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Abstract: The development of solid waste resources as constituent materials for wet shotcrete has significant economic and environmental ad-
vantages. In this study, the concept of using tailings as aggregate and fly ash and slag powder as auxiliary cementitious material is proposed and
experiments are carried out by response surface methodology (RSM). Multivariate nonlinear response models are constructed to investigate the
effect of factors on the uniaxial compressive strength (UCS) of tailings wet shotcrete (TWSC). The UCS of TWSC is predicted and optimized
by constructing Gaussian process regression (GPR) and genetic algorithm (GA). The UCS of TWSC is gradually enhanced with the increase of
slag powder dosage and fineness modulus, and it is enhanced first and then decreased with the increase of fly ash dosage. The microstructure of
TWSC has the highest gray value and the highest UCS when the fly ash dosage is about 120 kg·m−3. The GPR–GA model constructed in this
study achieves high accuracy prediction and optimization of the UCS of TWSC under multi-factor conditions.
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 1. Introduction

Tailings  are  generally  deposited  on the  surface  and con-
tain heavy metals [1–3]. After scientific research, the tailings
are  successfully  filled  into  the  underground  mining  area
[4–11]. However, the quantity of tailings generated by mines
are  much  more  than  the  quantity  of  tailings  required  for
filling [12–13]. In order to improve the utilization rate of tail-
ings, this study proposes the concept of using tailings as ag-
gregate to replace sand and gravel in wet shotcrete.

In order to optimize the strength of tailings wet shotcrete
(TWSC) and reduce the cement dosage, solid waste materi-
als such as slag powder and fly ash are considered to be ad-
ded to binder and form a composite cementitious system with
cement [14–20]. Relevant studies show that slag powder and
fly ash have the potential to replace part of cement as auxili-
ary  cementitious  material  [21–22].  Fly  ash  plays  a  critical
role in improving the fluidity of concrete due to its fineness,
ball effect, and less water requirement [23]. Slag powder is a
potential auxiliary cementitious material. In the early stage of
hydration, it will reduce the compactness of cemented paste
structure in different degree [24].

Machine learning techniques have also been used in stud-
ies  related to concrete strength optimization.  Related schol-
ars  have  carried  out  uniaxial  compressive  strength  (UCS)
prediction of concrete using support vector regression (SVR),

decision trees (DT),  random forests  (RF),  back propagation
neural  networks  (BPNN),  and  extreme  learning  machines
(ELM)  [9,25–29].  By  training  and  validating  the  models,
high prediction accuracy is achieved. In addition, optimiza-
tion  methods  such  as  genetic  algorithms  (GA)  and  particle
swarm optimization (PSO) can be used to calculate the ratio
of  the  corresponding  materials  based  on  the  required  con-
crete strength [30–32].

In  this  study,  response  surface  methodology  (RSM)  is
used to design the experiments and construct the strength re-
sponse model of tailings wet shotcrete (TWSC). The micro-
structure  analysis  of  TWSC is  also carried out  by scanning
electron microscope (SEM). In addition, a Gaussian process
regression (GPR) model is constructed to predict the strength
of TWSC and GA is used to optimize the mix proportion of
TWSC.

 2. Materials and methods
 2.1. Materials

 2.1.1. Tailings
The main chemical composition of the tailings are shown

in Table  1.  The  activity  coefficient  of  the  tailings  is  calcu-
lated to be Ma = 0.037, which indicates its suitability for use
as an aggregate. The X-ray diffraction (XRD) test results of
the tailings are shown in Fig. 1(a). 
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In order to study the effect of different particle size of tail-
ings  on  the  UCS of  wet  shotcrete,  the  hydraulic  cyclone  is
used to classify the tailings and obtain 3 different grades of
graded tailings. To better quantify the particle size distribu-
tion  of  the  tailings,  the  fineness  modulus  is  introduced  to
quantitatively characterize the coarseness and fineness of the
tailings with reference to the definitions of the fineness mod-
ulus of coarse sand in the relevant industries. Define the fine-

ness modulus of the tailings as follows:

MX =
∑5

i=1 Ai−5A6

100−A6
(1)

where Ai is the percentage of sieve residue for standard sieves
of 2 µm, 10 µm, 30 µm, 75 µm, 300 µm, and 700 µm, wt%;
MX is the fineness modulus.

