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Abstract: The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,
which directly  affects  the  tap-to-tap time of  converter.  In  this  study,  a  hybrid  model  based on oxygen balance mechanism (OBM) and
deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hy-
brid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more ac-
curate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing
time was  calculated  according  to  the  oxygen consumption  volume and the  oxygen supply  intensity  of  each  heat.  The  proposed  hybrid
model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression
model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test
results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learn-
ing rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxy-
gen  consumption  volume  within  the  error  ±300  m3 is  96.67%;  determination  coefficient  (R2)  and  root  mean  square  error  (RMSE)  are
0.6984 and 150.03 m3,  respectively. The oxygen blow time prediction hit  ratio within the error ±0.6 min is 89.50%; R2 and RMSE are
0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen
blowing time in the converter.

Keywords: basic oxygen furnace; oxygen consumption; oxygen blowing time; oxygen balance mechanism; deep neural network; hybrid
model

 

 1. Introduction

As the key section of the steel manufacturing process, the
steelmaking–continuous  casting  process  (SCCP)  is  a  high-
temperature  reaction  process  (1500–1700°C)  consisting  of
multiple processes, multiple physical-chemical reactions, and
multiple  phase  changes  [1–2].  Due  to  the  characteristics  of
multi-process,  multi-reaction,  and  quasi-continuous,  SCCP
has  various  uncertain  factors  that  bring  great  challenges  to
production organization and scheduling. Therefore, realizing
the efficient and stable production of SCCP is a hot issue that
needs  to  be  solved  urgently  for  the  green  and  intelligent
transformation of the steel industry in recent years [3–4]. Un-
certain events in the converter process, which are dominated
by  a  fluctuation  of  the  converter  taping  cycle,  frequently
damage the stable operation of the SCCP and hinder the im-
provement of production efficiency [5–6]. As the initial pro-
cess, the converter disturbance will lead to the tense produc-
tion rhythm of each process in SCCP, and then destroy the
process production, such as causing the shutdown of process

devices, reduction of casting speed, and stopping pouring in
severe cases.  It  is  a  feasible method to solve such dynamic
scheduling  problems  by  predicting  the  possible  uncertain
factors  through  deeply  analyzing  the  metallurgical  reaction
mechanism of SCCP [7].

For uncertain events in the production scheduling process,
detecting disturbances in advance can achieve more efficient
production scheduling [5].  Jiang et  al. [8]  developed a pre-
diction-based  online  soft  scheduling  based  on  a  surrogate
model called Gaussian process regression to predict the char-
acteristic index, slack ratio. Long et al. [9] established a re-
lease time series of hot metal ladles forecasting model using
the  historical  data,  and  developed  a  new  robust  dynamic
scheduling  approach  based  on  the  release  time  series  fore-
casting of molten iron ladle release. Yu et al. [10] deeply ana-
lyzed the relationship among operation time delay,  planned
casting break, and processing conflict, and then developed a
novel prediction method for abnormal conditions of schedul-
ing  plan  with  operation  time  delay  disturbance  in  SCCP,
which reduces the frequency of complete rescheduling. Yang 
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et al. [11] developed a new end-point temperature preset ap-
proach for molten steel in the final refining unit by integrat-
ing a deep neural network (DNN) and a multi-process opera-
tion simulation model, which solved the problem of the devi-
ation between the actual casting temperature of molten steel
and the preset temperature. In recent years, methods for pre-
dicting  process  parameters  have  been  gradually  applied  to
optimize  the  production  scheduling  of  SCCP.  However,
SCCP is a complex physical and chemical reaction process,
which leads to many unexpected production disturbances in
the scheduling process,  such as fluctuations in the smelting
cycle,  unsatisfactory  composition,  and  unsatisfactory  tem-
perature of molten steel.

The converter smelting cycle is affected by the amount of
oxygen  blowing  in  the  converter  under  the  same  smelting
process. For the prediction of the amount of oxygen blowing,
Cox et  al.  [12]  used  the  probe  to  measure  temperature  and
sample during the end-blow period and used these measure-
ments as the inputs to the artificial neural networks model to
predict  how  much  oxygen  to  blow.  Rajesh et  al.  [13]  de-
veloped a multi-layered feed-forward neural network model
for the prediction of end-blow oxygen in the converter, which
was composed of a two-step process. Han and Zhao [14] pro-
posed  a  dynamic  control  model  based  on  an  adaptive-net-
work-based fuzzy inference system (ANFIS) and robust rel-
evance vector machine to control the end-blow period of ba-
sic  oxygen  furnace  (BOF),  in  which  the  ANFIS  regression
model  was utilized to calculate  the amounts  of  oxygen and
coolant. Wang et al. [15] proposed a hybrid prediction mod-
el, based on twin support vector regression and whale optim-
ization algorithm, which has high prediction accuracy. Ai et
al.  [16]  used  the  Levenberg–Marquardt  optimization  al-
gorithm to improve the back propagation neural network and
established  the  prediction  model  of  the  total  blow  oxygen
amount  and  the  end  blow  oxygen  amount  in  converter.
Nowadays,  prediction  models  based  on  various  algorithms
have been applied to predict the amount of oxygen blowing.
Machine learning belongs to the black box model with strong
adaptability but not strong interpretation of the converter me-
tallurgical process. In contrast, the metallurgical mechanism
model is a mathematical model that can describe the metal-
lurgical  process  based  on  the  analysis  of  the  mass  balance,
energy balance, and chemical reactions. Dogan et al. [17] de-
veloped a comprehensive converter decarburization model to
predict the carbon content of molten steel by investigating the
decarburization  mechanism  in  different  reaction  zones,
which showed good agreement with plant data. The physical
significance  of  the  parameters  in  the  mechanism  model  is
clear, which makes the mechanism model have strong pertin-
ence. Additionally, combining physical modelling with ma-
chine learning has a proven track record in various parameter
prediction [18–20]. Therefore, it is necessary to introduce the
metallurgical  mechanism  to  predict  the  amount  of  oxygen
blowing in  the  converter.  Li et  al.  [21]  considered the effi-
ciency of oxygen decarburization and established a calcula-
tion  model  of  blowing  oxygen  volume  based  on  a  support
vector machine (SVM). Wang et al.  [22] analyzed the con-
verter  oxygen  balance  and  amalgamated  it  with  a  multiple

