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Abstract: This monograph presents an overview of friction stir processing (FSP) of surface metal-matrix composites (MMCs) using the AZ91
magnesium alloy. The reported results in relation to various reinforcing particles, including silicon carbide (SiC), alumina (Al,O3), quartz
(Si0,), boron carbide (B4C), titanium carbide (TiC), carbon fiber, hydroxyapatite (HA), in-situ formed phases, and hybrid reinforcements are
summarized. AZ91 composite fabricating methods based on FSP are explained, including groove filling (grooving), drilled hole filling, sand-
wich method, stir casting followed by FSP, and formation of in-situ particles. The effects of introducing second-phase particles and FSP pro-
cess parameters (e.g., tool rotation rate, traverse speed, and the number of passes) on the microstructural modification, grain refinement, homo-
geneity in the distribution of particles, inhibition of grain growth, mechanical properties, strength—ductility trade-off, wear/tribological behavi-
or, and corrosion resistance are discussed. Finally, useful suggestions for future work are proposed, including focusing on the superplasticity
and superplastic forming, metal additive manufacturing processes based on friction stir engineering (such as additive friction stir deposition),
direct FSP, stationary shoulder FSP, correlation of the dynamic recrystallization (DRX) grain size with the Zener—Hollomon parameter similar
to hot deformation studies, process parameters (such as the particle volume fraction and external cooling), and common reinforcing phases such

as zirconia (ZrO,) and carbon nanotubes (CNTSs).

Keywords: surface composites; magnesium alloys; friction stir processing; severe plastic deformation; thermomechanical processing

1. Introduction

Magnesium alloys and composites are used in various in-
dustries owing to their good specific strength, high damping
capacity, good castability, and biodegradability [1-4]. They
are considered to be the ultimate choice of lightweight metal-
lic structural materials [5—6]. However, polycrystalline Mg is
characterized by poor ductility due to the presence of a
hexagonal close-packed (hep) crystal structure with few slip
systems. Moreover, the relatively lower strength of Mg al-
loys compared to other competing alloys is another major
obstacle to their utilization in many potential applications [7].
These shortcomings can be relieved by alloying [8-9], heat
treatment [10—11], elevated temperature thermomechanical
processing [12—-13], severe plastic deformation (SPD) [14],
and introduction of reinforcement particles (Mg-based metal-
matrix composites (MMCs)) [15-16].

Among SPD techniques, friction stir processing (FSP),
which is based on the principles of friction stir welding
(FSW), is a viable technique for material processing [17-18].
FSP is applied by pushing a rotating tool into the surface of
the workpiece, followed by its translational movement. This
nonconsumable tool consists of a cylindrical shoulder and a
projecting concentrically located pin (probe). During FSP,
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the material is locally softened due to the heat generated by
the friction between the tool and workpiece, as well as
through auxiliary adiabatic heating due to plastic deforma-
tion during the flow of the material [19]. FSP is normally
used for microstructural enhancement (e.g., grain refinement
by dynamic recrystallization [20-21] and altering the
amount, morphology, and distribution of particles [22]), im-
provement of various properties (e.g., mechanical properties
[23] and superplasticity [24]), and processing of composites
[25]. FSP is an efficient method for processing surface com-
posites [26], whereby the second-phase particles can be in-
troduced to the surface via narrow grooves or drilled holes
before FSP [27], as schematically shown in Fig. 1. After
filling the grooves or holes with particles, an optional closing
(covering) step can be carried out using a pinless FSP tool to
avoid the escape of the particles during the subsequent main
FSP step [28]. As shown in Fig. 1, from the stir zone (SZ, or
nugget zone, NZ) to base metal (BM), a thermomechanically
affected zone (TMAZ) and a heat-affected zone (HAZ) will
develop [29]. The primary processing parameters include
tool geometry, tool rotation rate (w, r/min), and traverse/ad-
vancing/welding speed (v, mm/min) [30]. A higher w or
lower v normally leads to a higher temperature [31]. The
grain size can be refined by decreasing w at constant v or by
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Tool shoulder

Fig. 1. Schematic representation of the surface composite fab-
rication by FSP.

increasing v at constant w [32]. Anyway, adequate heating is
always required to produce a defect-free nugget with a re-
fined microstructure [33].

Another FSP-based composite fabrication method for Mg
alloys is direct friction stir processing (DFSP) [34-36]. In the
DFSP process, the secondary phase is in-situ introduced to
the enclosed space between the shoulder of a pinless tool and
the base metal through a hole provided within the FSP tool,
followed by pressing them into the workpiece as the rotating

Rotating
direction -

Concave
shoulder -

Composite
layer

tool advances along them just like a planter (Fig. 2) [34]. This
method has been successfully applied to AZ31/SiC compos-
ite [34]. Moreover, there are some promising and innovative
modifications, such as friction stir welding with a pulse cur-
rent [18]. Furthermore, the potential to use the stationary
shoulder tool in FSP as a novel low-heat input tooling sys-
tem for Mg alloys has been extensively studied by Patel ez al.
[37-39]. As shown in Fig. 3, a rotating tool (consisting of a
probe with a small or no shoulder) is housed within a nonro-
tational shoulder (stationary shoulder)—the tool slides over
the joint line during processing to eliminate or minimize the
heat generated by the shoulder [39]. As a result, lower and
more focused heat will be generated through the thickness
[37]. Due to the stationary action of the shoulder, this pro-
cess generates a smooth surface [40] with a small amount of
flash onto the surface [41] and develops uniform grain re-
finement and, consequently, homogeneous mechanical prop-
erties throughout the thickness. In other words, the small
temperature gradient across the thickness of the SZ in this
process leads to the homogenization of the magnesium alloy
microstructure [38].
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[
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Fig. 2. Schematic representation of direct friction stir processing [34]. Reprinted from Mater. Des., Vol. 59, Y.X. Huang, T.H. Wang,
W.Q. Guo, L. Wan, and S.X. Lv, Microstructure and surface mechanical property of AZ31 Mg/SiC, surface composite fabricated by
direct friction stir processing, 274-278, Copyright 2014, with permission from Elsevier.
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Fig. 3. Stationary shoulder tooling system [39].
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The most widely used Mg alloys are based on the AZ
series (Mg—Al-Zn) [42], among which the AZ91 (Mg—
9Al-1Zn, wt%) is one of the famous alloys [43]. The pres-
ence of the eutectic structure (a-Mg/Mg;,Al;,) deteriorates
the mechanical and functional properties of the AZ series Mg
alloys [44]. The dissolution of the Mg;,Al,, phase during el-

