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Corrosion, mechanical and microstructural properties of aluminum 7075–car-
bon nanotube nanocomposites for robots in corrosive
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Abstract: The introduction of in-pipe robots for sewage cleaning provides researchers with new options for pipe inspection, such as leakage,
crack, gas, and corrosion detection, which are standard applications common in the current industrial scenario. The question that is frequently
overlooked in all these cases is the inherent resistance of the robots to corrosion. The mechanical, microstructural, and corrosion properties of
aluminum 7075 incorporated with various weight percentages (0, 0.5wt%, 1wt%, and 1.5wt%) of carbon nanotubes (CNTs) are discussed. It is
fabricated using a rotational ultrasonication with mechanical stirring (RUMS)-based casting method for improved corrosion resistance without
compromising the mechanical properties of the robot. 1wt% CNTs–aluminum nanocomposite shows good corrosion and mechanical proper-
ties, meeting the requirements imposed by the sewage environment of the robot.

Keywords: aluminum 7075; carbon nanotubes; rotational ultrasonication with mechanical stirring; mechanical characterization; microstruc-
ture; robot

 

 1. Introduction

Scavenging is one domain field despite human assistance,
existing machines are often insufficient to clear the sewers in
important cities around the globe. The robots have grown in
complexity since their initial objective of ensuring minimum
contact  with  sewage  waste  while  cleaning.  The  complexity
grew  over  time  owing  to  the  presence  of  other  assorted
garbage,  such  as  wrapping,  polythene  bags,  and  plastic
bottles. Thus, the current generation of researchers is focused
on  the  trade-off  between  the  initial  cost  and  its  operational
cost. A thorough investigation of the corrosion and mechan-
ical properties of a robot is pursued in this study to ensure the
longevity of the robot in a hazardous environment.

Researchers  have  recently  focused  on  developing  ultra-
high-strength  materials,  particularly  lightweight  ones,  that
can match the stiffness, wear resistance, and corrosion resist-
ance  of  general  engineering  materials  [1–4].  Although  alu-
minum and its alloys play an important role in industrial ap-
plications. Alumina oxide, silicon carbide, and boron carbide
are some of the most prominent strengthening materials used
in  aluminum  nanocomposites  (ANCs)  [5–10].  Despite  the
improved  mechanical  characteristics  of  ANCs,  their  broad
usage beyond the saturation limit remains hindered by the ef-
fect  of  nanoparticles  on corrosion resistance.  Even the  pro-
tective oxide layer gets destroyed when the appropriate pro-
portion of nanoparticles is exceeded, leading to discontinuity

and severe corrosion. The corrosion resistance of ANCs is in-
fluenced by various parameters, including porosity, types of
nanoparticles,  the  number  of  particles  used,  the property  of
the material, microcracks, residual stress, brittle intermetallic
phases,  and  processing  methods  [11–12].  Studies  on  corro-
sion were conducted using various reinenforcement particles,
including silicon carbide [11–12], boron carbide [13],  mag-
nesium alloys (2%–8%) [14], and T6 heat-treated alloys [15].

The  use  of  multiwall  carbon  nanotubes  (MWCNTs)  in
composite  materials  is  the  most  promising aspect  of  all  the
nanomaterials  that  have  been  studied.  Various  studies  have
reported that CNTs can achieve excellent mechanical proper-
ties  at  a  high  temperature  without  losing  the  mechanical
strength and stiffness of a metal matrix,  hence, CNTs are a
feasible reinforcement [16–24].