linear  regression  (MLR)  model  to  establish  an  integrated
model for the prediction of the oxygen blowing quantity. Li
et al. [21] and Wang et al. [22] considered the metallurgical
mechanism in their research but made more simplifications to
the converter reaction process, and there were problems with
non-essential  assumptions  and  incomplete  consideration  of
influencing factors. In addition, SVM has insufficient ability
to  express  large-scale  high-dimensional  data  when  dealing
with complex nonlinear relationships and has the problem of
difficult kernel function design and poor generalization abil-
ity. MLR shows a better fit when dealing with data with lin-
ear  relationships,  but  it  is  difficult  to  approximate  complex
nonlinear relationships. DNN, as one of the hottest machine
learning algorithms in recent years, relies on the multi-layer
network  structure  to  enable  strong  feature  learning  ability,
good adaptability to nonlinear data relationships, and strong
generalization  ability  [23–25].  Furthermore,  different  from
process research which focuses on oxygen blowing volume,
scheduling research pays more attention to the fluctuation of
smelting  time,  because  the  production  of  each  process  ulti-
mately affects the entire production scheduling in the form of
time. Therefore, it is necessary to further predict the oxygen
blowing time of the converter.

Aiming at the above problems, a hybrid model exploiting
DNN and more comprehensive oxygen balance mechanism
(OBM) was established for more accurate analysis  of  com-
plex high-dimensional nonlinear data of the converter smelt-
ing process in this study. Based on the prediction of convert-
er oxygen blowing volume, a converter oxygen blowing time
prediction model was established to provide a reference for
solving the fluctuation influence of converter taping cycle on
the scheduling process.  This  work can establish a  more ac-
curate hybrid model to predict the oxygen blowing volume in
converter and provide a novel technical idea for researchers
in solving production scheduling problems.

 2. Description and analysis of BOF process
 2.1. Process description

Converter steelmaking is a batch process that uses a lance
to  blow  oxygen  into  the  converter  furnace  to  convert  rich-
carbon  hot  metal  into  low-carbon  molten  steel.  During  the
basic  oxygen  steelmaking  process,  the  hot  metal  at  about
1400°C is heated up to 1700°C mainly through carbon oxida-
tion exotherm. During this period, the converter slag is made
by adding lime dolomite in reasonable proportions,  and the
impurity  elements  such  as  carbon,  silicon,  manganese,  and
phosphorus are further removed by the stirring action of the
oxygen jet, which finally converts the hot metal into molten
steel.

The  research  object  of  this  study  is  an  integrated  steel
plant in China with an annual capacity of 5 Mt consisting of
BOF, ladle furnace (LF), Ruhrstahl Heraeus (RH), and con-
tinuous casting (CC) processes. These are four converters in
this plant. Each BOF loads about 120 t of hot metal and 20 t
of scrap at a time and completes a smelting cycle in about 40
min. Approximately 29 heats are carried out every day.

X. Shao et al., Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and ... 107



The converter smelting process contains many operations,
and the tap-to-tap of BOF is shown in Fig. 1, including scrap
adding, hot metal charging, main blowing, sub-lance detec-
tion, end blowing, alloy addition, steel tapping, furnace shak-
ing, slag splashing, and other operations.

The above operations can be divided into two categories,
among which scrap adding, hot metal charging, sub-lance de-
tection, furnace shaking, and slag splashing can be classified
as  management-related,  and  such  operations  can  be  greatly
ensured to be on time through reasonable operating rules set-
ting  and strict  operator  training as  well  as  regular  mainten-
ance  of  equipment.  Another  category  of  operations  can  be

classified as process-related, such as main blowing and end
blowing,  which  are  physiochemically  violent  reaction  pro-
cess involving complex reaction thermodynamics and kinet-
ics.  Although  the  process-related  operations  account  for  a
small  proportion  of  the  converter  smelting  cycle,  the  pro-
cessing  time  of  these  operations  is  typically  significantly
variable due to the influence of the complex reaction mech-
anism  and  variation  of  smelting  conditions  in  each  heat.
Therefore, it is of great significance to accurately predict the
processing  time  of  these  operations  for  scheduling  adjust-
ment and production smoothness.
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Fig. 1.    Specific flow chart of converter smelting process.
 