The particle sizes of the tailings measured with the laser
granularity analyzer are shown in Fig. 1(b). In this figure, d50

represents the median particle size of the tailings (µm), while
Cu  represents  the  coefficient  of  uniformity  of  the  tailings.
Using Eq.  (1),  the fineness moduli  of  the 3 tailings are ob-
tained as 2.96, 3.53, and 4.02, respectively.
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Fig. 1.    XRD test results (a) and particle size distribution (b) of tailings.
 

 2.1.2. Cementitious materials
This paper uses cement, fly ash, and slag powder to make

a  composite  cementitious  material.  Cement  is  the  activator
and  fly  ash  and  slag  powder  are  the  active  materials.  The
physical and chemical characteristics of each material are as
follows.

(1) PO42.5 grade silicate cement is used as the main ce-
mentitious material, and it has a density of 3.03 g·cm−3, and
28-d compressive and flexural strengths of 54.3 and 8.7 MPa,
respectively.

(2) Fly ash is the main solid particulate waste emitted from
coal-fired power plants. Its density is 2.55 g·cm−3 and specif-
ic surface area is 0.35 m2·kg−1. From XRD analysis, it is clear
that fly ash mainly contains mineral phases such as mullite,
quartz, and alumina.

(3) Slag powder is granulated blast furnace slag. It has a
specific  surface  area  of  440  m2·kg−1 and  a  density  of  2.9
g·cm−3.  In  addition,  it  has  an  alkalinity  coefficient  of M0 =
1.17 > 1, a quality coefficient of K = 2.27 > 1.8, and an activ-
ity  coefficient  of Ma =  1.57.  This  indicates  that  the  slag
powder is a highly reactive alkaline slag. The chemical and
particle  size  compositions  of  cementitious  materials  are
shown in Table 2 and Fig. 2, respectively.

 2.2. Methods

 2.2.1. Experimental design
In order to obtain the variation law of the UCS of TWSC

under  the  coupling  effect  of  multiple  factors  and  to  effect-

ively  improve  the  experimental  efficiency,  the  RSM  in
Design-Expert software is used to optimize the experimental
design [33–35]. RSM experiments are conducted with fly ash
dosage  (80–160  kg·m−3),  slag  powder  dosage  (30–90
kg·m−3),  and  fineness  modulus  (3–4)  as  independent  vari-
ables, denoted by X1, X2, and X3, respectively. The 7 d, 14 d,
and 28 d  UCS of  TWSC are  used as  the  response quantity
and are expressed as Y1, Y2,  and Y3,  respectively.  The RSM
experimental protocol is shown in Table 3.
 2.2.2. Test methods

The main test methods are UCS test and SEM test, and the
two tests are described below.

UCS is the key mechanical parameter of TWSC. For com-
parison, the three important variables in the 17 groups of ex-
periments in this  research,  i.e.,  fly ash dosage,  slag powder
dosage, and fineness modulus are listed in Table 4. The fixed
dosage of cement in the cementitious materials is 460 kg·m−3.
The materials  were  weighed according to  the  proportion of
each  group  of  experiments,  then  the  materials  were  poured
into a bucket and mixed for 5 min using a hand-held electric

Table 1.    Main chemical composition of the tailings  wt%

SiO2 CaO MgO Fe2O3 Al2O3 MnO SO3 TiO2

67.1 2.51 0.65 2.17 16.73 0.15 0.9 0.25

Table  2.      Chemical  compositions  of  the  cementitious
materials wt%

Material SiO2 CaO MgO Fe2O3 Al2O3 SO3

Cement 20.35 62.20 4.22 3.17   4.34 2.54
Fly ash 45.10   5.60 1.13 0.85 24.20 2.10

Slag powder 27.51 43.24 8.09 0.38 16.25 1.51
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mixer. The mixed slurry was poured into a triplex test mold
of size 100 mm × 100 mm × 100 mm, and then vibrated for 2
min on a vibrating table of model ZS-15 to improve the com-
pactness of the materials. The prepared specimens were put
into the standard curing box for curing. The curing temperat-
ure is set to 20°C and the curing humidity is set to 95%. After
waiting for the specimens to be cured to 7, 14, and 28 d, the
automatic pressure testing machine was used for UCS tests.

SEM method has been widely used to analyze the micro-
structural  of  concrete  and  its  components  since  the  1960s,
and it is recommended as a standard by ASTM to study con-
crete and who are familiar [36–38]. The TWSC is a cement-

based material used in mines, and its micro-properties are of-
ten tested by SEM. As shown in Fig. S1, a Quanta FEG 250
field-emission electron microscopy system with an accelerat-
ing voltage of 10 kV is used to test the specimens of TWSC
without the UCS test, and the influence of multiple factors on
the microstructural properties of the TWSC is studied.

