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Abstract: Mg−Al alloys  have excellent  strength  and ductility  but  relatively  low thermal  conductivity  due to  Al  addition.  The accurate
prediction of thermal conductivity is a prerequisite for designing Mg−Al alloys with high thermal conductivity. Thus, databases for pre-
dicting temperature- and composition-dependent thermal conductivities must be established. In this study, Mg−Al−La alloys with differ-
ent contents of Al2La, Al3La, and Al11La3 phases and solid solubility of Al in the α-Mg phase were designed. The influence of the second
phase(s)  and Al  solid  solubility  on thermal  conductivity  was investigated.  Experimental  results  revealed a  second phase transformation
from Al2La to Al3La and further to Al11La3 with the increasing Al content at a constant La amount. The degree of the negative effect of
the second phase(s) on thermal diffusivity followed the sequence of Al2La > Al3La > Al11La3.  Compared with the second phase, an in-
crease in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity. On the basis of the experimental data, a data-
base  of  the  reciprocal  thermal  diffusivity  of  the  Mg−Al−La  system was  established  by  calculation  of  the  phase  diagram (CALPHAD)
method. With a standard error of ±1.2 W/(m·K), the predicted results were in good agreement with the experimental data. The established
database can be used to design Mg−Al alloys with high thermal conductivity and provide valuable guidance for expanding their applica-
tion prospects.
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 1. Introduction

Among magnesium alloys,  Mg–Al  alloys  have  excellent
strength  and  ductility  and  the  advantages  of  light  weight,
good corrosion resistance, and easy processing, making them
an ideal structural material [1–7]. However, Al addition to the
α-Mg matrix  significantly  reduces  the  thermal  conductivity
of Mg alloys [8–10] because the solute atoms and the second
phase hinder phonon and electron scattering, inevitably redu-
cing the thermal conductivity [11–14]. Therefore, improving
the thermal conductivity of Mg–Al alloys has become a key
goal of current studies [15–16]. The solid solution of alloy-
ing elements causes lattice distortion and disrupts the lattice
periodicity,  resulting  in  a  significant  reduction  in  thermal
conductivity  compared  with  the  formation  of  the  second
phase  [5,17–20].  Adding  rare  earth  elements,  such  as
lanthanum (La), cerium (Ce), gadolinium (Gd), and yttrium
(Y),  could  improve  the  thermal  conductivity  to  achieve  the
desirable comprehensive performance of Mg alloys [21–25].
La and Ce are more economical than other heavy rare earth

elements, and their solid solubilities in Mg alloys are lower
[26]. Compared with Ce, La has a lower effect on reducing
thermal conductivity [17]. Therefore, La is the optimal alloy-
ing element.

Mg–Al–La alloys have attracted attention due to their ex-
cellent mechanical properties, high-temperature thermal sta-
bility, and good thermal conductivity [26–29]. The La in the
alloy combines with the Al to form the Al11RE3 phase, which
has  a  high  melting  point  and  thermal  stability  [30–32]  and
can  significantly  reduce  the  Al  content  in  the α-Mg matrix
and improve the thermal conductivities of the alloy [33]. In
addition, the solid solubility of La in the α-Mg matrix is very
low, and Mg–Al–La alloys show good thermal conductivity
[34–35].  Mg–Al–La alloys have many second phases,  such
as LaMg12,  Al2La, Al3La, and Al11La3,  which have different
effects  on  thermal  conductivity  [36–37].  However,  current
research  on  the  thermal  conductivity  of  Mg–Al–La  alloys
mainly focuses on changing the content of La or Al to obtain
alloys with mechanical properties and thermal conductivity.
The effects of solute atoms and the second phase on thermal 
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conductivity have not been studied in depth, thus limiting the
selection and design range of alloy components.