 2.2. Analysis of main factors

Under  normal  conditions,  the  converter  oxygen  blowing
process is usually divided into two periods, namely the main
blowing  and  the  end  blowing.  The  main  blowing  and  end
blowing are distinguished by the first temperature measure-
ment and carbon determination of the sub-lance. During the
blowing  process,  oxygen  blowing  will  be  paused  usually
when the blowing volume reaches about 85vol% of the total
blowing volume [16,26]. Subsequently, the sub-lance is used
for temperature measurement and carbon determination, and
the oxygen blowing volume at the end blowing stage is cal-
culated by comparing the measured carbon content with the
expected value. Finally, the converter blowing is completed.

Hence,  the  whole  blowing process  is  composed of  main
blowing,  sub-lance  detection,  and  end  blowing.  Since  the
process of sub-lance detection can be classified as a manage-
ment-related problem, and a relatively definite detection time

can be achieved through reasonable operation specifications
and personnel  training,  this  study ignores  the  sub-lance de-
tection time and only considers the effect of blowing volume
on the blowing time.

The  converter  blowing  time  is  mainly  influenced  by  the
oxygen  required  volume,  oxygen  supply  intensity,  and  the
weight of molten steel, while the oxygen required volume is
closely related to the elemental oxidation, oxygen decarbur-
ization efficiency, and the amount of oxygen brought in by
the coolant. Based on the analysis of the BOF metallurgical
reaction  mechanism  and  literature  survey  [12–16,21–
22,27–28],  the  main  factors  affecting  the  oxygen  blowing
time  of  BOF  steelmaking  were  put  forward.  As  shown  in
Table 1, the main variables include input variables related to
element oxidation (X1–X8), input variables related to oxygen
decarbonization efficiency (X6–X12), other related input vari-
ables (X13–X14), and output variables (Y1–Y2).

 
Table 1.    Main factors affecting the oxygen blowing time of BOF steelmaking

Symbol Description of variable Unit Symbol Description of variable Unit
X1 Weight of hot metal t

 

X9 Temperature of hot metal °C
X2 Weight of scrap t X10 Temperature of molten steel °C
X3 [C] content in molten steel wt% X11 Weight of lime t
X4 [Si] content in molten steel wt% X12 Weight of dolomite t
X5 [P] content in molten steel wt% X13 Weight of sinter t
X6 [C] content in hot metal wt% X14 Oxygen supply intensity m3/(t·min)
X7 [Si] content in hot metal wt% Y1 Volume of oxygen m3

X8 [P] content in hot metal wt% Y2 Blowing time min
 

 3. Modelling in hybrid model
 3.1. Deep neural network

The  neural  network  was  first  proposed  in  1943.  On  this
basis, Hinton et al. [29] first introduced the concept of deep
learning  in  2006  and  designed  a  DNN  model  containing

seven  hidden  layers.  The  internal  topology of  the  DNN,  as
shown in Fig. 2, consists of input layers, hidden layers, and
output  layers.  When  the  number  of  hidden  layers  exceeds
three and the hidden layers are fully connected to each other,
it can be called DNN. The main feature of DNN that distin-
guishes  it  from  other  network  structures  (convolutional
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neural network and recurrent neural network) is that the neur-
ons of the previous layer are connected to the neurons of the
latter layer [30–32].

The supervised learning process of DNN can be divided
into two main steps. The first step is the training process, in
which  a  topological  neural  network  is  established  through
hyperparameter settings. Further, the input data is fed to the
DNN  to  determine  appropriate  values  for  node  weights  to
solve a specific task during the iterative learning process. The
second step is the inference process, which uses the trained
model to make predictions on new data. In addition, the neur-
al network has a strong nonlinear mapping ability because of
the introduction of various activation functions in DNN, es-
pecially  the  rectified  linear  units  (ReLU)  which  is  a  good
solution  to  the  gradient  disappearance  problem.  Therefore,
DNN has been widely used for the prediction of various pro-
cess parameters in the steel industry. Liu et al. [33] proposed
an integrated model based on a DNN and a long short-term
memory (LSTM) network to help the field operators to con-
trol the change of the sinter composition in real time. Myers
and  Nakagaki  [34]  developed  a  DNN model  to  predict  the
nucleation lag time of iron and steelmaking melts solely from
elemental  composition and temperature,  and achieved rapid
design, analysis, and optimization of new slag compositions.

 3.2. Oxygen balance mechanism

The converter steelmaking process is a complex high-tem-
perature  physical  and  chemical  process.  In  this  study,  an
OBM model for oxygen required prediction was established
by  analyzing  the  relevant  chemical  reactions  and  material
balance.

In the converter smelting process, oxygen is injected into
BOF by the oxygen lances, mainly for the oxidation of car-
bon and other elements. As a result, part of the oxygen ele-
ment enters the converter dust and slag in the form of oxide,
part of the oxygen element participates in the post-combus-
tion of CO in the furnace, and part of the unused oxygen is
discharged with the flue gas. In addition, some coolants such
as  sintered  ore  will  bring  in  a  certain  amount  of  oxygen
element.