evated temperature processing increases the Al content of the
matrix [45], which might result in a major solid solution
strengthening effect [46]. Moreover, the fragmentation and
dispersion of Mg,Al;, particles during processing reduce
their deleterious effects. FSP can simultaneously apply SPD
and elevated temperature thermomechanical processing in
the solid state [46—47]. Accordingly, recrystallization pro-
cesses can refine the microstructure and enhance the material
properties; while dissolution, fragmentation, and dispersion
of particles can effectively amend the adverse effects of in-
tergranular eutectics in AZ91 alloy [48]. Accordingly, FSP
can be considered a viable processing method for AZ91 al-
loy [49]. The processing of fine-grained and high-perform-
ance AZ91 composites by FSP is fairly easy. Accordingly,
the present overview article is dedicated to summarizing re-
ported works on the FSP of AZ91 composites and indicating
key suggestions for future works.
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2. AZ91 composites fabricated by FSP
2.1. AZ91-SiC composites

AZ91-SiC (silicon carbide) composites are among the
most widely investigated ones. Asadi e al. [50] fabricated
composite layers on the surface of as-cast AZ91 Mg alloy us-
ing nanosized (30 nm) and micron-sized (5 pm) SiC particles
(using groove filling and covering method). With the applic-
ation of FSP, a fine microstructure was obtained with the dis-
solution of the eutectic Mg;;Al,, phase in the SZ for as-cast
AZ91 Mg alloy and composites, as shown in Fig. 4(a). The
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addition of SiC led to more intense grain refinement and en-
hancement of hardness, where these effects were more pro-
nounced for nanosized SiC particles compared to the micron-
sized SiC particles, as shown in Fig. 4(b) and (c). Moreover,
lower w and/or higher v led to a finer grain size and greater
hardness, as shown in Fig. 4(b) and (c) [50]. The dependence
of the grain size on the FSP parameters has also been repor-
ted for AZ91/SiC surface composite (using hole filling or
multichamber technology) by Iwaszko et al. [51]. In another
study, Asadi et al. [52] showed that the repetition of the FSP
passes leads to more pronounced grain refinement and en-
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Fig. 4. (a) Representative FSP microstructure, (b, ¢) dependence of stir zone grain size and hardness on the FSP parameters, and
(d) tensile stress—strain curves of FSP AZ91/SiC surface composites (the curves are redrawn) [50,52]. (a—c) Adapted by permission
from Springer Nature: J. Mater. Eng. Perform., Effects of SiC particle size and process parameters on the microstructure and hard-
ness of AZ91/SiC composite layer fabricated by FSP, P. Asadi, M.K.B. Givi, K. Abrinia, M. Taherishargh, and R. Salekrostam,
Copyright 2011; (d) adapted by permission from Springer Nature: Metall. Mater. Trans. A, Experimental investigation of magnesi-
um-base nanocomposite produced by friction stir processing: Effects of particle types and number of friction stir processing passes,

P. Asadi, G. Faraji, A. Masoumi, and M.K.B. Givi, Copyright 2011.



H. Mirzadeh, Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review 1281

hanced mechanical properties (Fig. 4(d)), a finding that was
confirmed by Dadaei et al. [S3] who used the groove filling
and covering method.

Bagheri et al. [54] proposed friction stir vibration pro-
cessing (FSVP) as an improved and efficient FSP method for
the processing of magnesium alloys and composites. During
the process, the workpiece is vibrated in a direction that is
normal to the tool translational direction, as shown in
Fig. 5(a). The FSP and FSVP techniques were used to pro-
cess AZ91/SiC surface composites using the groove filling
and covering method. A more homogeneous distribution of
SiC particles was observed for FSVP compared to FSP. In
the FSVP process, workpiece vibration resulted in higher
plastic strain in the material, hence promoting dynamic re-
crystallization. Consequently, finer grains were developed
when using FSVP than when using FSP (Fig. 5(b)), indicat-
ing that FSVP results in better mechanical properties, as de-
picted in Fig. 5(c).

Eq. (1) can be used to correlate the dynamically recrystal-
lized grain size (d) with the Zener—Hollomon parameter (Z,
Eq. (2)), where 4 and B are constants, and R is the gas con-
stant. The deformation activation energy (Q) is normally
considered to be the activation energy for lattice self-diffu-
sion [55—57]. The deformation temperature (7) and strain rate

(&) during FSP can be estimated by Eq. (3) [5S8-59] and Eq.
(4) [59-60], where T, is the absolute melting point of the ma-
terial; K and a are constants; Ryeee and Dy are the effect-
ive (or average) radius and depth of the dynamically recrys-
tallized zone [58—62]. These formulas might also be applied
when discussing the effects of modification in the FSP pro-
cesses. For instance, Bagheri et al. [63] have noted that R,
for the FSVP (Fig. 5(a)) is larger than that for FSP (due to vi-
bration). Accordingly, the strain rate and the Z parameter are
higher in FSVP, which is favorable for grain refinement.

d=AZ" (1)

Z= éexp(l%) 2)

(1)2

T a
— = K( 4) ,004<a<0.06,0.65<K<0.75 (3)
Ty vx 10
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Another modification for grain refinement is the FSP with

external cooling [64—66], which is related to temperature

modification and is used to inhibit extensive grain growth

and dissolution of precipitates in and around the stirred zone

[19]. As shown by Patel et al. [67], the backing plate is also
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Fig. 5. (a) Schematic representation of FSVP, (b) the effect of vibration frequency on FSVP microstructure, and (c) tensile
stress—strain curves of AZ91/SiC surface composites (the curves are redrawn) [54]. Reprinted from Trans. Nonferrous Met. Soc.
China, Vol. 30, B. Bagheri, M. Abbasi, A. Abdollahzadeh, and S.E. Mirsalehi, Effect of second-phase particle size and presence of vi-
bration on AZ91/SiC surface composite layer produced by FSP, 905-916, Copyright 2020, with permission from Elsevier.
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important—a copper backing plate was found to be more ef-
fective than a steel backing plate for grain refinement of Mg
alloys.