 2.3. RSM Results and response models

The results of RSM experiments are shown in Table 4.
17 sets of experimental results in Table 4 are fitted with a

multivariate nonlinear model to construct  a response model
for the UCS of TWSC at different curing time. The response
models are shown in Eqs. (2)–(4).

(1) 7 d UCS
Y∗1 = 13.07+0.15X1+0.07X2−6.63X3−

(8.96×10−5)X1X2+ (6.45×10−3)X1X3+

(2.87×10−3)X2X3− (6.81×10−4)X2
1−

(1.60×10−4)X2
2 +1.06X2

3 , R2 = 0.96 (2)
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Fig. 2.    Particle size distributions (a) and XRD test results (b) of the cementitious materials.

Table 3.    RSM experimental protocol
Horizontal

code
Fly ash dosage
(X1) / (kg·m−3)

Slag powder dosage
(X2) / (kg·m−3)

Fineness
modulus (X3)

−1   80 30 3.0
0 120 60 3.5
1 160 90 4.0

Table 4.    Results of RSM experiments

Group number
Factors Measured value / MPa Predicted value / MPa

X1 / (kg·m−3) X2 / (kg·m−3) X3 Y1 Y2 Y3 Y∗1 Y∗2 Y∗3
1 120 60 3.55 16.82 18.60 20.67 16.98 18.64 20.65
2 120 90 3.0 17.51 19.68 21.68 17.73 19.42 21.50
3   80 60 3.0 15.79 17.35 18.95 15.40 17.23 18.79
4 120 60 3.5 17.00 18.72 20.80 16.98 18.64 20.65
5   80 60 4.0 16.57 19.17 20.97 16.86 19.15 20.87
6 120 60 3.5 17.08 18.72 20.84 16.98 18.64 20.65
7 160 30 3.5 14.50 15.98 17.48 14.34 15.61 17.18
8 120 60 3.5 16.82 18.83 20.76 16.98 18.64 20.65
9 160 90 3.5 17.08 18.94 21.09 17.20 18.99 21.02
10   80 30 3.5 14.16 15.64 17.06 14.08 15.41 16.86
11   80 90 3.5 17.17 19.00 21.22 17.37 19.19 21.22
12 120 90 4.0 20.01 22.14 23.99 19.54 21.77 23.69
13 160 60 4.0 16.74 19.40 21.22 17.16 19.35 21.10
14 120 60 3.5 17.08 18.72 20.88 16.98 18.64 20.65
15 120 30 4.0 16.57 17.86 19.75 16.38 17.96 19.65
16 120 30 3.0 14.24 15.87 17.31 14.74 16.07 17.34
17 160 60 3.0 15.45 17.18 18.87 15.19 17.03 18.68

Y∗1 Y∗2 Y∗3Note: , , and  denote the predicted values of UCS at 7 d, 14 d, and 28 d, respectively.

1694 Int. J. Miner. Metall. Mater. , Vol. 30 , No. 9 , Sep. 2023



(2) 14 d UCS
Y∗2 = 26.33+0.13X1+0.09X2−13.69X3−

(8.31×10−5)X1X2+ (4.99×10−3)X1X3+

(7.60×10−3)X2X3− (6.06×10−4)X2
1−

(3.96×10−4)X2
2 +2.11X2

3 , R2 = 0.99 (3)
(3) 28 d UCS

Y∗3 = 13.76+0.16X1+0.15X2−7.63X3−
(1.14×10−4)X1X2+ (4.20×10−3)X1X3−
(2.10×10−3)X2X3− (7.06×10−4)X2

1−
(4.97×10−4)X2

2 +1.36X2
3 , R2 = 0.99 (4)

The  UCSs  of  TWSC  are  predicted  based  on  the  above
models  and  the  predicted  results  are  shown in Table  4 and
Fig.  3.  The  widest  prediction  and  confidence  bands  in
Fig. 3(a) and the narrowest prediction and confidence bands
in Fig. 3(c) indicate that the 28 d UCS response model has the
highest prediction accuracy and the 7 d UCS response model
has the lowest  prediction accuracy.  The UCS calculated by
response models all lie within the 95% prediction band and
are close to the 95% confidence band. This indicates that the
response models have a high reliability.