Consequently, the income and expenditure of oxygen ele-
ment in the converter smelting process can be summarized as
shown in Fig. 3, and the oxygen balance equation is shown in
Eq. (1).

VO-blance =
∑

miVi+VO-dust+VO-slag+Voxy-gas+

VO-CO−VO-sinter (1)
VO-blancewhere  is the converter oxygen required volume, m3;

mi

Vi

VO-dust

VO-slag Voxy-gas VO-sinter

VO-CO

 is the oxidized mass of element i, including carbon, silic-
on,  manganese,  phosphorus,  and  sulfur,  t;  is  the  oxygen
consumption volume per unit mass of element i, m3/t; ,

, ,  and  are  the  oxygen  volume in  con-
verter dust, slag, flue gas, and sinter ore;  is the oxygen
consumption  volume  by  post-combustion  of  CO,  respect-
ively, m3.

The molten steel is heated by a large amount of heat re-
leased during the oxidation of element C, which is the main
oxidizing  element  in  the  smelting  process.  The  oxidation
products of element C in the bath can be assumed that 90wt%
of  the  carbon  is  oxidized  to  CO and  10wt% is  oxidized  to
CO2 [35]. The oxidation mass of carbon, silicon, manganese,
phosphorus, and sulfur can be calculated by Eqs. (2)–(7), re-
spectively, under the assumption that the total weight of the
molten metal before and after smelting is constant.
mC-CO = X1× (X6−X3)+X2× (wsC−X3)×90% (2)

mC-CO2
= X1× (X6−X3)+X2× (wsC−X3)×10% (3)

mSi = X1× (X7−X4)+X2× (wsSi−X4) (4)

mMn = X1× (whMn−wmMn)+X2× (wsMn−wmMn) (5)

mP = X1× (X8−X5)+X2× (wsP−X5) (6)

mS = X1× (whS−wmS)+X2× (wsS−wmS) (7)
mC-CO, mC-CO2

, mSi, mMn, mP, and mS

wsC, wsSi, wsMn, wsP, and wsS

whMn and whS

wmMn and wmS

where  are  oxidation
mass of C oxidized to CO, C oxidized to CO2, Si, Mn, P, and
S, respectively, t;  are the con-
tents  of  C,  Si,  Mn,  P,  and  S  in  scrap,  respectively,  wt%;

 are the contents of Mn and S in hot metal, re-
spectively, wt%;  are the contents of Mn and S
in molten steel, respectively, wt%.

During the smelting process, oxygen in the dust and slag is
mainly in the form of FeO and Fe2O3, the same as sinter ore.
Therefore, the volume of oxygen in dust, slag, and sinter ore
can be expressed by Eqs. (8)–(10), respectively.

VO-dust = Mdust ·
(
CFeO-dust ·

16
72
+CFe2O3-dust ·

48
160

)
· 22.4

32
(8)

VO-slag = Mslag ·
(
CFeO-slag ·

16
72
+CFe2O3-slag ·

48
160

)
· 22.4

32
(9)

VO-sinter = Msinter ·
(
CFeO-sinter ·

16
72
+CFe2O3-sinter ·

48
160

)
· 22.4

32
(10)
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Fig. 2.    Network topology structure of DNN.
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Mdust,Mslag, and Msinter

CFeo−∗
CFe2O3−∗

where  are the mass of dust, slag, and
sinter  ore  in  each  furnace,  respectively,  kg;  and

 are the FeO and Fe2O3 content in * (*—dust,  slag,
and sinter ore), respectively, wt%.

According  to  the  statistics  of  the  studied  steelmaking
plants, the amount of dust was 1.16% of the weight of mol-
ten  steel,  and  the  dust  contained  70wt%  FeO  and  20wt%
Fe2O3.  The  sinter  ore  is  used  as  a  coolant  in  the  converter
smelting process. The content of FeO and Fe2O3 in the sinter
ore was obtained from the composition test results of the cor-
responding batch and the amount of sinter ore added can be
obtained  directly  from  the  production  reports  or  calculated
from the heat balance of the converter. In addition, in order to
obtain the oxygen amount of iron oxides in the slag, it is ne-
cessary to establish the converter mass balance to solve for
the slag mass and assume that the content of FeO and Fe2O3

in the slag is 9wt% and 3wt%, respectively, according to the
expert experience system.

Voxy−gas

Z
Voxygen

The amount of oxygen consumed by CO post-combustion
is small and difficult to determine in the actual process, so it
can be approximately ignored in the oxygen balance calcula-
tion. The oxygen blown into the converter contains a certain
amount of impurity gas mainly nitrogen. Here, it is assumed
that the impurity gas does not react with the molten steel, and
all enter the flue gas. Therefore, it is also necessary to con-
sider the volume of this part of the impurity gas when calcu-
lating  the  total  oxygen blowing volume.  So,  the  volume of
free oxygen  in the flue gas and the volume of impur-
ity gas  can be solved from Eqs. (11)–(14) as follows. The
final total volume of blown oxygen  can be obtained
by jointly solving Eqs. (11)–(14).
Vgas = Voxycarbide+Voxysulfide+Voxy-gas+Z (11)

Voxygen =
∑

miVi+VO-dust+VO-slag+VO-CO−
VO-sinter+Voxy-gas+Z (12)

Voxy-gas = Vgas ·Coxy-gas (13)

Z = Voxygen · (1−Coxygen) (14)
Vgas Voxycarbidewhere  is the total volume of flue gas, m3;  and

Voxysulfide

Voxygen Coxy-gas

Coxygen

 are the volume of carbon oxide and sulfur oxide, m3;
 is the total volume of oxygen blown in, m3;  is

the volume of free oxygen in the flue gas, vol%;  is the
oxygen purity, vol%.