Similar to the results of Asadi et al. [50], Bagheri et al.
[54] also found finer SiC particles to be more conducive to
obtaining better mechanical properties. Accordingly, high-
performance AZ91 composites can be processed through the
addition of nanosized particles combined with FSVP. The fa-
vorable effect of increasing vibration frequency on grain re-
finement can be seen in Fig. 5(b) [54].

Due to the dissolution of the B-Mg;;Al;, phase during
FSP, the AZ91 alloy might have the next best aging response
after FSP. Accordingly, Shang ef al. [68] examined the aging
behavior of FSP AZ91 alloy and the AZ91/SiC composite
(50 nm, based on the hole-filling method). With the addition
of nanosized SiC particles [69], a more intense grain refine-

Int. J. Miner. Metall. Mater., Vol. 30, No. 7, Jul. 2023

ment after FSP was observed (Fig. 6(a)). However, while a
higher hardness level was obtained, the age hardening effi-
ciency became inferior for AZ91/SiC composite compared to
AZ91 alloy (Fig. 6(b)) [68] .

The discontinuous precipitation of the B-phase that dom-
inated the FSP AZ91 alloy was significantly restricted in the
composite, and the nanosized SiC particles promoted con-
tinuous precipitation of the B-phase. While there was no sig-
nificant difference in the amounts of precipitated B-phase
between the FSP AZ91D and AZ91/SiC (the formation of
precipitates during aging can be seen in the X-ray diffraction
(XRD) patterns of Fig. 6(c)), the different precipitation beha-
viors and different strengthening mechanisms were found to
be responsible for the difference in aging responses, for
which the particle size and distribution might play decisive
roles [68].

Fig. 6.

100
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(a) Representative optical micrographs (the arrows denote the f-Mg;;Al;, phase), (b) aging responses of AZ91 alloy and

AZ91/SiC composite at 180°C, and (c) XRD patterns of AZ91/SiC composite at different aging times at 180°C [68]. Reprinted from J.
Alloys Compd., Vol. 797, J.L. Shang, L.M. Ke, F.C. Liu, F.Y. Lv, and L. Xing, Aging behavior of nano SiC particles reinforced
AZ91D composite fabricated via friction stir processing, 1240-1248, Copyright 2019, with permission from Elsevier.

Chen et al. [70] investigated the effects of FSP and SiC
addition (using the groove filling method) on thixoformed
AZ91 alloy. A uniform distribution of SiC particles was ob-
tained via FSP (Fig. 7(a)). The alloy with a composite sur-
face showed higher hardness and wear resistance and lower
friction coefficient as compared to the permanent mold cast
and the thixoformed alloy without a composite surface, as
shown in Fig. 7(b). The composite surface showed good tri-
bological properties due to the strengthening roles played by
the particles.

Lee et al. [71] also showed the enhancement of wear res-
istance in AZ91/SiC composites through FSP processing. In
another study, Abbasi et al. [72] reported that by applying
more FSP passes during the processing of AZ91/SiC surface
composite, the mechanical properties improved, corrosion
resistance increased, and the wear rate decreased. More re-
cently, Abdollahzadeh ef al. [73] reported the improvement

of wear and corrosion resistance of AZ91/SiC composite lay-
er processed by FSVP compared to FSP.

2.2. AZ91-Al,0; composites

Faraji et al. [74-75] fabricated composite layers on the
surface of as-cast AZ91 Mg alloy using nanosized Al,O;
(alumina) particles (30 nm, using the groove filling method).
Fig. 8(a) shows the typical surface appearance of processed
composites, in which defects such as voids and cracks can-
not be observed [75]. By increasing v at a constant w of 900
r/min, the grain size was refined, and the hardness increased.
Accordingly, the optimum condition for producing a sound
and fine-grained surface layer was characterized as w = 900
r/min and v = 80 mm/min. More recently, Ahmadkhaniha
et al. [76] processed AZ91/AL,0; surface composites using
nanosized ALO; particles (50 nm, using the groove filling
and covering method), and the optimum values of w = 800
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Fig. 7. (a) Scanning electron microscopy (SEM) image of the
AZ91/SiC surface composite processed by FSP and (b) the
comparison of its properties with AZ91 alloy processed by oth-
er techniques [70]. Adapted by permission from Springer
Nature: J. Wuhan Univ. Technol. Mater. Sci. Ed., Friction stir
processing of thixoformed AZ91D magnesium alloy and fabric-
ation of surface composite reinforced by SiCys, T.C. Chen,
Z.M. Zhu, Y. Ma, Y.D. Li, and Y. Hao, Copyright 2010.
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Fig. 8. (a) Top face of the specimen produced by FSP; (b) ef-
fect of tool geometry and number of passes on hardness profile
(inset shows the used FSP tools); (c) image of the processed re-
gion (indicating the indentation locations) [75]. Reprinted by
permission from Springer Nature: J. Mater. Eng. Perform., Ef-
fect of process parameters on microstructure and micro-hard-
ness of AZ91/A1,0; surface composite produced by FSP, G. Fa-
raji, O. Dastani, and S.A.A.A. Mousavi, Copyright 2011.

r/min and v = 40 mm/min were suggested for obtaining the
highest hardness and wear resistance. The authors also pro-
posed the Hall-Petch-type formula that relates hardness (H,

55'38 +67.453. Faraji

HV) to grain size (d, um), i.e., H =

et al. [75] also investigated the effects of Al,O; particle size,
tool geometry, and repetition of FSP passes. It was found that
decreasing the size of Al,O; particles leads to more intense
grain refinement and an increase in hardness. Moreover, a
higher number of FSP passes using triangular tool geometry
can produce a harder surface composite, as shown in
Fig. 8(b) and (c). In fact, the triangular tool was more effect-
ive compared to the square tool. Increasing the number of
passes also enhanced the homogeneity and particle distribu-
tion and resulted in a more refined grain size distribution
[75].