 3. Analysis and discussion
 3.1. Effect of single factor on UCS

 3.1.1. Fly ash dosage
The  relationship  between  fly  ash  dosage  and  UCS  is

shown in Fig. 4. With the increase of fly ash dosage, the UCS
first increases and then decreases. When the fly ash dosage is

lower than 120 kg·m−3, the UCS increases with the increase
of  fly  ash  dosage  but  the  increase  rate  gradually  decreases.
When the fly ash dosage is higher than 120 kg·m−3, the UCS
decreases  with  the  increase  of  fly  ash  dosage  and  the  de-
crease is more significant. Overall, the increase and decrease
rates  of  7  d  UCS are  both higher  than 14 d UCS and 28 d
UCS. This indicates that the fly ash dosage has a more signi-
ficant effect on the early UCS of TWSC. Fly ash undergoes
volcanic ash reaction in the composite cementitious system,
which  consumes  Ca(OH)2 that  is  unfavorable  to  early
strength and thus promotes the hydration reaction, so fly ash
has the most significant effect on the early UCS of TWSC.
However, when the fly ash dosage is too high, it will lead to
pore space between the solid particles of TWSC and reduce
its UCS.
 3.1.2. Slag powder dosage

The relationship between slag powder dosage and UCS is
shown in Fig. 5. With the increase of slag powder dosage, the
UCS gradually increases but the increase rate gradually de-
creases. The increase rates of 14 d UCS and 28 d UCS are
higher than 7 d UCS when the slag powder dosage is lower
than  80  kg·m−3.  Within  this  range,  the  maximum  increase
rates  of  14  d  UCS  and  28  d  UCS  are  increased  by  up  to
25.6% and 33.3% compared to 7 d UCS. The increase rates
of  both  14  d  UCS and  28  d  UCS are  lower  than  7  d  UCS
when  the  slag  powder  dosage  is  higher  than  80  kg·m−3.
Meanwhile,  the  decrease  of  UCS is  increasing  with  the  in-
crease  of  slag  powder  dosage.  The  above results  show that
when  the  slag  powder  dosage  is  lower  than  80  kg·m−3,  the
slag  powder  dosage  has  the  most  significant  effect  on  the
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UCS of TWSC in the middle and late stages. When the slag
powder  dosage  is  more  than  80  kg·m−3,  the  slag  powder
dosage has the most significant effect on the UCS of TWSC
in the early stage. The Ca(OH)2 generated by cement hydra-
tion can stimulate the “potential activity” of slag powder and

produce  more  calcium silicate  hydrate  (C–S–H)  gel,  which
can  improve  the  UCS  of  TWSC.  Therefore,  the  UCS  of
TWSC increases with the increase of slag powder dosage.
 3.1.3. Fineness modulus

The  relationship  between  fineness  modulus  and  UCS  is
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shown in Fig. 6. With the increase of fineness modulus, the
UCS is gradually increased and the increase rate is increas-
ing. When the fineness modulus is less than 3.4, the increase
rate of 28 d UCS is the highest, 7 d UCS is second, and 14 d
UCS is the lowest. When the fineness modulus is higher than
3.4, the increase rate of 14 d UCS is the highest, 28 d UCS is
second, and 7 d UCS is the lowest. The above results show
that  when the fineness modulus is  lower than 3.4,  the fine-
ness modulus has the most significant effect on the UCS in la-

ter stage and the least effect on UCS in middle stage. When the
fineness modulus is higher than 3.4, the fineness modulus has
the most  significant  effect  on the UCS in middle stage and
the least effect on the UCS in early stage. The particle size of
ultrafine tailings is small overall, and increasing its fineness
modulus  means  more  coarse  particles  in  the  tailings.  The
coarse particles  can provide a  skeleton structure for  TWSC
and the fine particles fill the skeleton, which makes the struc-
ture of TWSC more compact and thus improves its UCS.
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 3.2. Coupling effect of multi-factor on UCS

 3.2.1. Coupling effect of fly ash dosage and fineness modulus
The coupling effect of fly ash dosage and fineness modu-

lus on UCS is shown in Fig. 7. When the fineness modulus is

lower than 3.5, the response surface slowly rises in the direc-
tion of this axis.  When the fineness modulus is higher than
3.5, the response surface rises rapidly along the direction of
this axis. In addition, the UCS enhances and then decreases
with the increase of fly ash dosage. The UCS has a maxim-
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um  value  of  22.13  MPa  when  the  fly  ash  dosage  is  121
kg·m−3 and the fineness modulus is 4. The reasons are ana-
lyzed  as  follows.  The  higher  the  fineness  modulus  is,  the
particle  size  of  tailings  is,  at  this  time  the  fly  ash  particles
without hydration reaction form an embedded lock structure
with coarse sand particles, which makes the UCS enhance.
 3.2.2. Coupling  effect  of  slag  powder  dosage  and  fineness
modulus