From  the  few  studies  that  employ  CNTs  as  a  reinforce-
ment, it is understood that performance of CNTs are strongly
influenced  by  the  fabrication  methods  adopted.  Stir  casting
[23],  powder  metallurgy  [24],  squeeze  casting  [25],  spray
casting [26],  and other  fabrication processes  are  commonly
employed  in  the  fabrication  of  ANCs.  Stir  casting  is  com-
monly used to manufacture ANCs because it is simple, cost-
effective, and applicable to large-scale production, however,
this method has the drawbacks of causing particle agglomer-
ation  and  porosity  present  in  the  composites  [27].  Amith
et  al.  [28]  investigated  the  aluminum  7075  (Al7075)  alloy
with  hexagonal  boron  nitrate  (h-BN)  nanoparticles  using  a 
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rotational  ultrasonication  with  mechanical  stirring  (RUMS)
method,  and  it  shows the  ANCs fabricated  through RUMS
method  has  high  strength,  hardness,  and  fine-grain  refine-
ment compared to that of fabricating by the mechanical stir-
rer  method  and  the  conventional  ultrasonication-assisted
casting technique. The RUMS method was adopted to fabric-
ate  Al7075  nanocomposites  reinforced  with  varying  CNTs
weight  percentage  (0,  0.5wt%,  1wt%,  and  1.5wt%)  in  this
study  because  it  demonstrated  promising  characteristics  in
avoiding particle agglomeration. To further improve the cor-
rosion characteristics, the effect of heat treatment is also in-
cluded in this study. The samples are examined in an acetic
acid solution (a major acid content in sewage water) to study
the mechanical,  corrosion, and microstructural properties of
the Al–CNTs composite.

 2. Experimental
 2.1. Materials

The Al7075 alloy used in this study is obtained from Per-
fect Metals Works in Bangalore. The reinforcement material
used is CNTs (Sisco Research Laboratories in Maharashtra,

India).  The  chemical  composition  of  Al7075  is  determined
using optical emission spectroscopy, as shown in Table 1.

CNTs (99.9% purity)  have a fixed density of  2.2 g·cm–3

and diameter of 4–20 nm, as shown in Fig. S1 (see the Sup-
plementary  information). Fig.  1(a–b)  shows  the  transmittee
electron microscopy (TEM) images of multiwall CNTs, and
Fig. 1(c–d) shows the X-ray diffraction (XRD) analysis and
Raman  spectrum  of  the  CNTs,  respectively,  and  the  XRD
and  Raman  spectra  are  explained  in  the  supplementary  in-
formation file.

 2.2. Fabrication process

The Al7075 alloy reinforced with CNTs is synthesized us-
ing  the  RUMS  process.  The  supplementary  information
shows  the  photo  of  an  RUMS  machine  (Fig.  S2)  and  a
schematic of the RUMS casting process (Fig. S3).

After the RUMS process, the ANCs underwent a T6 heat
treatment  process. Table  2 shows  the  amount  of  reinforce-
ment in the ANCs samples along with the notations.  These
samples were used for further mechanical, corrosion, and mi-
crostructural studies.
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Fig.  1.      (a–b)  Transmission  electron  microscopy  (TEM)  images  of  CNTs,  (c)  XRD  analysis  of  CNTs,  and  (d)  Raman  spectra  of
CNTs.

Table 1.    Chemical composition of Al7075  wt%

Zn Mg Cu Cr Fe Ti Si Sn Mn Al
5.280 2.325 1.703 0.202 0.089 0.035 0.036 0.019 0.011 Bal.
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 2.3. Mechanical testing

Nanocomposite ingots are cut to prepare the specimens for
the Vickers microhardness test (ASTM E92), tensile test for
sub-sized  samples  (ASTM  E8),  and  Charpy  impact  test
(ASTM E23)  as  per  ASTM standards.  Following  the  tests,
the  fractography  analysis  of  the  fractured  sample  surfaces
was conducted using scanning electron microscopy (SEM) to
identify the failure mechanism.

 2.4. Corrosion test

The corrosion tests performed on the as-cast as well as so-
lutionized and aged (T6) ANCs samples are static immersion
corrosion test (ASTM G31), salt fog spray test (ASTM G85),
and  potentiodynamic  polarization  test  (ASTM  G59)  stand-
ards. The weight loss is calculated and expressed as the rate
of corrosion, given in millimeters per year (mm·a–1). The cor-
roded  surfaces  are  evaluated  using  SEM.  The  experiment
duration  and  various  percentage  of  acid  solution  are  de-
scribed in the supplementary information file.