 3.3. Integration of DNN and OBM

In this study, a hybrid model was established based on the
DNN model and the OBM model to improve the prediction
accuracy of  the  oxygen blowing time in  the  converter.  The
production data of converter smelting process used to build
the hybrid model were collected from the studied steelmak-
ing plants in China. 80% of the data groups were randomly
selected for training the hybrid model, and 20% of the data
groups were used for model testing. Each data group consists
of 16 variables (as described in Section 2.2). The number of
variables in the DNN model directly affects the network size.
Too  many  network  nodes  severely  slow  down  the  model
convergence speed as more network nodes need to be tuned.
Therefore,  in  order  to  minimize  the  number  of  tasks  in  the
DNN training process and accelerate the training speed, the
number of DNN variables needs to be reduced. Based on the
analysis  of  the  OBM,  the  element  oxidation  amount  is  the
key  influential  factor  of  the  oxygen  required  volume.  For
purpose  of  reducing  the  number  of  variables  in  the  DNN
model, the oxidation amount of major oxidized elements (C,
Si,  and  P)  and  the  steel  temperature  difference  before  and
after smelting were obtained by comparing the hot metal with
molten steel.  In other  words,  the variables of X3 and X6, X4

and X7, X5 and X8, X9 and X10 were merged into X15 (Δ[C]), X16

(Δ[Si]), X17 (Δ[P]), and X18 (ΔT), respectively. The structure
diagram of the hybrid model is shown in Fig. 4. A three-step
method was used to predict the oxygen blowing time in the
converter.

Step 1: Oxygen required volume was predicted separately
using the OBM model and the DNN model.

Step 2: A hybrid calculation expression was built based on
the  prediction  results  of  the  DNN  model  and  the  OBM
model, as shown in Eq. (15).
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Fig. 4.    Workflow of the hybrid model.
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Vpredicted,O2
= ω1 ·VDNN,O2

+ω2 ·VOBM,O2
(15)

Vpredicted,O2

ω1 and ω2

VDNN,O2
and VDNN,O2

where  is  the  predicted  oxygen  required  volume,
m3;  are the weight coefficients of DNN model and
OBM model,  respectively;  are  the  pre-
diction results of DNN model and OBM model, respectively.

Step 3: The BOF blowing time was calculated according
to  the  optimized  oxygen  required  volume  with  the  oxygen
supply  intensity  based  on  the  test  data  set  as  shown in  Eq.
(16).

tblowing =
Vpredicted,O2

W · I (16)

tblowing W
I

where  is  the BOF total  blowing time,  min;  is  the
weight  of  molten  steel,  t;  is  the  oxygen  supply  intensity,
m3/(t·min).

Since the weight coefficients play an important role in the
prediction accuracy of the model, Matlab was used to optim-
ize the solution of Eq. (15) to determine the optimal weight
coefficients  for  the  DNN model  and  the  OBM model.  The
objective function is established as shown in Eq. (17).

f =min
n∑

i=1

∣∣∣Vmeasured,O2
− (ω1 ·VDNN,O2

+ω2 ·VOBM,O2
)
∣∣∣

Subject to : ω1+ω2 = 1, ω1 > 0, ω2 > 0 (17)
Vmeasured,O2

where  is the actual oxygen consumption volume,
m3.

 4. Modelling in hybrid model
 4.1. Data cleaning

The  original  data  set  offered  by  the  studied  steelmaking
plants was analyzed using a boxplot to remove outliers.  As
shown in Fig. 5(a), the boxplot uses quartiles to partition the
data set. The quartiles are the three data points that divide the
data set sorted by value into four groups in quantity, which
are noted as quartile (Q1),  median (Q2),  and upper quartile
(Q3).  Among  them,  the  difference  between Q3  and Q1  is
called  the  interquartile  range  (IQR).  A  smaller  IQR  means
that the data in the middle part are more concentrated; a lar-
ger  IQR  means  that  the  data  in  the  middle  part  are  more
scattered.  The  outliers  of  the  data  set  are  defined  as  being
above the upper limit (Q3 + 1.5IQR) or below the lower lim-
it (Q1 − 1.5IQR). Fig. 5(b) shows the boxplot of the original
data set for each variable after normalization, and the statist-
ical  description  of  each  variable  after  removing  outliers  is
shown in Table 2. The mathematical formula for the normal-
ization process is shown in Eq. (18).

x′ =
x−Min

Max−Min
(18)

x x′where  and  are the values before and after conversion re-
spectively;  Max  and  Min  are  the  maximum  and  minimum
values of the sample, respectively.
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Fig. 5.    Data cleaning by boxplot: (a) structure of the boxplot; (b) original data outlier detection based on boxplot.