With  the  use  of  calculation  of  the  phase  diagram
(CALPHAD) to determine the thermal conductivity of the al-
loys, extensive experiments to obtain the composition range
of  the  alloy  can  be  avoided  [38–40].  The  relationship
between thermal conductivity and phases can be established
by combining CALPHAD with less experimental data to pre-
dict the thermal conductivity of a wide range of alloy com-
positions and explore the influence of different second phases
on thermal conductivity [41–43]. CALPHAD has been suc-
cessfully applied in the calculation of the thermal conductiv-
ity of Mg and Al alloys [44–45]. Wang et al. [46] utilized this
method to investigate the influence of alloying elements and
second  phases  on  the  thermal  conductivity  of  Al  alloys.
Huang et al.  [44] and Zhang et al.  [47] established thermal
conductivity  models  within  the  CALPHAD  framework  to
calculate  the  thermal  conductivity  of  Mg–Al–Zn  and
Al–Cu–Mg–Si systems, respectively. Our previous work [17]
proposed a method for predicting thermal conductivity based
on  reciprocal  thermal  diffusivity  (RTD),  also  known  as
thermal diffusion resistivity. This method accurately predicts
the thermal conductivity of Mg–Zn–La/Ce systems by estab-
lishing a relationship between the thermal diffusion resistiv-
ity  and  temperature.  The  predicted  accuracy  of  the  thermal
conductivity was within 1.6%.

In this  work,  CALPHAD was used to establish the rela-
tionship between the RTD and temperature in the Mg–Al–La
system, covering the thermal conductivity of elements, solid
solutions,  intermetallic  compounds,  and  interaction  among
phases. The influence of different second phases and Al solid
solubility on the microstructure and thermal conductivity of
Mg–Al–La alloys were also studied. Moreover,  the thermal
conductivities of Mg–Al–La alloys were predicted using the
obtained database of thermal diffusion resistivity.

 2. Experimental

From the  thermodynamic  database  of  the  Mg–Al–La al-

loy system [48], the correlation between the key intermetal-
lics LaMg12, Al2La, Al3La, and Al11La3 and the α-Mg matrix
phase  was  determined  as  shown  in Fig.  1(a).  The  experi-
mental samples were designed and distributed within the Mg-
rich composition range of Mg–Al–La alloys (0–4at% Al and
0–1at% La) in accordance with the three alloy design prin-
ciples as follows [17]: (1) containing different types of inter-
metallic  compounds,  such  as  Al2La,  Al3La,  or  Al11La3;  (2)
containing the same intermetallic compound but with differ-
ent contents in the range of 0.5mol%–3mol%; (3) having dif-
ferent  Al  solubilities  in  the α-Mg  matrix.  Several  experi-
mental points (#L1–#L6) in the two-phase regions of α-Mg+
Al2La, α-Mg+Al3La,  and α-Mg+Al11La3 were  selected,  and
the content of the second phase was 0.6mol% and 1.8mol%.

The raw materials were Mg with a purity of 99.99%, Al
with  a  purity  of  99.99%,  and  La  with  a  purity  of  99.99%.
As-cast Mg–Al–La alloys were prepared using an SG2-5-10
vertical  resistance  furnace  under  the  protection  of  a  mixed
gas of SF6+CO2 (the volume ratio is 1:40) and then cooled in
a steel mold by gravity casting to obtain a cylindrical ingot
with a weight of 100 g. Afterward, 2wt% of Mg and 5wt% of
Al were added to offset the weight loss, control the loss of al-
loying elements,  and achieve  compositions  close  to  the  de-
signed  alloys.  In  brief,  30  g  of  three  different  Al–La  inter-
metallic  compounds,  Al2La,  Al3La,  and  Al11La3,  were  pre-
pared  using  a  WK-II  non-consumable  vacuum  arc  melting
furnace  under  the  protection  of  pure  Ar.  Each  sample  was
remelted five  times during melting to  ensure  the  homogen-
eity of the alloy composition. The actual compositions of the
designed  alloys  were  examined  using  inductively  coupled
plasma atomic emission spectrometry (ICP). The microstruc-
ture  of  the alloy was observed by scanning electron micro-
scopy backscattering mode (SEM–BSE) combined with en-
ergy  dispersive  spectroscopy  (EDS)  to  determine  the  com-
position of the phases. The thermal diffusivity of the alloys
was measured using a Netzsch LFA467 device. The samples
used for thermal conductivity testing were cut in a disc shape
with dimensions of ϕ10 mm × 3 mm from 10 mm above the
bottom of the ingots and then subjected to laser flash analysis
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Fig. 1.    Isothermal section of the Mg–Al–La system at 673 K: (a) full composition range; (b) Mg-rich corner containing the constitu-
ent points of the designed alloys.
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in the temperature range of 323–523 K.