 2.5. Microstructural characterization

An optical microscope is used to examine the microstruc-
tures, grain refinement, and average grain size (AGS) meas-
urements of the ANCs. SEM is used to examine the fracto-
graphy of the tested-tensile sample and evaluate nanoparticle
dispersion in the Al matrix. The particles present in the ANCs
and the second-phase matrix are determined using SEM-en-
ergy  dispersive  spectroscopy  (EDS).  Transmission  electron
microscopy (TEM) reveals dislocation density, the presence
of  CNTs,  precipitates,  and CNTs/Al  matrix  interface  bond-
ing. The presence of particles in the ANCs fabricated using
the  RUMS  method  is  confirmed  using  XRD.  Keller’s  re-
agent (HF = 4 mL, HCl = 6 mL, HNO3 = 8 mL, H2O = 82
mL) is used to etch the specimens.

 2.6. Density,  porosity,  and  average  grain  size  measure-
ments

The  densities  of  ANCs  are  calculated  using  the  rule  of
mixtures and Archimedes’ principle, as shown in Eqs. (1–2).

1
ρTD
=

{
WMM

ρMM
+

WRM

ρRM

}
(1)

ρED =

(
WNA

WNA−WNW

)
(2)

where ρTD is  the  theoretical  density  of  the  nanocomposite,
g·cm–3; ρED is the experimental density of the nanocomposite,
g·cm–3; WMM is  the  weight  fraction  of  the  matrix  material;
WRM is the weight fraction of the reinforcement material; ρMM

is the density of the matrix material; ρRM is the density of the
reinforcement material; WNA is the mass of the nanocompos-
ite  in  air,  g;  and WNW is  the  mass  of  the  nanocomposite  in
water, g.

Porosity =
(
ρTD−ρED

ρTD

)
×100% (3)

Eq. (3) is used to calculate the proportions of porosity in
nanocomposites. According to ASTM E112, the linear inter-
cept method is used to determine the AGS. The open-source
ImageJ tool is used to determine the length of the linear line.

 3. Results and discussion
 3.1. Density and porosity

Since CNTs have a lower density than the Al7075 alloy,
the theoretical densities of ANCs decrease as the content of
CNTs increases. The percentage porosity trend shows a de-
crease  in  the  experimental  densities  (calculated  by
Archimedes’ principle)  for  different  compositions  of  the
nanocomposites,  as  shown  in Table  3.  The  degasifying  ac-
tion  of  rotating  ultrasonication  causes  decrease  in  porosity
percentage, as it allows the CNTs to scatter entirely in the Al
matrix  without  forming  voids.  With  the  further  addition  of
CNTs, the experimental density of nanocomposite decreased,
indicating  the  presence  of  casting  voids  caused  by  the  ag-
glomeration of CNTs, as shown in Table 3 [29].

 3.2. Microstructure characteristics

 3.2.1. Optical microscopy
The major elements of the ANCs microstructure are α-Al

and  eutectic  phases.  Optical  microscopy  images  show  that
the alloying components and precipitates are separated at the
grain boundary, as shown in Fig. 2. The addition of CNTs to
the ANCs causes grain size reduction.

Table 2.    Amount of reinforcement in the aluminum matrix and the notations

As-cast samples Notation T6 heat-treated samples Notation
Al7075–0 CNTs A0 T6-Al7075–0 CNTs T0