Table 2.    Descriptive statistics of variables after data cleaning

Symbol Description of variable Unit Mean Max Min Standard deviation
X1 Weight of hot metal t 127.16 144.70 109.30 6.68
X2 Weight of scrap t 15.98 27.42 2.04 4.98
X11 Weight of lime t 4.60 7.45 1.96 0.90
X12 Weight of dolomite t 2.15 3.65 0.65 0.55
X13 Weight of sinter t 3.20 8.31 0.20 1.62
X14 Oxygen supply intensity m3/(t·min) 2.95 3.34 2.66 0.12
X15 Δ[C] wt% 4.4146 4.7889 4.0323 0.1402
X16 Δ[Si] wt% 0.4239 0.7278 0.1287 0.1095
X17 Δ[P] wt% 0.1201 0.1533 0.0877 0.0116
X18 ΔT °C 359.18   465   252 38.44
Y1 Volume of oxygen m3 6588.82 7356 5869 267.25
Y2 Blowing time min 15.68 29.20 12.95 1.55
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There are 3128 groups of data retained after data cleaning
with the boxplot, of which 2528 groups (about 80%) will be
used  for  subsequent  model  training  and  600  groups  (about
20%) will be used for model testing. It can be known from
Table 2 that  the weight  of  the hot  metal,  scrap,  lime,  dolo-
mite,  and  sinter  was  in  the  range  of  109.30–144.70  t,
2.04–27.42 t,  1.96–7.45 t,  0.65–3.65 t,  and 0.20–8.31 t,  re-
spectively. The value of oxygen supply intensity was 2.66 to
3.34  m3⋅t−1·min−1.  The  range  of  [C],  [Si],  and  [P]  variation
value was 4.0323wt%–4.7889wt%, 0.1287wt%–0.7278wt%,
and 0.0877wt%–0.1533wt%, respectively. The value of tem-
perature variation ranged from 252 to 465°C. In addition, the
average oxygen consumption was 6588.82 m3, and the aver-
age oxygen blowing time was 15.68 min.

 4.2. Correlation analysis

Correlation  analysis  was  performed  on  the  9  input  vari-
ables used in the DNN model to predict oxygen consumption
volume (Y1). The correlations between the different variables
were statistically analyzed by Pearson correlation coefficient
(r) and its significance testing based on the student’s t-test (t).
The  calculation  methods  are  shown  in  Eqs.  (19)–(20).  The
results of the correlation analysis between the different vari-
ables are shown in Fig. 6 and Table 3.

r =
∑n

i=1 (xi− x̄) (yi− ȳ)√∑n
i=1 (xi− x̄)2 ∑n

i=1 (yi− ȳ)2
(19)

t =
r
√

n−2
√

1− r2
(20)

xi yi

x̄ ȳ

where n is the sample size of the variable;  and  are the ith
value  of  the  input  variable  and  output  variable  for  all  data
points, respectively;  and  are the mean value of the input
variable and output variable for all data points, respectively.
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Fig. 6.    Heatmap of Pearson correlation coefficient.
 

Table 3.    Results of significance testing between Y1 and the input variables

Variable r p-value Variable r p-value
X1   0.52 5.02 × 10−214**

 

X15 0.14 5.99 × 10−16**
X2 −0.12 2.84 × 10−12** X16 0.16 6.76 × 10−19**
X11   0.32 1.25 × 10−76** X17 0.22 4.06 × 10−36**
X12   0.09 7.44 × 10−7** X18 0.14 3.06 × 10−14**
X13   0.11 8.09 × 10−10**

 

In Fig. 6, red represents positive correlation and blue rep-
resents  negative  correlation.  The  correlation  gradually  in-
creases with the deepening of color and the decrease of color
area. From the figure, it can be seen that there is a strong cor-
relation between the input variables and the volume of oxy-
gen  (Y1),  except  for  the  weight  of  dolomite  (X12)  and  the
weight of sinter (X13). Although the correlation between the
weight of dolomite (X12) and the weight of sinter (X13) with
the volume of oxygen (Y1) is weak, in fact, dolomite is an im-
portant addition material in slagging, which affects the oxid-
ation  reaction  of  the  element  during  the  converter  process.
Moreover, sinter ore, as an important coolant, will transfer a
proportion of oxygen element to the molten steel after being
added.  Hence,  both  are  not  negligible  for  predicting  the
volume of oxygen blowing.

In order to test  the significance of the correlation coeffi-
cient between two variables, the p-value was employed. Usu-
ally, the correlation between the two variables is considered
significant when the p-value is less than 0.05, and highly sig-
nificant  when the p-value is  less  than 0.01.  As can be seen
from Table  3,  the p-values  between  the  volume  of  oxygen
(Y1) and all input variables are less than 0.01, reaching a very

significant  correlation,  and  can  be  identified  as  input  vari-
ables for the DNN model.

 4.3. Model evaluation

In this study, determination coefficient (R2) and root mean
square  error  (RMSE)  were  employed  to  evaluate  the  per-
formance of  various models.  The mathematical  expressions
of R2 and RMSE are displayed in Eqs. (21)–(22). R2 indicates
the goodness of fit of the model. The larger R2 represents the
higher degree of explanation of the dependent variable by the
independent variable.  RMSE is a measure of the difference
between the predicted and true values of a model. When the
prediction hit ratio of two models is same, the smaller RMSE
represents a higher prediction stability. Therefore, the larger
R2,  the  better  the  model  performance,  whereas  the  smaller
RMSE, the better the model performance.

