Cu2S and Mg(BH4)2+Cu2S (a physical mixture of the two substances). (a–c) Reprinted by permission from [the
Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg]: [Springer Nature] [Rare Met.] [Realizing nano-confine-
ment of magnesium for hydrogen storage using vapour transport deposition, J. Cui, H. Wang, D.L. Sun, Q.G. Zhang, and M. Zhu]
[Copyright 2014] [63]. (d–f) Reprinted from Chem. Eng. J., 406, Z.W. Ma, S. Panda, Q.Y. Zhang, et al., Improving hydrogen sorp-
tion performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold,  art.  No. 126790, Copyright 2020,
with permission from Elsevier [102]. (g–j) Reproduced from Ref. [103] with permission from the Royal Society of Chemistry.

20 Int. J. Miner. Metall. Mater. , Vol. 30 , No. 1 , Jan. 2023



the diameter of the particles was approximately 5–10 nm. Its
unique core/shell structure and the “nanosize effect” signific-
antly  improve  the  thermodynamic  properties  of  MgH2 by
lowering  the  hydrogenation  and  dehydrogenation  enthalpy
[104]. The maximum hydrogen storage capacity of MgH2@
CoS-NBs of 3.23wt% indicates its good loading rate for the
CoS-NBs scaffold (42.5wt%).

Lai  and Aguey-Zinsou  [103]  restricted  Mg(BH4)2 to  the
nanopores of the Cu2S hollow sphere, forming a complex of
Mg(BH4)2@Cu2S (Fig.  4(g)).  Mg(BH4)2 confined in hollow
Cu2S spheres generates an efficient pathway for low-temper-
ature  hydrogen  diffusion.  The  SEM  and  TEM  images  of
Mg(BH4)2@Cu2S shown in Fig. 4(h) and (i) confirm the ex-
istence of the Mg(BH4)2 NPs. The comparison results of the
effects  of  the  nanoconfinement  method  and  the  ordinary
physical mixing method on the hydrogen storage properties
are shown in Fig. 4(j). The desorption of hydrogen starts at
493 K for confined particles in Co2S instead of 523 K for the
sample obtained by the physical mixing method. Compared
with  the  physical  mixing  of  the  hollow  Cu2S  sphere  with
Mg(BH4)2,  hydrogen is  released at  a temperature of 323 K,
and complete hydrogen desorption is achieved below 573 K.
This  effect  can  be  attributed  to  the  instability  of  Mg(BH4)2

and the effect of the reduced particle size of the composite.
This proposed novel “nanoconfinement” approach can ob-

tain superfine crystalline Mg-based materials by loading Mg
on  porous  scaffolds  [105–106].  The  principal  materials  ap-
plied to nanocomposites can be used as structural designers,
size  controllers,  and  aggregation  blockers,  through  which
severe aggregation of nanostructured Mg/MgH2 particles can
be significantly reduced [107–109].

 4. Conclusion and expectation

Magnesium hydrides  with  attractive  potential  properties,
including  heat  resistance,  high  circularity,  and  reversibility,
have  been  extensively  investigated.  Recently,  nanoconfine-
ment methods have been a popular  topic for  improving the
kinetics and thermodynamics to improve the hydrogen stor-
age properties of magnesium hydrides. When Mg-based ma-
terials  are limited to porous materials,  the reaction with the
porous material can also inhibit the occurrence of some side
reactions, which in turn can modulate their kinetic properties.
Although  the  nanoconfinement  method  can  certainly  im-
prove the hydrogen storage properties of materials, the total
hydrogen storage amount of the Mg-based materials can also
be affected by the choice of the framework material. For ex-
ample, the existence of oxygen groups on the surface of car-
bon  materials  often  causes  limited  reversibility  when  using
carbon-limited  materials  and  the  possible  hydroxide  during
the hydrogen cycle. The catalysts cannot be easily added to
the  composite  for  the  high-activity  reactions.  For  the  MOF
materials, how to obtain high-loading materials with easy op-
erating parameters remains a challenge. Therefore, finding a
suitable lightweight supporting material  and adding an effi-
cient catalyst should be perspectives in the future. The hydro-

gen  absorption  performance  of  hydrogen-based  Mg  energy
storage  materials  can  be  improved  once  the  nanoconfine-
ment direction is organically combined with the catalyst dir-
ection under the appropriate experimental conditions.
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