Al7075–0.5wt% CNTs A0.5 T6-Al7075–0.5wt% CNTs T0.5

Al7075–1wt% CNTs A1 T6-Al7075–1wt% CNTs T1

Al7075–1.5wt% CNTs A1.5 T6-Al7075–1.5wt% CNTs T1.5

Table 3.    Density, porosity, and average grain size of ANCs

Nanocomposite Experimental density / (g·cm−3) Theoretical density / (g·cm−3) Porosity / % AGS / µm
A0 2.7482 2.8100 1.90 43.4
A0.5 2.7637 2.8058 1.30 35.9
A1 2.7815 2.8019 0.56 32.4
A1.5 2.7733 2.7988 0.85 39.8
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 3.2.2. SEM and EDS analysis
Fig.  3(a–d) shows the morphology and the dispersion of

different  content  of  CNTs in  the  ANCs,  establishing a  uni-
form  dispersion  of  CNTs  in  the  matrix  without  forming
clusters.  Liao et  al.  [30]  performed  mechanical  investiga-
tions and observed severe agglomerations and wider voids in
the nanocomposite reinforced with 1.5wt% of CNTs, result-

ing in a decrease in strength and microhardness values. Finer
grains  are  observed  in  A1 nanocomposite  because  of  lower
proportions  of α-Al  phases  and  comparatively  widespread
eutectic  phases.  During  the  solutionizing  and  aging  pro-
cesses  of  the  ANCs,  the  eutectic  phases  are  partly  soluble,
resulting in the formation of second-phase particles with ex-
cess eutectic phases. The EDS analysis of the A1.5 nanocom-
posite shows the presence of key alloying elements Al,  Zn,
Mg, Cu,  and C for the 1.5wt% CNTs content  in the ANCs
(Fig. 3(e)), confirming the elements present in the nanocom-
posites  listed in Table  1.  In  addition,  the  carbon element  is
also observed in the Al matrix for A1 ANCs, as shown in Fig. 4.
 3.2.3. TEM analysis

Fig.  5(a–d) shows the TEM characterization of solution-
ized and aged Al7075 with 0 and 1wt% CNTs, and Fig. 5(e)
shows the  CNTs interlayer  spacing. Fig.  5(a–b)  depicts  the
dislocation density in the T0 nanocomposite, and the related
enlarged view. Owing to the thermal mismatch of the ANCs,
the existence of second-phase particles, and the separation of
solute elements, dislocation density is formed [31]. Because
of the RUMS process, the CNTs are randomly dispersed in
the  matrix  because  of  the  presence  of  homogeneously  dis-
persed CNTs of T1 ANCs, as shown in Fig. 5(c–d). The high
dislocation  density  in  the  ANCs  increases  its  strength  with
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Fig. 2.    Optical microscopy images of Al7075–CNTs ANCs: (a)
A0; (b) A0.5; (c) A1; (d) A1.5.
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1wt% CNTs. The presence of dislocations in the Al matrix
with uniformly dispersed CNTs prevents slip movement dur-
ing deformations as they associate with the precipitates. Dis-
location resistance offered by interaction with second-phase
particles and reinforcements requires high stress for deform-
ation. Thus, the ANCs with 1wt% CNTs improve mechanic-
al properties. Inside the grain are well-spaced CNTs, with no
indication of adjacent grain boundaries and agglomerations.
No interfacial oxide deposits, reaction products, or other de-
fects are observed at  the Al matrix/CNTs reinforcement in-
terface.

The ANCs also undergo a solutionizing and aging process,
according  to  ASTM  T6  specifications  (490°C/1  h  for  heat
treating the solution and 120°C/24 h for annealing). There are
more η phases  in  this  state  of  nanocomposites,  as  well  as
fewer Guinier–Preston (GP) zones (GP1 and GP2) and meta-
stable  (MgZn2)  phases.  At  the  interface  plane,  the  two  lat-

tices are continuous, and the arrangement of alloying atoms
in the GP zone and matrix phase coincide.  GP zones cause
the  surrounding  lattice  to  experience  considerable  strain,
which  prevents  dislocation  slip.  Although  the  lattice  strain
imposes resistance against slip and hardens the metal, dislo-
cations can nevertheless shear through GP zones [32].
 3.2.4. X-ray diffraction (XRD)