 3. CALPHAD modeling of thermal conductivity

The thermal conductivity of the alloy was calculated as the
product of density, thermal diffusivity, and specific heat ca-
pacity [17], and the calculation formula is as follows:
λ = α ·ρ ·Cp (1)
where α is  the  thermal  diffusivity  (mm2/s), ρ is  the  density
(g/cm3), and Cp is the specific heat capacity (J·g−1·K−1). The
density  and  specific  heat  capacity  of  the  alloy  at  different
temperatures  can  be  calculated  either  using  the  PANDAT
software  [45]  and  the  thermodynamic  database  of  the
Mg–Al–La system or the experimental data. For instance, the
room  temperature  density  can  be  measured  by  the
Archimedes  drainage  method,  and the  relationship  between
the density and temperature of the alloy at high temperatures
can be obtained according to the following formula [5]:
ρ(T ) = ρ0−0.156 · (T −298.15) (2)
where ρ(T) is  the  density  of  the  alloy  at T temperature, ρ0

(g/cm3) is the density of the sample at 298.15 K, and T (K) is
the temperature.

The  specific  heat  capacity  can  be  directly  measured  by
Netzsch  204HP  or  calculated  according  to  the  Neumann–
Kopp rule [49] for alloys with few alloy elements; that is, the
specific heat of the alloy is equal to the sum of the specific
heat of each element:
Cp = Σ(CpiWi) (3)
where Cpi is the specific heat of each alloy element i, and Wi

is the mass percentage of the alloy element i in the alloy.
For calculation, thermal conductivity was defined as RTD,

also known as thermal diffusion resistance. It can be used to
describe  the  thermal  diffusivity  of  single-phase,  solid  solu-
tion, and multiphase alloys. Furthermore, thermal diffusivity
can be experimentally obtained, and the use of RTD can re-
duce the accumulation of errors in the product of density and
specific heat capacity during calculation with Eq. (1) [17].

The RTD of pure element i (RTDi) is as follows:

RTDi = a+b ·T + C
T

(4)

where a, b, and c are parameters to be optimized.
The RTD of solid solution and intermetallic compound is

as follows:
RTDφ = ΣxiRTDi+Σxix jΣLk

i j(xi− x j)k (5)

where xi and xj are the mole fraction of element i and j,  re-

Lk
i jspectively,  is the k-th order interaction parameter between

alloy elements i and j, and RTDφ is the thermal diffusion res-
istivity of phase φ. The RTD of multiphase alloy (RTDalloy) is
as follows:
RTDalloy = Σ fφRTDφ+Σ fφ fτΣMk

φτ( fφ− fτ)k (6)

Mk
φτ

where fφ and fτ are  the  mole  fraction of  phases φ and τ,  re-
spectively.  is  the k-th  order  interaction  parameter  of
phases φ and τ.

The thermal diffusivity of any alloy can be calculated as
α = 1/RTDalloy (7)

The thermal conductivity of alloys is predicted as

λ =
1

RTDalloy ·ρ ·Cp (8)

All  the  interaction  parameters  must  be  optimized  by  as-
sessing the experimental thermal diffusivity data.