The AZ91/AL,0; and AZ91/SiC surface composites pro-
cessed by FSP have been compared by Asadi et al. [52],
Dadaei et al. [53], and Abbasi ef al. [72]. These studies gen-
erally demonstrate that the microstructure of the composite
layer created by SiC particles is characterized by finer grains,
as well as higher hardness, strength, elongation, corrosion
resistance, and wear resistance compared to the composite
layer by AlL,O; particles. Polarization curves comparing cor-
rosion resistance between AZ91/A1,0; and AZ91/SiC sur-
face composites are shown in Fig. 9 [72], which depict that
the AZ91/SiC surface composite has a lower corrosion cur-
rent density i, (as can be obtained based on the Tafel extra-
polation method [77]) and more positive corrosion potential
E... By investigating the strength/weight ratios of as-cast
and FSP AZ91 alloys, as well as AZ91/Al,0; and AZ91/SiC
composites, Dadaei et al. [53] proved the positive impact of
FSP and significant enhancements for composites at higher
FSP passes. Therefore, it can be deduced that the desirable
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Fig. 9. Polarization curves for FSP AZ91 alloys and compos-
ites (the inserted table shows the potentials, current densities,
and corrosion rates obtained by Tafel extrapolarization ana-
lyses of both the FSPed specimens and the original AZ91 alloy)
[72]. Reprinted by permission from Springer Nature: Int. J.
Adyv. Manuf. Technol., The effect of FSP on mechanical, tri-
bological, and corrosion behavior of composite layer developed
on magnesium AZ91 alloy surface, M. Abbasi, B. Bagheri, M.
Dadaei, H.R. Omidvar, and M. Rezaei, Copyright 2015.
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effects of particle addition can be achieved after several FSP
passes.

2.3. AZ91-Si0O, composites

Vignesh et al. [ 78] fabricated a composite layer on the sur-
face of AZ91 Mg alloy using nanosized SiO, (quartz)
particles (15 nm, using groove filling and covering method).
Low tool rotation rate and traverse speed resulted in poor ma-
terial flow. Composites processed at low tool rotation rates
and high tool traverse speed had scalloped surfaces and
wormbholes. A high tool rotation rate and high tool traverse
speed resulted in turbulent material flow, leading to a lack of
fusion and root flow defects. However, a high tool rotation
rate and low tool traverse speed led to a defect-free pro-
cessed region with a fine dispersion of the reinforcements in
the matrix. Accordingly, the process window for the AZ91/
Si0, composite was constructed, as shown in Fig. 10(a).

The simulation of temperature change during FSP of
AZ91 alloy was performed based on the Comsol Multiphys-
ics 5.0 software; an example is shown in Fig. 10(b) [78], re-
vealing a significant increase in the temperature during FSP.
Based on the simulation results, it was found that the peak
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Fig. 10. (a) FSP process window for synthesizing AZ91/SiO,
composite, (b) simulation of the thermal phenomenon during
FSP for w = 600 r/min and v = 40 mm/min, and (c) hardness
profile along the transverse section for w = 900 r/min and v =
20 mm/min [78]. Reprinted by permission from Springer
Nature: Silicon, Synthesis and characterization of magnesium
alloy surface composite (AZ91D-SiO,) by friction stir pro-
cessing for bioimplants, R.V. Vignesh, R. Padmanaban, and M.
Govindaraju, Copyright 2020.

Int. J. Miner. Metall. Mater., Vol. 30, No. 7, Jul. 2023

temperature associated with FSP increases with an increase
in tool rotation rate or a decrease in tool traverse speed [78].
In this context, Khayyamin et al. [79] reported more intense
grain refinement and increased hardness for the AZ91/SiO,
composite (using the groove filling and covering method) by
increasing the traverse speed at a constant tool rotation rate.

The hardness profile along the transverse section is shown
in Fig. 10(c) [78]. The figure reveals a much higher hardness
in the SZ compared to the hardness of the base metal. This
enhancement can be attributed to grain refinement as well as
to the presence of a fine dispersion of 3-Mg,,;Al;, phase and
nanophase SiO, particles. The fine dispersion of SiO, accen-
tuated the refinement of the matrix through its effects on the
nucleation of recrystallization and inhibition of grain growth
[80-81]. The corrosion test results revealed the formation of
an adherent layer of calcium hydroxyapatite and calcium—
magnesium phosphate in simulated body fluids, which re-
duced the corrosion rate for bioimplant applications [78].

Khayyamin et al. [79] also fabricated composite layers on
the surface of the AZ91 alloy using nanosized SiO, particles
(10 nm). FSP led to the refinement of the matrix grains. In-
creasing the traverse speed at w = 1250 r/min resulted in
greater grain refinement and enhanced tensile properties, as
shown in Fig. 11(a). Moreover, by increasing the number of
passes, better uniformity in the particle distribution and finer
grain sizes were obtained, which led to the further improve-
ment of the mechanical properties (Fig. 11(b)). In this regard,
the dissolution/dispersion of the B-Mg;,Al;, phase and the
closure of casting defects have also been indicated [79].

In fact, controlling the distribution of reinforcing particles
plays a key role in the performance of the fabricated compos-
ites [82—83]. An ideal metallic composite should have a ho-
mogeneous distribution of particulates and constant inter-
particle distance. The resultant composite microstructure
should approach this condition in order to exhibit improved
mechanical properties [84]. The improvement of particle dis-
tribution enhances the material flow and prevents early frac-
ture, thereby improving the tensile ductility of the composite.
Conversely, cluster formation might lead to poor tensile
strength and elongation [84]. The homogeneous distribution
is a result of the rotating tool’s effective stirring action [84] as
well as the extrusion of the plasticized material due to the
movement of the tool [85], which are primarily influenced by
the major process parameters, including tool rotational speed
and traverse speed [84,86—87]. Traverse speed affects both
frictional heat and mechanical stirring simultaneously, lead-
ing to poor particle dispersion at increased traverse speed
[84,88]. Moreover, there is evidence that increasing the rota-
tional rate leads to improved particle distribution [28,88].
Furthermore, increasing the number of FSP passes can pro-
mote the uniform distribution of particles [28,84,88]. In oth-
er words, the repeated stirring action and the plastic flow of
the material tend to reduce particle agglomeration [84]. Al-
though this is the most effective strategy, a corresponding in-
crease in production costs should also be taken into account
[28].
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shows effect of the traverse speed on the final grain size in the SZ of the specimens) and (b) various passes at w = 1250 r/min at v =
63 mm/min [79]. Reprinted from Mater. Sci. Eng. A, Vol. 559, D. Khayyamin, A. Mostafapour, and R. Keshmiri, The effect of pro-
cess parameters on microstructural characteristics of AZ91/SiO, composite fabricated by FSP, 217-221, Copyright 2013, with per-

mission from Elsevier.