Fig. S4 shows the XRD patterns for the ANCs with vari-
ous content of CNTs under solutionized and aged conditions.
All the curves have similar positions for the Al matrix phase
peaks.  The precipitate  phases  are  represented by intermedi-
ate, tiny peaks in the aluminum matrix phase peaks. The Mg-
Zn2 (η)  phases,  which  are  presented  in  the  ANCs,  are  the
most dominant precipitates [33]. Mg(Al, Cu, Zn)2 phases can
occur  in  the  ANCs  because  they  have  a  related  crystallo-
graphic lattice parameter of MgZn2 [34]. After the solution-
izing and aging (T6 heat-treated condition) of the ANCs, the
Al2CuMg phase occurred, while the Mg(Al, Cu, Zn)2 phase
was eliminated. The Al7Cu2Fe phase also exists in all ANCs
samples, and the peak overlaps with the ANCs matrix peak.
the  intensity  of  CNTs  peaks  are  very  weak  due  to  the  low
content  of  CNTs  when  correlated  with  aluminum  matrix
peaks  and  other  second-phase  particle  peaks.  Hence,  the
XRD peaks of CNTs are not apparent in the XRD graph.

 3.3. Mechanical properties

 3.3.1. Microhardness
The Vickers hardness test of both sets of samples is per-

formed as per the ASTM standard. The increase in the hard-
ness value, as shown in Fig. 6, is related to the presence of
CNTs, which have a smaller separation and prevent disloca-
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Fig.  4.      SEM image  and  elemental  mapping  of  the  A1 ANCs
sample.
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tion  movement  [35].  The  increase  in  hardness  value  indic-
ates that CNTs are involved in the formation of crystal struc-
ture in the ANCs and that the nanofillers inhibit grain growth
via a pinning action, resulting in increased grain size reduc-
tion.  The  Hall–Petch  equation  states  that  the  average  grain
diameter is inversely related to the strength of the ANCs.
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The interfacial bond between Al7075 and the CNTs, the
hindering  influence  of  dislocation  motions,  and  improved
grain refinement are the main reasons for the improvement in
the microhardness of the nanocomposites. Because of the ho-
mogeneous distribution of CNTs, the magnitude of hardness
increases until 1wt% CNTs, while further increase in content
of CNTs does not improve hardness, as shown in Fig. 6. This
is attributed to the clustering of CNTs reinforcements. Barati
F et al. [36] found that the hardness of nanocomposites rein-
forced  with  2wt% CNTs  is  considerably  reduced,  which  is
most likely due to the cluster formation of nanotubes during
agglomeration.
 3.3.2. Tensile strength

Three of the four as-cast and heat-treated samples of the
ANCs are subjected to the tensile test, and the ultimate tensile
strength (UTS) and percentage elongation values are calcu-
lated using the average of the three results. A graphical illus-
tration of percentage elongation and UTS for the ANCs un-
der various conditions is shown in Fig. 7.

A  rising  trend  is  evident  in  the  ultimate  strength  and
elongation of the ANCs. As the content increased, the mech-
anical  properties  of  the  material  deteriorated.  During  the
RUMS  process,  the  acoustic  streaming  effect  disperses  the
cavitation voids in the low-pressure zone, resulting in a ho-
mogenous dispersion in the Al matrix, and thus agglomera-
tions are avoided. Further inclusion of CNTs in the Al matrix
forms CNTs clustering in the matrix, which reduces strength
and percentage elongation (Fig. 7).

The strength of the ANCs is influenced by the wide sur-
face  interfacial  areas  of  CNTs as  well  as  its  ability  to  shift
loads  [37–38].  The  presence  of  solid-phase  CNTs  in  the
Al7075  matrix,  which  confines  the  slip  movement  of  the
ANCs along with crack generation while allowing atoms to

slide  over  each  other,  results  in  higher  tensile  values.  With
the  addition  of  CNTs,  the  Orowan  strengthening  effect
caused  by  slip  formation  inside  the  ANCs  inhibits  crack
propagation [39]. Therefore, it is linked to the consistent scat-
tering  of  CNTs  in  aluminum,  which  enhances  mechanical
strength.  Furthermore,  RUMS  and  the  inclusion  of  CNTs
particles  reduce  grain  size  and  increase  grain  boundaries
(Hall–Petch  strengthening).  The  mechanical  strength  of  the
ANCs is greatly influenced by the shape and grain size of the
materials. As the CNTs content increases, the grain size in-
creases, resulting in a decrease in the ultimate tensile strength
and elongation of the ANCs.