σSE

The  standard  error  (SE)  between  experimentally  meas-
ured  and  model-predicted  thermal  conductivities  ( )  is
given as [50]

σSE =

√∑n
i=1 (λExp−λCal)2

(n−1)
(9)

where λExp represents the experimental value, λCal represents
the calculated value, and n represents the number of samples.
The smaller the SE, the higher the consistency between the
experimental and calculated values.

 4. Results and discussion
 4.1. Phases  and  microstructures  of  as-cast  Mg–Al–La
alloys

All  the  designed  Mg–Al–La  alloys  are  in  the  two-phase
region of the Mg-rich corner and contain a small amount of
the  second  phase,  as  shown  in Fig.  1.  The  alloys  with  the
same second phase are marked with the same shape and col-
or. Given the similarity of the alloy system, the solidification
of alloys with different phases was evaluated using the Lever
rule [17,43]. The corresponding alloy phase constitution and
Al solubility in the α-Mg phase were obtained as listed in Ta-
ble 1. The actual compositions of the experimental alloys de-
termined by ICP are also shown in Table 1. A comparison of
phase contents among different Mg alloys reveals that the in-
termetallic compound phase fraction of the #L4–#L6 alloys is
1.2mol% higher than that of the #L1–#L3 alloys. Therefore,
the  #L4–#L6  alloys  have  a  higher  content  of  intermetallic
compound phases compared with the alloys designed in the
same  group.  As  a  consequence,  morphological  observation

Table 1.    Actual compositions, phases, and Al solid solubility in the α-Mg matrix of the designed alloys

Alloy in Mg–Al–La system Phase contents Solubility of Al in α-Mg / at%
#L1 (Mg99.15Al0.66La0.19) α-Mg + 0.6mol% Al2La 0.29
#L2 (Mg98.30Al1.46La0.14) α-Mg + 0.6mol% Al3La 1.05
#L3 (Mg96.91Al2.96La0.13) α-Mg + 0.6mol% Al11La3 2.50
#L4 (Mg97.94Al1.46La0.60) α-Mg + 1.8mol% Al2La 0.31
#L5 (Mg96.92Al2.64La0.44) α-Mg + 1.8mol% Al3La 1.35
#L6 (Mg95.92Al3.69La0.39) α-Mg + 1.8mol% Al11La3 2.30

H.X. Li et al., Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method 131



and phase analysis of these alloys can be easily performed.
Fig. 2(a)–(c) shows the backscattered SEM images of as-

cast #L4–#L6 Mg alloys. Fig. 2(d)–(i) displays the EDS en-
ergy spectrum analysis  at  the corresponding points  selected
in point scan mode in Fig. 2(a)–(c), and Table 2 gives the ele-
ment content of different phase compositions at point d–i. A
large amount of the second phase is distributed along the in-
terdendritic  boundaries.  With the increasing Al content,  the
types and micromorphology of the second phase in the alloys
change noticeably. In terms of micromorphology, the second
phase near the grain boundaries changes from a continuous
network  structure  (Al2La  and  Al3La)  to  a  discontinuous
lamella-like  structure  (Al11La3).  As  shown  in  the  backs-
cattered  SEM images  of Fig.  2(a),  the  second  phase  in  the
Mg97.94Al1.46La0.60 alloy is distributed at the grain boundary in
the  form  of  a  network  structure.  EDS  analysis  of  d  and  e
points in Fig. 2(a) reveals that the gray area has a Mg content
exceeding  99.0at%  and  thus  was  identified  as  the α-Mg

phase. The atomic ratio of Al and La in the network’s second
phase  is  2.1:1,  which  is  consistent  with  that  in  the  Al2La
phase. With the increase in Al content, the distribution of the
second  phase  in  the  Mg96.92Al2.64La0.44 alloy  (Fig.  2(b))  in-
creases  compared  with  that  in  the  Mg97.94Al1.46La0.60 alloy
(Fig. 2(a)). This phenomenon may be due to the increase in
Al content and the preferential combination of Al and La to
form many intermetallic compounds, causing an increase in
the content of the second phase. EDS analysis of point g in
Fig. 2(b) reveals that the atomic ratio of Al and La in the net-
work’s second phase is 3.1:1, which is consistent with that in
the Al3La phase. In the Mg95.92Al3.69La0.39 alloy (Fig. 2(c)), the
second phase transforms from a continuous network to a dis-
continuous  network  and  presents  a  lamella-like  distribution
along  the  grain  boundaries.  EDS  analysis  of  point  i  in
Fig.  2(c)  shows  that  the  atomic  ratio  of  Al  and  La  in  the
lamella-like second phase is 11.1:3, which is close to that in
the Al11La3 phase.