The  coupling  effect  of  slag  powder  dosage  and  fineness
modulus on UCS is shown in Fig. 8. It can be seen that in-

creasing both the slag powder dosage and the fineness modu-
lus can significantly enhance the UCS. The UCS is enhanced
by  24.3%  when  the  fineness  modulus  is  3  and  the  slag
powder dosage is increased from 30 to 90 kg·m−3. The UCS
is enhanced by 20.9% when the fineness modulus is 4 and the
slag powder dosage is increased from 30 to 90 kg·m−3. The
above  results  show  that  the  enhancement  of  UCS  by  slag
powder is more significant when the particle size of tailings is
finer (lower fineness modulus).
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 3.2.3. Coupling  effect  of  slag  powder  dosage  and  fly  ash
dosage

The  coupling  effect  of  fly  ash  dosage  and  slag  powder
dosage  on  UCS is  shown in Fig.  9.  It  can  be  seen  that  the
UCS is enhanced with the increase of slag powder dosage at
any fly ash dosage. The UCS is enhanced and then decreased
with  the  increase  of  fly  ash  dosage  at  any  slag  powder

dosage. In the process of increasing the fly ash dosage from
80 to 160 kg·m−3, the increase rate of UCS shows a trend of
decreasing  and  then  increasing  with  the  increase  of  slag
powder dosage. This trend is opposite to the trend of UCS.
The UCS reached the maximum value of 22.26 MPa when
the fly ash dosage is 119 kg·m−3 and the slag powder dosage
is 90 kg·m−3.
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 3.3. Microscopic analysis

The  microstructure  images  of  TWSC  are  obtained  by
SEM and the images are binarized by Image J software. The
final  2D and 3D gray images  of  the  microstructure  are  ob-
tained  as  shown  in Fig.  10.  A  large  number  of  substances

such  as  C–S–H  gels  and  ettringite  (AFt)  crystals  are  pro-
duced by hydration reaction. The needle-like AFt crystals are
interwoven to form a network structure and are wrapped by
the  C–S–H  gels  to  fill  the  pore  space.  And  then,  the  solid
particles  are  bonded together  to  form a  cemented structure,
which gives strength to the TWSC.
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Comparing Fig. 10(a), (b), and (c), it can be seen that the
average  grey  value  increases  from  98.76  and  109.44  to
112.26 when the fly ash dosage changes from 80 and 160 to
120  kg·m−3,  respectively.  Meanwhile,  the  28  d  UCS  en-
hances  from 20.97  and 21.22  to  23.99  MPa.  This  indicates
that an appropriate fly ash dosage can improve the grey value
of the microstructure of TWSC, which is expressed macro-
scopically  as  an  increase  in  the  UCS of  TWSC.  The  Ca/Si
(C/S) mass ratio of C–S–H gels in TWSC were 1.73 and 1.67
when the fly ash dosage was 80 and 160 kg·m−3, respectively,
and the C/S mass ratio of C–S–H gels in TWSC decreased to
1.61 when the fly ash dosage was 120 kg·m−3. The lower the
C/S  mass  ratio,  the  higher  the  stability  of  C–S–H gels  and
thus the higher the UCS of TWSC. Comparing Fig. 10(b) and
(d),  it  can be seen that  the average grey value increases  by
22% when the slag powder dosage and fineness modulus are
increased by 200% and 33%, respectively. Meanwhile, the 28
d UCS is enhanced by 39%. This indicates that with the in-
crease of slag powder dosage and fineness modulus, the hy-
dration  products  increase  and  the  pore  space  in  TWSC de-
creases, which leads to the enhancement of UCS of TWSC.

 4. Methodology of machine learning

In order to obtain the best mix proportion of TWSC rap-

idly,  an  intelligent  prediction  model  of  strength  of  TWSC
based on GPR is constructed in this study.