The effect of the FSP tool might be significant [89]. For
instance, a profound effect has been observed on the particle
size distribution uniformity when using a tool with a square
pin than when using one with a circular pin [28]. Moreover,
changing the direction of tool rotation during multipass FSP
might also lead to better grain refinement and more homo-
geneous particle distribution [90]. Furthermore, novel FSP
variants such as the bobbin tool FSP (BTFSP) can be used for
fabricating two-side composites on the top and bottom sides
of the workpiece, as shown in Fig. 12, where good uniform-
ity in the particle distribution can be achieved [91]. A low
plunge depth level might lead to insufficient heat generation
and cavity formation toward the SZ center. On the other
hand, high levels of plunge depth result in the ejection of re-
inforcement particles and even the sticking of material to the
tool shoulder. Thus, an optimal plunge depth is needed in de-
veloping defect-free surface composites [92].

The particle volume fraction (f) can be adjusted based on
the shape/size of grooves or the depth/number of holes. The
microstructure and properties of the composite are depend-
ent on f, where an example is shown in Fig. 13 for FSP
AZ31/Ti composite [87]. For grove filling, f can be estim-
ated by Eq. (5) [93]. It is noteworthy that it is difficult to con-

Top groove filled with
particles
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partlc €s

Botto: oove
/ S /7

h Capped top groove

Capping pass on
top surface

Capping pass on
bottom surface

Procesgsg
dirg

BTFSP tool

Fig. 12. Schematic diagram of the steps followed for fabricat-
ing double-side composite using bobbin tool friction stir pro-
cessing [91].

trol the number of particles that can be introduced into the
surface, and there may be a nonuniform distribution of the
particles in the thickness direction [28]. Another concern is
the severe tool wear when FSP is used with composites with
a high f, as discussed by Avettand-Fenoél and Simar [30].
Generally, an increase in the particulate content might raise
the difficulty of plasticization, which can adversely affect
particle distribution homogeneity [84]. On the other hand, an
increase in the particulate content can further reduce the
ductility of the intrinsically brittle Mg matrix. However, grain
refinement of a-Mg might lead to the activation of secondary
slip systems, which is advantageous [94]. Using deformable
particles such as Ti alloys as reinforcing particles can help
maintain ductility [86-87].

f=Ac/A}

Ag = area of groove = groove width X groove depth

= projected area of pin = pin diameter X pin length

(&)
2.4. AZ91-B,C composites

Patle et al. [95] fabricated composite layers on the surface
of as-cast AZ91 Mg alloy using micron-sized B,C (boron
carbide) particles (10-15 pm, using groove filling and cover-
ing method). A defect-free processed region was obtained for
w = 1400 r/min and v = 22 mm/min. As shown in Fig. 14, the
surface composite showed higher hardness compared to the
base metal, which was attributed to the dispersed B,C
particles and microstructural refinement in the SZ. Moreover,
the processed surface composite showed a lower wear rate.
The wear mechanisms were found to be dependent on the
sliding velocity. For a sliding velocity of 0.06 m/s, the pre-
dominant wear mechanisms were abrasive and severe adhes-
ive wear, along with some degree of oxidative wear; whereas,
for a sliding velocity of 0.12 m/s, delamination and oxidative
wear were the predominant ones, along with some abrasive
and mild adhesive wear. Singh ef al. [96] also fabricated
AZ91/B,C surface composite by FSP (w =900 r/min and v =
45 mm/min, using hole filling method) and reported en-
hancement of wear resistance based on the wear tests per-
formed by the pin-on-disk apparatus.
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2.5. AZ91-TiC composites

Vijayan et al. [97] processed AZ91/TiC (titanium carbide)
surface composite using micron-sized TiC particles (4 um,
using groove filling and covering method). Defect-free sur-
face composite with equiaxed recrystallized grains in the
nugget zone with homogeneously distributed TiC particles
was obtained using w = 1000 r/min, v =30 mm/min, and an 8

==

Hardness, HV

Distance / mm

Fig. 14. Hardness profile along the transverse section and a
representative SEM image from the processed area of FSP
AZ91/B,C composite [95].

kN axial load. The surface composite had a peak hardness of
almost twice that of the base metal. Accordingly, the pin-on-
disk wear test revealed the superiority of wear resistance of
the surface composite compared to the base metal, as shown
in Fig. 15.

Sahoo et al. [98] processed AZ91/TiC-TiB, in-situ hy-
brid composite by stir casting, whereby the TiC-TiB, rein-
forcements were formed in-situ [99] via the addition of ball-
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Fig. 15. Specific wear rate and coefficient of friction versus
load for FSP AZ91/TiC composite compared to those obtained
for AZ91 alloy [97].



H. Mirzadeh, Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review 1287

milled Ti-B4C powder. The as-cast in-sifu composite was
then subjected to FSP for microstructural refinement. From
the EBSD maps shown in Fig. 16 for AZ91 and AZ91/TiC—
TiB,, FSP led to remarkable grain refinement. The SEM im-
ages in Fig. 16 also show that applying FSP and its repetition
(pass 2) resulted in the formation of a more uniform micro-
structure due to the elimination of the continuous network of
the B-Mg;,Al;, phase of the as-cast state. The presence of the
in-situ TiC-TiB, reinforcement particles in the AZ91/TiC—
TiB, composite can effectively result in grain growth resist-
ance at the grain boundaries; hence a finer grain size has been
achieved for the AZ91/TiC-TiB, composite.