 
 

(a) #L4-cast (b) #L5-cast (c) #L6-cast

In
te

n
si

ty
 /

 a
.u

.

In
te

n
si

ty
 /

 a
.u

.

(0
1
0
)

(0
1
1
)

(0
1
2
)

(1
1
0
)

(1
1
2
)

(1
1
0
)

(1
0
3
)

(0
3
3
)

(1
2
3
)

(2
0
0
)

(1
5
0
)

(2
3
3
)

(1
6
3
)

(1
2
9
)

(2
2
8
)

(3
1
6
)

(1
8
3
)

(0
1
0
)

(0
0
2
)

(0
1
1
)

(0
1
2
)

(1
1
0
)

(0
2
0
)

(0
1
3
)

(1
1
2
)

(0
0
4
)

(0
2
2
)

(0
1
4
)

(0
1
1
)

(1
1
0
)

(0
2
0
)

(0
2
1
)

(1
2
0
)

(1
1
2
)

(1
3
0
)

(1
3
1
)

(1
4
0
)

(0
4
2
)

Al2La

Al3La

Al11La3

e

d

f

h

i

α-Mg α-Mg α-Mg

g

Al2La

Al3La

Al11La3

e

d

f

h

i

α-Mg α-Mg α-Mg

g

30 μm 30 μm 30 μm

0
0

20

40
La

La
Al

Mg
La LaAl

Mg La La
Al

Mg
La LaAl

Mg
La LaAl La LaAl

Mg

60

In
te

n
si

ty
 /

 c
o
u
n
ts

In
te

n
si

ty
 /

 c
o
u
n
ts80 (d)

α-Mg
2 4 6

Energy / eV
8 10 12 14 0

0

20

40

60

80 (e)

Al2La

2 4 6
Energy / eV

8 10 12 14 0
0

20

40

60

In
te

n
si

ty
 /

 c
o
u
n
ts

80 (f)

α-Mg
2 4 6 8 10 12 14 0

0

20

40

60

In
te

n
si

ty
 /

 c
o
u
n
ts

80 (g)

Al3La

2 4 6 8 10 12 14
0

20

40

60

In
te

n
si

ty
 /

 c
o
u
n
ts

80 (h)

α-Mg
2 4 6

Energy / eV
8 10 12 14

0

20

40

60

In
te

n
si

ty
 /

 c
o
u
n
ts

80 (i)

Al11La3

2 4 6
Energy / eV

8 10 12 14

In
te

n
si

ty
 /

 a
.u

.

α-Mg
Al11La3

20 30 40 50 60 70 80 90

2θ / (°)

(l) #L6-Mg95.92Al3.69La0.39

α-Mg

Al11La3

(0
0
2
)

■

■

■

■ ■ ■

■

▲ ▲ ▲
▲

▲ ▲ ▲

▲
▲ ▲

▲

▲ ▲

α-Mg
Al3La

Energy / eV Energy / eV

20 30 40 50 60 70 80 90

2θ / (°)

(k) #L5-Mg96.92Al2.64La0.44

α-Mg

Al3La

■
■

■

■
■ ■■

■

■

■
▲

▲ ▲
▲

▲

▲
▲▲▲▲

▲

■

α-Mg
Al2La

20 30 40 50 60 70 80 90

2θ / (°)

#L4-Mg97.94Al1.46La0.60(j)

(0
1
0
)