 4.1. Gaussian process regression

GPR  is  a  nonlinear  and  Bayesian-based  nonparametric
inference  method  that  is  well-adapted  to  high-dimensional
data  and  small-sample  data  [39–42].  A  stochastic  process
is  called  Gaussian  process  (GP)  if  any  number  of  random
variables  in  the  process  are  subject  to  a  multidimensional
joint Gaussian distribution. It has the following mathematic-
al expression:
f (x) ∼ GP [m(x),k(x, x′)

]
(5)

m(x) = E
[
f (x)
]

(6)

k (x, x′) = E
{
[ f (x)−m(x)]

[
f (x′)−m (x′)

]}
(7)

where x and x' are arbitrary random variables in the s-dimen-
sional real space; f(x) is a GP; m(x) and m(x') are the mean
functions of f(x) and f(x'), respectively; k(x, x') is the covari-
ance  function  of f(x)  and f(x'), E is  the  expectation
function.

f (x) = ϕ(x)Tw

w ∼ N(0,MP) E(w) = 0 E(wwT) = MP

According to the Bayesian linear regression model, the GP
is assumed as . In the above equation, w is the
weight  function  and  its  prior  distribution  is  subject  to

, ,  and .  From  this,
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the  mean  function  and  covariance  function  of f(x)  are  as
follows:
E
[
f (x)
]
= ϕ(x)TE(w) = 0 (8)

E
[
f (x) f (x′)

]
= ϕ(x)TE(wwT)ϕ(x′) = ϕ(x)TMPϕ(x′) (9)

MP

N[0,ϕ(x)T

MPϕ(x′)]

N
[
0,ϕ(x)TMPϕ(x′)

]
where  denotes the covariance matrix. Both f(x) and f(x')
are  subject  to  the  joint  Gaussian  distribution 

. That is, for any n input vectors x1, x2 , ..., xn, their
corresponding function values f(x1), f(x2), f(x3)  ,  ..., f(xn)  all
submit to the joint Gaussian distribution .

ε

ε ∼ N(0,σ2) y = f (x)+ε
cov(y) = K(X,X)+σ2

nI σ2
n

f ∗ ε

There  are  Gaussian  noises  in  the  actual  observations,
which are independent of each other and subject to Gaussian
distribution .  It  follows  that  and

, where I is the unit matrix and  is
the variance of the noise. Thus, the prior expression for the
joint  Gaussian  distribution  corresponding  to  observations y
and  containing  is as follows:[ y

f ∗
]
∼ N
{
0,
[

K(X,X)+σ2
nI K(X,X∗)

K(X,X∗)T K(X∗,X∗)

]}
(10)

From the above derivation, it is clear that the kernel func-
tion of GPR contains the mean function and the covariance
function. The covariance function is used to measure the de-
gree of similarity or correlation between different samples. It
is  a  key  factor  affecting  the  GPR  prediction  results  and  is
subject  to  positive  orbit  closure  semidefinite.  In  this  study,
the Gaussian radial basis function (RBF), which is the most
widely  used  and  recognized  for  its  excellent  generalization
performance,  is  set  as  the  covariance  function  as  shown  in
Eq. (11).

cov(x, x′) = exp
[
−
|| xi− x j||2

2σ2
l

]
(11)

σlwhere  the  hyperparameter determines  the  performance  of
the covariance function, which can have an influence on the
generalizability  and  robustness  of  the  GPR.  To  solve  the
above problem, the maximum likelihood estimate is used for
optimization of hyperparameter. The specific computational
procedure can be found in the literature [43–45].

 4.2. Genetic algorithm

Genetic algorithm (GA) is a method to search for the op-
timal solution by simulating the natural evolutionary process.
GA converts the problem-solving process into a process sim-
ilar to the crossover and mutation of chromosomal genes in
biological evolution [46–48]. It can quickly obtain good op-
timization results when solving more complex combinatorial
optimization problems (Fig. S2).

 4.3. Evaluation metrics for prediction models

In this paper, root mean square error (RMSE), correlation
coefficient (R), and variance account for (VAF), which have
been  widely  accepted  by  academia,  are  used  as  evaluation
metrics for prediction models. The calculation equations are
as follows. The closer the RMSE is to 0, the closer the R is to
1, and the closer the VAR is to 100, the better the model pre-
diction is.