Thermal  stresses  are  induced  in  the  nanocomposites  be-
cause  of  the  preheated  state  of  the  CNTs  added  during  the
casting process. Preheated nanoparticles are used to improve
the interfacial adhesion between the matrix and the second-
phase  particles.  The  thermal  disparity  between  Al7075  and
CNTs explains the higher UTS values [40]. The interaction
between CNTs and the Al matrix has been attributed to grain
detachment as surface energy increases. Under tensile load-
ing conditions, adjacent crystals and the interfacial friction of
particles increase [41–42].

Fig. 8 shows tensile fractography images of solutionized
and  aged  ANCs  (0  and  1wt%  CNTs).  As  can  be  seen,  the
fractured  tensile  surface  with  globular  dendrites  and  tear
ridges is observed in pure ANCs, and it indicate brittle fail-
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ure  (Fig.  8(a–b)). Fig.  8(c–d)  shows  an  enhanced  fractured
tensile image of the ANCs with 1wt% CNTs, displaying fa-
cet planes and a few microvoids developed by the grain sep-
aration effect [43]. Thus, a semi-brittle fracture mechanism is
demonstrated  for  the  ANCs  with  1wt%  CNTs,  which  ac-
counts  for  the  enhanced  mechanical  properties.  Thus,  this
fracture  study  shows  failure  modes  that  are  partially  brittle
and ductile.
 3.3.3. Impact test

Impact  loading  causes  internal  damage  to  the  structural
components  of  the  robot,  resulting  in  performance  failures.
Materials with a high capacity to absorb applied forces are re-
quired for structural applications. All of the composites show
an increase in impact toughness. This increase could be as-
signed to the combined crack dispersion restriction of precip-
itates and distributed particles. Because the impact toughness
of the fabricated composites is a crucial feature for compon-
ent designers, it is investigated in this work and reported in
Fig. 9. A comparison of the results shows that the presence of
CNTs allows absorption of maximum energy on the Al mat-
rix. This result is attributed to the ability of these particles to
stop  crack  growth.  The  T1 ANCs has  higher  impact  tough-
ness  than  other  ANCs  because  of  grain  refinement  and
particle dispersion in the Al matrix [44].
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Fig. 10(a–b) shows a fractured impact surface with inter-
granular  fracture  and  ductile  failure  for  the  ANCs
without CNTs,  and Fig.  10(c–d)  shows  a  fractured  impact
surface with transgranular fracture, cleavage facets, and mi-
crovoids for the ANCs with 1wt% CNTs, indicating partial
ductile and brittle failure.

The hardness, UTS, and impact values of T1 increased by
42.24%, 100.23%, and 50%, respectively, in comparison to
the A1 ANCs, with both ANCs having 1wt% CNTs. In com-
parison with the base metal (A0), the hardness, UTS, and im-
pact  values  of  T0  increased  by  60.95%,  181.041%,  and
66.67%, respectively.

 3.4. Corrosion test

 3.4.1. Salt spray corrosion test
According to research observations, the cathodic and an-

odic  processes  responsible  for  aluminum  alloy  corrosion
in  an  aerated  CH3COOH solution  are  dissolved  oxygen  re-
duction  and  aluminum  alloy  oxidation.  According  to  the
point defect model, acetate ions displace oxygen in the oxide
film  and  compete  with  cation  vacancies  to  produce  metal
acetate,  degrading  the  oxide  film  and  triggering  the  pitting
process, as shown in Fig. 11. Galvanic coupling between the
precipitates of the second phase and the matrix of the ANCs
results  in  anodic  dissolution.  Acetate  ions  can  expedite  the
corrosion of the top layer of the ANCs by rupturing the oxide
film [45].