As-cast

A TE

§ ey

1 pass FSP

friction stir processed AZ91 alloy and AZ91/TiC-TiB, compos-
ite [98]. Reprinted from Mater. Sci. Eng. A, Vol. 724, B.N. Sa-
hoo, F. Khan, S. Babu, S.K. Panigrahi, and G.D.J. Ram, Mi-
crostructural modification and its effect on strengthening
mechanism and yield asymmetry of in-situ TiC-TiB,/AZ91
magnesium matrix composite, 269-282, Copyright 2018, with
permission from Elsevier.

As can be seen in the transmission electron microscopy
(TEM) images of Fig. 17 [98], material deformation during
FSP has led to increased refinement and more homogeneous
distribution of the in-situ TiC-TiB, reinforcing particles,
which is a favorable outcome. The tensile stress—strain curves
are shown in Fig. 17 [98]. The as-cast AZ91 and AZ91/TiC—
TiB, exhibited low strength and ductility due to the presence
of casting defects and the effects of size, quantity, shape, and
distribution of network-type intergranular 3-Mg;,Al;, phase
(Fig. 16). However, major improvements in mechanical
properties were realized with FSP due to the fragmentation of
the coarse 3-Mg;,Al;, phase, grain refinement, and elimina-
tion of the inhomogeneous microstructure.

Arora et al. [100] fabricated AZ91/TiC-Al,O; hybrid
composite by FSP using ball-milled particles that were ad-
ded by the hole-filling method. Different cooling conditions
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Fig. 17. Tensile stress—strain curves of as-cast and friction stir
processed AZ91 alloy and AZ91/TiC-TiB, composite as well as
some representative TEM images [98]. Reprinted from Mater.
Sci. Eng. A, Vol. 724, B.N. Sahoo, F. Khan, S. Babu, S.K. Pan-
igrahi, and G.D.J. Ram, Microstructural modification and its
effect on strengthening mechanism and yield asymmetry of in-
situ TiC-TiByAZ91 magnesium matrix composite, 269-282,
Copyright 2018, with permission from Elsevier.

were applied for enhanced performance of the material. The
results are summarized in Fig. 18, which shows that the hy-
brid composites have finer grain size and higher hardness
compared to the AZ91 alloy. Moreover, the rapid cooling
conditions (undersurface cooling using coolant at —20°C) had
a greater enhancement effect on both grain refinement and
hardness compared to the conventional ambient cooling con-
ditions. FSP processing of AZ91/TiC—-Al,O; hybrid compos-
ite also led to enhanced scratch resistance [100].

2.6. AZ91—carbon fiber composites

Afrinaldi et al. [101] fabricated carbon fiber reinforced
AZ91 composite via the addition of chopped carbon fibers
with a length of ~1 mm and subsequent FSP (using groove
filling and covering method based on a narrow slit). Chopped
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Fig. 18.  Grain size and hardness of as-cast and friction stir
processed AZ91 alloy and AZ91/TiC-AL O3 composite under
different cooling conditions [100]. Adapted by permission from
Springer Nature: Trans. Indian Inst. Met., Some investigations
on friction stir processed zone of AZ91 alloy, H.S. Arora, H.
Singh, B.K. Dhindaw, and H.S. Grewal, Copyright 2012.
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carbon fibers were fragmented (to a length of less than 20
pum) and dispersed in the SZ during the FSP process. The ef-
fect of the FSP tool was also investigated, where the 3-flat
pin tool better reduced the size and number of defects in the
SZ compared to the conventional threaded pin tool (Fig.
19(a)). As shown in Fig. 19(b), the fatigue strengths of the
carbon fiber-reinforced AZ91 composite were comparable to
those of the as-cast counterparts but lower than those of the
FSP AZ91 samples without carbon fibers. In fact, fatigue
cracks were initiated at the agglomerations of carbon fibers,
where the adverse effect of the inhomogeneous distribution
of the carbon fibers was also noted.

Mertens et al. [102] applied FSP on a sandwich obtained
by stacking one layer of C fabric between two sheets of AZ91
alloy. This technique is known as the sandwich method, in
which the secondary phase is placed as a laminate or layer
between workpieces for subsequent FSP processing [28].
High w (1500 r/min) and high v (300 mm/min) led to the het-
erogeneous distribution of the reinforcing phase and high
porosity. These defects were more severe for high w (1500
r/min) and low v (80 mm/min). However, low w (500 r/min)
and low v (80 mm/min) led to the development of a sound
processed region with a homogeneous distribution of carbon
fibers [102]. These processing conditions were also applied
on a sandwich obtained by stacking one layer of C fabric
between two sheets of AZ31 alloy. In this case, High w (1500
r/min) combined with high v (300 mm/min) or low v (80
mm/min) resulted in a sound processed region with a homo-
geneous distribution of carbon fibers. However, low w (500
r/min) and low v (80 mm/min) led to the heterogeneous dis-
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Fig. 19. (a) FSP tools and (b) fatigue S—/N diagrams of as-cast
and friction stir processed AZ91 alloy and AZ91/carbon fiber
composite (R represents load ratio) [101].
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tribution of the reinforcing phase, while low w (500 r/min)
and high v (300 mm/min) resulted in significant porosity.
Therefore, while both AZ31 and AZ91 alloys are similar ma-
terials, the presence of a high amount of f-Mg;;Al,, (as well
as its dissolution/fragmentation) seems to be an important de-
terminant for the differences as well as for the much smaller
processing window for AZ91 composite compared to the
AZ31 composite. The AZ91 composite was also found to be
capable of age hardening due to the precipitation of the p-
Mg;;Al;, phase (Fig. 20), thus allowing for mechanical beha-
vior improvement after processing [102].