 5. Prediction and optimization
 5.1. Process of GPR modelling

 5.1.1. Technical route of GPR modelling

σl

σl = 66.7451

GPR  is  constructed  to  predict  the  UCS  of  TWSC  and
provides  a  basis  for  intelligent  optimization  of  mix  propor-
tion in this study. 51 sets of data in table 4 are used as the data
set.  To  better  evaluate  the  prediction  performance  of  the
model, the original data are randomly divided into a training
set and a validation set in the ratio of 8:2. 41 sets of data from
the training set are used to train GPR and 10 sets of data from
the validation set are used to evaluate the prediction perform-
ance  of  GPR.  After  determining  the  priori  distribution  that
the mean value is 0, the  of the kernel function (RBF) are
then  optimized  using  the  maximum likelihood  estimate  ac-
cording to Section 4.1 and . After determining
the kernel function and hyperparameter, the posterior distri-
bution and thus the GPR can be constructed according to Eqs.
(5)–(7). Finally, the GPR for characterizing the nonlinear re-
lationship between X1, X2, X3, X4 (curing time), and Y (UCS)
is constructed (Fig. S3).
 5.1.2. Relationship of variables under GPR

Four  variables  are  set  in  the  GPR:  fly  ash  dosage,  slag
powder  dosage,  fineness  modulus  of  tailings,  and  curing
time.  The  relationships  of  variables  obtained  based  on  the
GPR are shown in Fig. 11. The UCS enhances and then de-
creases with the increase of fly ash dosage when interacting
with the other 3 variables. The UCS enhanced linearly with
the  increase  of  slag  powder  dosage  when  the  slag  powder
dosage  is  interacted  with  other  3  variables.  When  the  fine-
ness  modulus  is  interacted  with  the  other  3  variables,  the
UCS increased slowly with the increase of the fineness mod-
ulus. When the curing time is interacted with the other 3 vari-
ables, the UCS enhanced rapidly with the increase of curing
time.
 5.1.3. Analysis of results for GPR

Fig.  12 shows  the  prediction  results  of  GPR  with  95%
confidence band for the training set and validation set. From
the Fig. 12(a), it can be seen that the R, RMSE, and VAF of
the  training  set  are  0.9982,  0.1331,  and  99.6419.  From the
Fig. 12(b), it can be seen that the R, RMSE, and VAF of the
validation  set  are  0.9963,  0.1753,  and  99.2551.  The  above
results  show that  the GPR can solve the nonlinear relation-
ship between the affecting factors and the UCS rapidly and
accurately.

 5.2. Comparisons with other models

In  this  paper,  GPR is  compared  with  multiple  nonlinear
regression (MNR) based on response models, support vector
regression  (SVR),  and  extreme  learning  machine  (ELM),
which are widely used in engineering practice. To ensure the
fairness of the comparison, the parameters of both SVR and
ELM are  optimized  using  GA.  The  optimal  parameters  are
shown in Table 5.

Fig. 13 shows the marginal histograms of prediction res-
ults for the training set and validation set of the 4 models. For
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training set, the predicted (P) and measured (M) values of the
GPR largely coincide with a straight line P = M with slope 1
and R of 0.9982 from Fig. 13(a). This indicates that the pre-
diction results of the training set are highly accurate and the
model is excellent trained. The remaining SVR and ELM are
poorly trained and have relatively large errors from Fig. 13(c)
and (d). Although the R for training set and validation set of
MNR is high (0.9956 and 0.9931) from Fig. 13(b), the mul-

tiple nonlinear regression equation has disadvantages. This is
because  MNR  characterizes  the  relationship  between  the
variables (X) and the response variable (Y) in terms of specif-
ic  equations,  which  makes  the  model  less  robust  and  less
generalizable.  Compared  to  other  models,  GPR  demon-
strates the highest R on the validation set. Therefore, GPR ac-
curately  characterizes  the  nonlinear  linear  relationship
between UCS and its affecting factors and has strong gener-
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Fig. 12.    GPR prediction performance of (a) training set and (b) validation set.

Table 5.    Optimal parameters of SVR and ELM by using GA

SVR ELM
c g Max iterations Hidden layer nodes Learning rate Max iterations

42.137 0.0713 117 15 0.024 163
Notes: c represents the regularization parameter, and g is the kernel coefficient.
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alization performance.
A ranking method for the performance of different mod-

els proposed by Zorlu et al. is utilized as shown in Table 6
[49]. From Table 6, the GPR has the optimal prediction per-
formance for training set and validation set (the total rank =
12).  The  above  analysis  indicates  that  GPR  is  the  optimal
model  to  characterizing  the  mapping  relationship  between
UCS  and  its  affecting  factors  based  on  the  experimental
sample data in this study.