According to the XRD of the ANC, the intermetallics of
the A17075 alloy are primarily composed of Al7Cu2Fe, (Al,
Cu)6(Fe, Cu), and Mg2Si. Because Mg2Si has a higher corro-
sion potential than the other Al phases, this phase dissolves,
first causing pitting corrosion. Local corrosion uses Al7Cu2Fe
and (Al, Cu)6(Fe, Cu) as cathodes to accelerate the corrosion
of  the  surrounding  matrix  because  they  have  higher  corro-
sion potentials than the matrix [46].

Although  MgZn2 is  the  primary  precipitated  strengthen-
ing phase, it dissolves faster than the matrix as an anode be-
cause  of  its  higher  corrosion  potential  than  the  other  Al
phases. Because of the interaction between the expansion of
corrosion products and the external corrosion media,  corro-
sion  cracks  began  to  form  on  the  Al  alloy  surface.  As  the
cracks  progress,  the  Al  plate  corrodes,  and the  layered sur-
face spalling phenomenon emerges, as shown in Fig. 12. The
inclusion of CNTs may cause a slight decrease in permeabil-
ity, which decreases the infiltration of aggressive chemicals
and  delays  the  onset  of  corrosion.  This  delay  eventually
causes corrosion to slow down, which will prolong the life of
the robot.
 3.4.2. Immersion test

The  corrosion  resistance  of  solutionized  and  aged  (T6)
CNTs ANCs specimens of various content of CNTs is higher
than  that  of  the  other  as-cast  CNTs  ANCs  specimens,  as
shown in Fig.  13(a–b).  The graph shows that  the T1 ANCs
specimen  lose  less  weight  per  year  compared  to  the  other
specimens.

After  5  days  of  immersion,  all  specimens  show  certain
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evidence of pitting corrosion, and the pit density and size in-
crease over time. Fig. 13(c–f) shows the 3D surface graph of
the  immersion  test  in  various  concentrations  of  the  acetic
acid solution for heat treated samples. As can be seen, the T1

ANCs sample has less weight loss per year compared to oth-
ers. However, the sorption capacity of the acetate ions in the
as-cast  ANCs  is  greater  than  that  of  the  ANCs  heattreated
samples.

Additionally, the creation of hydrogen through a cathodic
reaction  near  active  pit  sites  causes  the  development  of
bubbles at the pit mouth [47]. Fig. 14 shows the corroded sur-
face  of  the  solutionized  and  aged  ANCs.  Obviously,  fewer
pits are seen in the T0.5 ANCs sample. The T0 ANCs sample
has deeper and broader holes than the T1 ANCs sample. The
formation  of  larger  and  deeper  pits  is  associated  with  the
presence of large grains and precipitates on the T0 surface, as
shown in Fig. 14(d).

The order of the pit average size is observed as T1 < T0.5 <
T1.5 < T0,  indicating that  the T1 sample has better  corrosion
resistance than other samples. Al–Zn–Mg–(Cu) alloys, such
as Al7075, are well known to experience severe attacks along
grain boundaries in acetic acid solutions. Intergranular corro-
sion of these alloys occurs because of certain precipitates at
or near the grain boundary area. A substantial  corrosion at-
tack occurs at the grain boundary or the precipitate-free zone
along the grains. This result is due to grain boundary precip-

itations acting as either anodes or cathodes to the aluminum
matrix.
 3.4.3. Potentiodynamic polarization test

Fig.  15 shows  the  potentiodynamic  polarization  (PDP)
curves  developed  from  the  electrochemical  testing  of  heat-
treated ANCs specimens. Al resistance is widely known to be
correlated with a fine and concise coating of naturally gener-
ated oxide on the surface of a metal; however, this oxide lay-
er is only stable in the pH range of 4–8. Lower or higher pH
values  destroy  the  protective  barrier,  resulting  in  consider-
able metal dissolution [48].