2.7. AZ91-hydroxyapatite composites

Yousefpour et al. [103] processed AZ91/hydroxyapatite
(HA) bionanocomposites by multipass FSP using the hole
filling and covering method. The 2nd and 3rd passes were
performed with a 100% overlapping strategy. As shown in
Fig. 21, the samples’ hardness and strength increased with an
increasing number of passes due to better grain refinement
and more uniform dispersion of HA powder. Moreover, the
introduction of HA powder to AZ91 alloy was found to res-
ult in better grain refinement and better mechanical proper-
ties. The results of this study clearly show that the particle
distribution in the AZ91/HA nanocomposites is significantly
affected by the number of FSP passes [103]. In a related
study, Yousefpour er al. [104] added the hybrid HA/Ag
powder, which led to improved grain refining efficiency.
Moreover, this sample had the highest texture parameter for
the {1011} orientation as the high corrosion resistance tex-
ture, which was due to the promotion of the nonbasal slip
caused by the dissolution of Ag particles in the matrix.

2.8. Other reinforcing phases

Fly ash can be used as an effective reinforcement for fab-
ricating low-cost and environmental-friendly MMCs, as
shown by Dinaharan et al. [105-106]. In this regard, Patle
et al. [107] processed AZ91/fly ash surface composite by
adding fly ash particles and FSP. Better mechanical and wear
properties were realized, but the composite had decreased
corrosion resistance for the processed surface composite.
Farghadani et al. [108] introduced Cu and CuO micro-
powders on the surface of AZ91 alloy for processing by FSP.
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Fig. 20. Hardness at mid-thickness as a function of aging time
for friction stir processed AZ91 alloy and AZ91/cabon fiber
composite [102].
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sion from Elsevier.

The AZ91/Cu nanocomposite was reinforced by the in-situ
formation of the Mg,Cu compound, while the CuO particles
in AZ91/CuO nanocomposite were reduced, and MgO and
MgCu, reinforcing particles were formed alongside the
Mg,Cu compound. Accordingly, grain refinement and in-situ
formation of reinforcing particles significantly improved the
mechanical properties and wear resistance of the composite.
Bhadouria et al. [109] processed AZ91 hybrid composites via
the addition of nano-WC—Co—Cr and multiwalled carbon
nanotubes (CNTs) by multipass FSP using the grooving
method. The hybrid composites showed better grain refine-
ment, higher hardness, and greater wear resistance compared
to the AZ91 alloy and the AZ91/WC—Co—Cr and AZ91/
CNTs composites.

3. Future scope/prospects

In the previous section, the reported works on FSP-pro-
cessed AZ91 composites with SiC, AlLO; SiO,, B,C,
TiC/TiB,, carbon fiber, hydroxyapatite, and other reinforce-
ments are summarized. Most of the works are focused on
SiC. However, there are many common and effective
particles that need to be investigated for AZ91 composites
processed by FSP. One of the most common particles is
ZrO,, which has systematically been investigated for FSP
AZ31 composites by Chang et al. [110], Navazani and De-
hghani [111], Mazaheri et al. [112], Zang et al. [113], and
Qiao ef al. [114]. These studies showed that ZrO, is a prom-
ising particulate for FSP Mg alloys, and hence, systematic in-

vestigation of the AZ91/ZrO, surface composites by FSP is
recommended for future studies. Other important reinforcing
phases are CNTs, as demonstrated in the reports of Morisada
et al. [115], Jamshidijam et al. [116], Nia and Nourbakhsh
[117], and Arab et al. [118] for AZ31 alloy. Based on the res-
ults of Bhadouria et al. [109], the introduction of CNTs to
AZ91 should be further investigated in future works, where
issues associated with CNTs, such as agglomeration, need
special attention. Recently, Dinaharan et al. [86] introduced
the titanium particulate-reinforced AZ31 composites for pure
Ti [84] and Ti—6Al4V alloy. Both Ti and Mg have an hcp
crystal structure that ensures good compatibility. Moreover,
the Ti particulate is deformable and is characterized by a
higher elastic modulus, melting point, hardness, and corro-
sion resistance. Furthermore, the solubility of Ti in magnesi-
um is negligible. As a result, Ti-based particulates seem to be
good choices for the processing of Mg-matrix composites.
Accordingly, their introduction to AZ91 is an interesting
practice for future work. Many other potential reinforcing
phases can be added to this list, including graphene nano-
platelets (GNPs) [119-120], ZrB, [121], and graphite [122].
Due to their favorable properties, such as wear resistance
[123], hybrid composites (with more than one reinforcing
phase) have gained considerable attention in recent years
[124-125]. The hybrid surface MMCs with more than one
reinforcing phase gained attention in material processing due
to their noble tribological behavior and surface properties,
which cannot be attained in mono composites [99,123]. Sev-
eral investigators have introduced hybrid reinforcements to
the matrix of Mg alloys via FSP, such as Sharma et al. [126]
(MWCNT-graphene), Jalilvand and Mazaheri [127] (ZrO,/
WC/B,C), Lu et al. [128] (ALO;—CNT), Sahoo et al. [98]
(TiC-TiB,), Arora et al. [100] (TiC-Al,Os), Yousefpour et
al. [104] (HA-Ag), and Bhadouria et al. [109] (WC-—
Co—Cr—CNTs). Due to the favorable effects of hybrid rein-
forcements on enhancing the properties of AZ91 alloy, more
research in this field is suggested.

As discussed in the previous section, the effects of rein-
forcement type and particle size, FSP tool geometry, rotation
rate, traverse speed, and the number of FSP passes have been
investigated for FSP AZ91 composites. However, there are
many other variables involved in composite fabrication by
FSP [129], as summarized in Table 1. In this regard, the spe-
cial tool pin profiles have been shown to be favorable
[89,130], which need to be investigated for various AZ91
composites. Moreover, much more attention is needed to the
effects of particle volume fraction for AZ91 Mg composites
[87,109].