(0
2
2
)

(1
1
3
)

(1
1
5
)

(0
2
0
)

(0
2
1
)

(2
2
6
)

(4
4
4
) Al2La

α-Mg

(0
2
0
)

(0
1
1
)

(1
1
0
)

(0
1
3
)

(1
1
2
)

(0
04

)

■

■

■

■
■

■
■

■

■

◆
◆ ◆

◆

◆
◆ ◆

◆

Fig. 2.    (a–c) BSE images of as-cast #L4-#L6 Mg–Al–La alloys; (d–i) phase content of EDS energy spectrum analysis corresponding
to the points in (a–c); (j–l) XRD patterns of #L4–#L6 alloys.
 

During  the  quantitative  analysis  of  phase  content  using
EDS, data errors are inevitably introduced due to the detec-
tion of α-Mg content. Therefore, the second phase composi-
tion was further determined using X-ray diffraction (XRD).
Fig. 2(j)–(l) shows the XRD patterns of the #L4–#L6 alloys.
Measurement of phase composition reveals that the #L4–#L6
alloys  contain  different  intermetallic  compounds,  which  is
consistent with the design and EDS results.

 4.2. Effect of intermetallic compounds and solid solubility
on the thermal diffusivity of Mg–Al–La alloys

The thermal diffusivities of Mg–Al–La alloys are affected

by the α-Mg phase and the surrounding second phases [19].
Fig. 3 shows the experimentally measured thermal diffusivit-
ies  of  the  designed  Mg–Al–La  alloys.  In Fig.  3(a)–(c),  the
same shape symbols represent Mg–Al–La dual-phase alloys
with different types but the same second-phase content. For
the  Mg–Al–La  alloys  with  the  same  kind  of  second  phase,
their thermal diffusivities show a tendency to decrease with
the  increase  in  the  second  phase  content  from  0.6mol%  to
1.8mol% (Fig. 3(a)–(c)). This change may be attributed to the
introduction of additional phase and grain boundaries into the
alloy as the content of the second phase increases; as a con-
sequence,  the  lattice  distortion  intensifies,  which  in  turn

132 Int. J. Miner. Metall. Mater. , Vol. 31 , No. 1 , Jan. 2024



hinders  the  free  movement  of  electrons  and  phonons  and
thereby reduces the thermal diffusivity [8,17].

The  experimental  thermal  diffusivities  of  Mg–Al–La  al-
loys with the same phase content (i.e., 0.6mol% or 1.8mol%)
but different types of second phases follow the sequence of
α(α-Mg+Al2La)  > α(α-Mg+Al3La)  > α(α-Mg+Al11La3).  In
particular,  the  thermal  diffusivities  of  the  alloys  containing
the Al2La phase are 18.1–26.9 mm2/s higher than those of the
alloys containing the Al11La3 phase. Meanwhile, the thermal
diffusivities  of  the  alloys  containing  the  Al3La  phase  are
11.8–14.8 mm2/s  higher  than those of  the alloys containing
the Al11La3 phase. This finding indicates that different types
of  second  phases  have  distinct  effects  on  the  thermal  con-
ductivity of the alloy. For example, Zhao et al. [26] showed
that  when  the  Al  content  (X)  increased  in  the  Mg–4La–
XAl–0.5Mn alloy,  the  second  phase  changed  from a  single
LaMg12 to a small amount of Al2La grown in LaMg12 and the
thermal conductivity showed a slight upward trend. Xie et al.
[17]  pointed out  that  when the content  of  the second phase

LaMg12 in the Mg–Zn–La alloy increased from 4.7mol% to
7.3mol%, the thermal conductivity of the alloy decreased by
8–11 W/(m·K), indicating that an increase in phase content
results  in  a  decrease  in  thermal  conductivity.  Su et  al.  [51]
observed that as the Ce content increased in the Mg–Ce alloy,
the second phase transformed from the discontinuous distri-
bution of Mg12Ce in the Mg–0.4Ce alloy into the continuous
network of Mg17Ce2 in the Mg–1.5Ce alloy.