The corrosion in the Al matrix is probably due to the im-
purities in the Al alloy, particularly Mg (2.325wt%) and Fe
(0.089wt%). These precipitate impurities merely weaken the
resistance to corrosion of the Al alloy by enhancing the cath-
odic volume fraction, even when their quantity is low. Addi-
tionally,  alloying  components  are  typically  found  in  inter-
metallic  compounds  and  aqueous  solutions  of  aluminum,
both of  which have a significant  impact  on how ANCs be-
have when subjected to corrosion. A smaller crystallite size,
the  presence  of  CNTs,  decreased  intermetallic  phases,  and
the textural effect are the major aspects that influence the cor-
rosion resistance of the composites. The CNTs in the matrix
behave  as  a  cathode,  causing  galvanic  action.  When  all  of
these parameters are combined, the corrosion behavior of the
composite is marginally better than that of Al7075 base metal.
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In an electrolyte, the corrosion potential (Ecorr) is generally
influenced by the alloy composition, solute content in the sol-
id solution, volume fraction, size, and the presence of second-
phase elements, and other factors [49]. By using the Tafel ex-
trapolation  approach,  the  corrosion  current  density  (icorr)  of
the Al7075 alloy and the composites are calculated from the
polarization curves (Fig. 15). Table 4 lists the Tafel constants
for the alloys and composites as well as electrochemical in-
formation such as corrosion potential (Ecorr), polarization res-
istance (Rp), and corrosion current density (icorr).

In  terms  of  corrosion  potential  (Ecorr),  1wt%  ANCs  per-
formed slightly better than the other three ANCs. The corro-
sion current density (icorr) of T1 is slightly lower than that of
other ANCs samples, indicating improved corrosion behavi-
or.  Therefore,  this  study  firmly  establishes  that  the  RUMS
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method  may  be  used  to  generate  a  surface  ANCs  with  en-
hanced mechanical  properties  without  compromising corro-
sion performance.

 4. Conclusions

The  RUMS  method  is  used  to  fabricate  Al7075–CNTs
nanocomposites (0, 0.5wt%, 1wt%, and 1.5wt% CNTs) and
an equal number of heat treated samples. Based on the stud-
ies on ANCs samples, the following conclusions are drawn:
(1) The AGS decreased with increasing reinforcement in the
Al matrix. T1 has the lowest AGS. (2) The presence and dis-
persion  of  CNTs  are  examined  using  SEM–EDS  analysis,
and  XRD shows  the  different  phases  present  in  the  ANCs.
The  dislocation  density  and  presence  of  CNTs  are  determ-
ined  using  TEM.  The  SEM  fractography  shows  a  partial
brittle and ductile fracture mechanism, tear ridges, and inter-
granular  as  well  as  transgranular  fractures.  (3)  By  adding
1wt% CNTs, the hardness, UTS, and impact values of T1 in-
creased  by  42.24%,  100.23%,  and  50%,  respectively,  com-
pared to the A1 ANCs. T0 increased by 60.95%, 181.041%,
and  66.67%,  respectively,  compared  to  the  base  metal.  (4)
Pitting,  surface spalling,  and intergranular  corrosion are the
primary causes of corrosion, as determined using salt  spray
and immersion corrosion tests. T1 has better corrosion resist-
ance than other ANCs samples. (5) The PDP curves exhibit
active behavior throughout the entire range of the applied po-
tential for each composition. T1, again, is found to have bet-
ter corrosion resistance, which is attributed to the fine-grain
structure and the presence of CNTs.

Hence, T1 ANCs stand out as a better candidate for build-
ing a robot for in-pipe applications for better performance in
corrosive environments without compromising the mechan-
ical performance characteristics of the robot. The results ob-

tained could be validated for optimized corrosion and mech-
anical  performance  once  the  prototype  of  the  robot  is  de-
veloped.
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