 5.3. Mix proportion optimization by GPR–GA

GA is introduced to solve the optimal mix proportion of
TWSC at different constraint conditions on the basis of con-
struction of GPR in this study. Firstly, a nonlinear mapping
relationship between each affecting factor  and UCS is  con-
structed using GPR (as described in Section 4.1). Secondly,

the  constructed  GPR  is  considered  as  a  nonlinear  function
fGPR for predicting the UCS and adding constraint conditions
to fGPR for engineering applications (fGPR is called the object-
ive function). Finally, the above objective function is used as
the fitness function in the GA and the GA is used to search
for the minimum value of the fitness function. The minimum
value is  the  optimal  solution and the  optimum mix propor-
tion corresponding to  this  optimal  solution can be  obtained
(Fig. S4).

The optimal mix proportions for TWSC with UCS of 15
and 20 MPa (objective functions are f15 and f20) are solved us-
ing GPR–GA. The optimization results  for mix proportions
are shown in Table 7.  It  can be seen that  the errors of  pre-
dicted UCS and measured UCS for the optimized mix pro-
portions  with  the  target  strengths  of  15  and  20  MPa  are
1.45%  and  1.86%,  respectively.  This  shows  that  the
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Fig. 13.    Marginal histograms predicted by (a) GPR, (b) MNR, (c) SVR, and (d) ELM.

Table 6.    Performance indices of different models

Network
Results of evaluation for whole sets Rank values

Total rank
R RMSE VAF R RMSE VAF

GPR 0.9979 0.1433 99.5635 4 4 4 12
MNR 0.9951 0.2146 99.0216 3 3 3 9
SVR 0.9526 0.9489 80.8987 2 2 1 5
ELM 0.9108 1.0539 82.8835 1 1 2 4

Table 7.    Optimization results for mix proportions of TWSC by GPR–GA

Objective
function

Optimal mix proportion Optimal mix proportion after rounding Predicted
UCS / MPa

Measured
UCS / MPa

Error /
%FAD SPD FM CT FAD SPD FM CT

f15 74.59 24.58 3.04 27.88 75.00 25.00 3.00 28.00 15.39 15.17 1.45
f20 96.17 56.79 3.42 27.93 96.00 57.00 3.40 28.00 20.08 20.46 1.86

Note: FAD, SPD, FM, and CT are abbreviations for fly ash dosage, slag powder dosage, fineness modulus, and curing time, respectively.
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GPR–GA model can rapidly and accurately realize the mix
proportion optimization of TWSC.

 6. Conclusions

In  order  to  develop  solid  waste  resources  as  constituent
materials for wet shotcrete, this study analyzes the effect law
of different factors on the UCS of TWSC by RSM. The high
accuracy prediction and optimization of the UCS of TWSC
under  multi-factor  conditions  are  also  achieved  using  ma-
chine learning. The main conclusions are as follows.

(1)  The  UCS of  TWSC gradually  increases  with  the  in-
crease of slag powder dosage and fineness modulus. In addi-
tion, the UCS increases firstly and then decreases with the in-
crease  of  fly  ash  dosage.  The  UCS of  TWSC is  maximum
when the fly ash dosage is 120 kg·m−3.

(2) When the slag powder dosage is lower than 80 kg·m−3,
this factor has the most significant effect on the UCS in the
middle  and  late  stages  of  TWSC.  When  the  slag  powder
dosage is higher than 80 kg·m−3, this factor has the most sig-
nificant effect on the early UCS of TWSC. Compared with
the  UCS  in  the  middle  and  late  stages,  fly  ash  dosage  has
more significant effect on the early UCS.

(3) The average grey value increases by 22% and the UCS
increases by 39% when the fineness modulus of tailings and
slag  powder  dosage  are  increased  by  33%  and  200%,  re-
spectively.  This  indicates  that  the  hydration  products  in-
crease and the pores in TWSC decrease as the fineness mod-
ulus and slag powder dosage increase, which makes the ce-
mented structure of TWSC more compact.

(4) Compared with MNR, SVR, and ELM, GPR has the
highest  prediction  accuracy  for  the  UCS  of  TWSC  (R =
0.9979, RMSE = 0.1433, and VAF = 99.5635). In addition,
the mix proportions of TWSC with different strength grades
are obtained based on the GPR–GA.

(5) The results of the study have certain guiding signific-
ance  for  the  development  of  wet  shotcrete  based  on  solid
waste and are in line with the development direction of green
mines.  Also,  the  theoretical  approach  adopted  in  this  paper
can be used to guide the development of similar materials, ef-
fectively reducing the amount of experiment and improving
research efficiency.
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