R2 = 1−
∑m

i=1

(
yact

i − ypre
i

)2

∑m
i=1

(
yact

i − yact
i

)2 (21)

RMSE =

√√
1
m

m∑
i=1

(
yact

i − ypre
i

)2
(22)
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yact
i ypre

i yact
i

m
where  is the actual data;  is the predicted value;  is
the mean of actual data;  is the number of the total data set.

 5. Results and discussion
 5.1. Hyperparameter optimization of DNN model

The  DNN model  and  the  OBM model  work  together  to
determine the performance of  the hybrid model.  The OBM
model created a fixed calculation procedure by establishing
mathematical  relationships  within  each  data  group,  which
makes the data group independent of each other. As a result,
establishing a high-efficient DNN model is crucial for the hy-
brid model.

DNN is a specific network topology that contains one or
more  hidden  layers.  Hyperparameter  settings  such  as  the
number of hidden layers, the number of neurons, the activa-
tion function, the learning rate, and the number of iterations
have  a  significant  impact  on  the  learning  ability  of  DNNs.
Extremely strong learning ability can be achieved by reason-
able hyperparameter settings, so this section focuses on op-
timizing the hyperparameter settings of the DNN model.

Activation functions are a class of nonlinear functions that
map the input of a neuron to the output, which play an indis-
pensable role in improving the learning ability of the neural
network.  The  application  of  the  activation  functions  avoids
the linear transfer between the input and output of the hidden
layer  and  increases  the  nonlinearity  of  the  neural  network.
This change allows the neural network to approximate arbit-
rary nonlinear  functions and greatly  enhances the ability  of
the neural network to learn complex data.

The activation functions can be divided into two main cat-

egories:  saturated  activation  functions  represented  by  sig-
moid  and  hyperbolic  tangent  (tanh);  unsaturated  activation
functions  represented  by  ReLU.  Compared  with  the  satur-
ated  activation  function,  the  unsaturated  activation  function
can effectively solve the gradient disappearance problem of
neural  networks and converge faster,  so  ReLU has  become
the most commonly used activation function for deep learn-
ing at present.

In this study, ReLU and bayesian regularization (trainbr)
were chosen as the activation function and training function,
respectively. Considering the training size, the optional range
of the hyperparameters has been limited, as shown in Table 4,
along with the initialized values of the hyperparameters. Hid-
den  layers’ number,  neurons  number  of  hidden  layer,  and
learning rate were sequentially optimized. Moreover, accord-
ing to the study in Ref. [34], the ratio of the neuron numbers
in the next and previous hidden layers was set to 0.5 in fur-
ther training. Each hyperparameter set was run 50 times. The
average of RMSE was chosen as the indicator to evaluate the
performances  of  each  hyperparameter  set. Fig.  7(a)–(c)
shows the RMSE of each hyperparameter set, and the distri-
bution  of  the  final  predicted  value  of  oxygen  consumption
volume is shown in Fig. 7(d). The actual value in the figure
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Table 4.    Initialization hyperparameter setting of neural net-
works

Item Initialized value Range
Number of hidden layers 3 1–6
Neurons number of hidden layer 8 8–64
Learning rate 0.1 0.01–0.5
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refers  to  the  actual  data  from  the  testing  dataset,  while  the
predictive value represents the results obtained by the DNN
model.  The color  scale  in  the  lower  right  corner  shows the
absolute  error  (AE)  value  corresponding to  each color,  and
the AE between the actual value and the predicted value of
each data point was distinguished by different colors.

It is universally acknowledged that the smaller the RMSE,
the  better  the  performance  of  the  model.  Thus,  the  optimal
DNN  model  hyperparameters  are  the  hidden  layer  (3),  the
number of hidden layer neurons (32-16-8), and the learning
rate (0.1), which can be seen in Fig. 7(a)–(c). Based on the
above hyperparameter settings, the test results of the optim-
ized  DNN model  are  shown in Fig.  7(d),  with  the  hit  ratio
within  the  error  ±300  m3 (relative  error  less  than  5%)  of
94.67%, R2 of 0.6874, and RMSE of 152.74 m3.

 5.2. Comparison of application results

ω1 ω2

The  hybrid  model  can  be  constructed  by  integrating  the
DNN model with the OBM model according to the method
described in Section 3.3. By solving Eq. (15) through Matlab,
we  obtain  the  values  of  weight  coefficients  and  for
DNN model and OBM model as 0.81 and 0.19, respectively.
The  prediction  results  of  the  hybrid  model  based  on  DNN
and OBM models are shown in Fig. 8. Similar to Fig. 7, the
actual value and predictive value in Fig. 8 are the data from
testing dataset and the results predicted by the hybrid model,
respectively. The predicted hit ratio of oxygen consumption
volume within the error ±300 m3 is 96.67%, R2 is 0.6984, and
RMSE is 150.03 m3. The oxygen blow time prediction hit ra-
tio  within  the  error  ±0.6  min  is  89.50%, R2 is  0.9486,  and
RMSE is 0.3592 min.
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Furthermore, in order to better evaluate the hybrid model
proposed  in  this  study,  extreme  learning  machine  (ELM)
model, DNN model, OBM model, multiple linear regression
(MLR)  model,  and  back  propagation  (BP)  neural  network
model were also constructed for predicting the oxygen con-
sumption  volume  and  comparing  the  model  performance
with  that  of  the  hybrid  model.  The error  distribution of  the
predicted  oxygen  consumption  volume  and  the  values  of
model  evaluation  indicators  (hit  ratio, R2,  and  RMSE)  for
each model are shown in Fig. 9.