For the introduction of reinforcement particles to AZ91
composites, groove filling, hole filling, sandwich method, stir
casting, and formation of in-situ particles have been applied
so far. In fact, the introduction of in-situ formed particles in
Mg alloys has been observed in several famous systems. The
Mg-Si system is the most recognizable one. In this system,
Mg,Si forms during processing [131-132]. Applying FSP on
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Table 1.
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Summary of the variables involved in composite fabrication by FSP

Process parameters Tool variables

Reinforcement/matrix characteristics

Tool rotation rate
Tool traverse speed
Axial force Pin profile
Tool tilt angle Pin diameter
Plunge depth Pin length

Number of passes Tool material

Shoulder diameter
Shoulder profile

Reinforcement type
Reinforcement size
Reinforcement volume fraction
Reinforcement strategy
Mechanical properties of matrix
Thermal properties of matrix

the Mg,Si system is quite effective for enhancing microstruc-
ture and mechanical properties through microstructural re-
finement and modification of primary/eutectic Mg,Si, as
shown by Taghiabadi and Moharami [133] and Raeissi and
Nourbaksh [134]. Therefore, it might be interesting to apply
FSP to the Si-containing AZ91 alloys [135]. Moreover, the
in-situ formation of phases is prevalent in many Mg alloys

Sz

Mg—4Al-3Ca

Mg—2Al-5Ca

—— | AR

The dynamically recrystallized grain size is not correlated
to the Zener—Hollomon parameter for FSP AZ91 composites
(based on Eq. (1)). There is a need for greater attention in fu-
ture works to determine the effects of particle type and char-
acteristics on grain refinement. The effect of grain size on
mechanical strength can be represented by the classical
Hall-Petch relationship [138]. This area also needs more re-
search on AZ91 composites to enable a comparison of the
results with the obtained values of the Hall-Petch slope for
Mg alloys, as summarized by Yu et al. [139].

Superplasticity is the ability of a fine-grained polycrystal-
line material to exhibit very high elongations (>400%) prior
to failure. Since the grain boundary sliding (GBS) is the gov-
erning deformation mechanism, the strain rate sensitivity in-
dex (m = (;11% based on o o« &™) during superplastic flow is
~0.5 [59,140-141]. These large elongations are usually
achieved at high temperatures and relatively low strain rates;
hence, the grains might become coarse, and superplasticity
might be lost due to the replacement of GBS with a disloca-
tion creep mechanism [59]. Accordingly, microduplex or
pseudosingle phase alloys are usually considered super-
plastic materials [142—145]. Friction stir-processed AZ91

TMAZ

[136], and hence, these alloys might be viewed as compos-
ites. For instance, applying FSP to the Mg—Al-Ca system
[137] leads to the formation of a fine-grained composite with
well-dispersed intermetallic particles (such as the Al,Ca
compound), as shown in Fig. 22 [29]. Therefore, applying
FSP to the in-situ formed composites is expected to receive
considerable attention in the future.

HAZ + BM

Fig. 22. SEM images of Mg—Al-Ca alloys processed by FSP [29]. Reprinted from Mater. Lett., Vol. 296, Z. Nasiri, M.S. Khorrami,

H. Mirzadeh, and M. Emamy, Enhanced mechanical properties of as-cast Mg—Al-Ca magnesium alloys by friction stir processing,
129880, Copyright 2021, with permission from Elsevier.

magnesium alloy shows better superplastic properties com-
pared to AZ31 alloy due to the higher content of the B-
Mg,;Aly, phase [146]. In fact, FSP can refine the microstruc-
ture in the processed region, which is characterized by a high
proportion of high-angle grain boundaries as well as particle
fragmentation and dispersion. All of these attributes accentu-
ate superplasticity. However, the f-Mg;;Al;, phase is un-
stable at elevated temperatures, and its dissolution becomes a
drawback to grain growth restriction. As shown in Fig. 23
[147], increasing the deformation temperature from 300 to
350°C accentuates the superplastic properties due to the fa-
vorable effect of deformation temperature in obtaining super-
plasticity at high strain rates (superplasticity at strain rates >
0.01 s [2,59,148]. However, a further increase to 375°C
leads to a sharp drop in ductility due to the rapid grain gro-
wth. Accordingly, the fine-grained AZ91 nanocomposites
processed by FSP with thermally stable reinforcing particles
(for grain growth inhibition) might be useful materials for su-
perplastic forming, and this subject needs to be investigated.
Additive manufacturing (AM), which is suitable for the
fabrication of a wide range of complex geometries at fine res-
olutions, is based on the progressive addition of thin layers of
materials from 3D model data [149—150]. Besides the most
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widely used processes in the categories of powder bed fusion
and directed energy deposition [151-152], metal AM pro-
cesses based on friction stir engineering have received con-
siderable attention [153]. These approaches are useful, espe-
cially in obtaining Mg alloys that are defect-free with fine-
grain size and good mechanical/functional properties [149].
Friction stir AM (FSAM) and additive friction stir deposition
are two widely used methods for Mg alloys [150]. These pro-
cesses seem to be suitable for the processing of composites,
which have been examined by Ho ef al. [154]. Fig. 24 shows
the processing of AZ31/hydroxyapatite composites based on
FSAM. Accordingly, the applicability of these promising
methods for the processing of AZ91 composites is yet to be
investigated.
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Fig. 23. Tensile elongation vs. strain rate at different temper-
atures for the submerged friction stir processed AZ91 alloy
[147]. Reprinted from Mater. Sci. Eng. A, Vol. 568, F. Chai,
D.T. Zhang, Y.Y. Li, and W.W. Zhang, High strain rate super-
plasticity of a fine-grained AZ91 magnesium alloy prepared by
submerged friction stir processing, 40-48, Copyright 2013, with
permission from Elsevier.

Tool rotation /
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Mg plate HA powder
Fig. 24.  Processing of AZ31/hydroxyapatite composites by
FSAM [154].
4. Summary

In summary, this study reviewed FSP of surface MMCs
using the AZ91 alloy, whereby AZ91 composites with vari-
ous reinforcing phases such as SiC, Al,O;, SiO,, B,C, TiC,

carbon fiber, hydroxyapatite, in-sifu formed phases, and hy-
brid reinforcements were critically discussed. FSP composite
fabrication methods were discussed, including grooving, hole
filling, sandwich method, stir casting followed by FSP, and
formation of in-situ particles. The effects of introducing
second-phase particles and FSP process parameters such as
tool rotation rate, traverse speed, number of passes on the mi-
crostructural modification, grain refinement, mechanical
properties, wear/tribological behavior, and corrosion resist-
ance were also discussed. Finally, useful suggestions were
given to shed light on the important issues and to highlight
research prospects for future works.
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