It is not hard to observe from Fig. 9 that the order of mod-
el performance from best to inferior is hybrid model, DNN,
BP, ELM, MLR, and OBM. The MLR model has the charac-
teristics of fast modelling speed and fast solution speed un-
der mass data. However, as a linear model, the MLR model is
difficult  to  deal  with  the  interaction  effect  and  nonlinear
causality  between  variables  when  solving  nonlinear  prob-
lems, which leads to poor fitting [36]. In contrast, DNN, BP,
and  ELM,  as  neural  network  models,  use  nonlinear  activa-
tion functions to transmit data between different network lay-
ers.  Data  features  can  be  stored  through  neural  units  to
achieve excellent learning ability when dealing with nonlin-
ear problems. Therefore, the prediction hit ratio of neural net-

work models such as DNN, BP, and ELM is higher than that
of MLR model.

In addition, compared with shallow neural network (SNN)
models such as BP and ELM, there are more hidden layers
and  neurons  in  the  DNN  model.  This  change  endows  the
DNN model with stronger data processing ability and more
complex  nonlinear  mapping  relationship,  which  once  again
strengthens the learning ability of neural  networks [37–38].
When using DNN to deal with the complex high-dimension-
al nonlinear data of converter smelting process, the neurons
in the latter hidden layer of the DNN will perform linear op-
erations on the input signals from all the neurons in the previ-
ous hidden layer, and then use the activation function to per-
form nonlinear processing on the linear operation results  to
generate new output signals, which are propagated backward
layer by layer to the output layer. At the same time, the out-
put loss of training samples is evaluated by the loss function,
which ensures that the model output of all training samples is
equal to or close to the true output of the sample as much as
possible. Thus, the prediction hit ratio of DNN model is high-
er  than  that  of  SNN  models,  and  has  better  generalization
ability in this test.

The hybrid model proposed in this paper adds the mech-
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anistic  model  on  the  basis  of  DNN model,  which  not  only
maintains  the  advantages  of  the  DNN  model,  but  also  en-
hances the description and explanation of the complex reac-
tion process of converter metallurgy based on the OBM. As
shown  in  the  results,  the  hybrid  model  has  the  best  model
performance  compared  to  other  models  in  terms  of  predic-
tion hit ratio, determination coefficient, and root mean square
error.

 6. Conclusions

In  this  study,  a  hybrid  model  based  on  DNN and  OBM
models has been constructed for predicting the oxygen blow-
ing time in the converter smelting process, and the following
conclusions can be obtained.

(1) Based on the metallurgical mechanism of converter, an

OBM model was constructed and a total of 14 variables af-
fecting  the  oxygen consumption volume and oxygen blow-
ing time were obtained that could be classified into three cat-
egories. They are element oxidation related (X1–X8), oxygen
decarbonization efficiency related (X6–X12), and other related
(X13–X14).

(2)  Optimal  DNN  model  hyperparameters  have  been
found. Within the defined hyperparameter range, the optimal
network structure of the DNN model is as follows: 3 hidden
layer layers, 32-16-8 neurons per hidden layer, and 0.1 learn-
ing rate. A hybrid model based on the DNN and OBM mod-
els  was  established  by  a  three-step  method,  and  the  weight
coefficients  of  the  DNN  model  and  OBM  model  were  de-
termined to be 0.81 and 0.19, respectively.

(3) Five models of DNN, BP, ELM, MLR, and OBM with
three evaluation indicators of hit ratio, R2, and RMSE are em-
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Fig. 9.    Distribution of prediction error and hit ratio of different models: (a) OBM, (b) MLR, (c) ELM, (d) BP, (e) DNN, and (f) hy-
brid model.
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ployed  for  model  performance  validation.  The  results
demonstrate that the model performance of the hybrid model
established in this study is better than the other five models.
In the error scope from −300 to 300 m3, the hit ratio of oxy-
gen consumption volume was 96.67%, and the R2 and RMSE
were 0.6984 and 150.03 m3, respectively. Meanwhile, in the
error scope from −0.6 to 0.6 min, the oxygen blow time hit
ratio  of  hybrid  model  was  89.50%,  and  the R2 and  RMSE
were 0.9486 and 0.3592 min, respectively.

(4) The hybrid model established in this study has higher
prediction accuracy and generalization ability to predict  the
oxygen consumption volume and oxygen blowing time in the
converter smelting process. The time deviation between the
actual smelting cycle and the planned smelting cycle can be
known in advance, which will  greatly help to solve the dy-
namic scheduling problem.
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