Three  Al–La  single-phase  alloys  (Al2La,  Al3La,  and
Al11La3) were directly prepared, and their thermal conductiv-
ities were experimentally investigated to further clarify how
much  the  different  intermetallic  compounds  in  the
Mg–Al–La alloys contribute to the thermal conductivity. As
shown  in Fig.  3(d),  the  thermal  diffusivities  of  the  Al–La
single-phase alloys are smaller than those of the α-Mg matrix
(up to 69.3 mm2/s, which is according to 156 W/(m·K)) [52],
and  the  thermal  diffusivities  were  in  the  sequence  of
α(Al11La3) > α(Al3La) > α(Al2La). Among the three different
intermetallic compounds, Al2La will have the largest negat-
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Fig. 3.    Experimentally measured thermal diffusivities of (a–c) as-cast #L1-#L6 alloys and (d) three intermetallic compounds.

Table 2.    EDS analysis showing the different element contents at points d–i of #L4–#L6 alloys in Fig. 2(a)–(c)

Alloy type Sampling point
Element content / at%
Mg Al La

#L4 alloy
d 99.38 0.48 0.03
e 98.98 0.89 0.43

#L5 alloy
f 99.18 0.78 0.04
g 94.04 4.49 1.47

#L6 alloy
h 98.49 1.49 0.02
i 84.69 12.08 3.26
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ive  impact  on  the  thermal  diffusivity  of  Mg  alloys,  and
Al11La3 has the least negative impact. However, the results of
thermal diffusivities of the two-phase alloys (α-Mg + inter-
metallic compound) are contrary to those observed in single-
phase  alloys  that  the  ternary  alloy  located  in  the α-
Mg+Al11La3 two-phase  region  exhibits  the  lowest  thermal
diffusivity, although the Al11La3 phase has the smallest neg-
ative impact on the thermal diffusivity in single-phase alloys.
It suggests that some factors have more important effect on
thermal diffusivity.

To explain this phenomenon, the effect of the solid solu-
bility of  elements in the α-Mg matrix phase on the thermal
diffusivity of the alloy must be considered. Su et al. [51] and
Xie et al. [17] showed that the increase in thermal resistance
induced by the solid solution of alloying elements in the α-
Mg matrix was approximately one order of magnitude high-
er  than that  caused by the second phase.  Numerous studies
also showed that the solid solubility of elements in the matrix
had the most critical impact on the thermal diffusivity of the
alloy compared with the type and content of the second phase
[15,17,19,26,51].  The  higher  the  solid  solubility,  the  lower
the  thermal  diffusivity  of  the  alloy.  In  the  present  study,
Table 1 summarizes the solid solubility of Al atoms in the α-
Mg matrix  in  different  ternary  alloys.  In  the α-Mg+Al11La3

two-phase region of the alloy, the maximum solubility of Al
in α-Mg is as high as 2.50at%. By contrast,  the alloys con-
taining the Al2La phase have a low solid solubility of 0.29at%–
0.31at%. This finding indicates that even if the alloy contains
the Al11La3 phase, which has the smallest impact on thermal
conductivity, the thermal conductivity of the alloy in the α-
Mg+Al11La3 two-phase  region  is  still  greatly  reduced.  The
main reason is the increase in the Al solid solubility in α-Mg,
which  significantly  reduces  the  thermal  conductivity  com-
pared with the second phase.

 4.3. Prediction  of  thermal  diffusion  coefficient  and
thermal conductivity of the Mg–Al–La system

The  thermal  conductivity  of  Mg–Zn–La/Ce  alloys  was
successfully  predicted  by  constructing  an  expression  of  the
RTD,  which  shows  the  relationship  between  thermal  diffu-
sion resistance and temperature [17].  Moreover,  the experi-
mental thermal diffusivity values were selected for paramet-
er conversion, which can avoid calculation errors caused by
the  different  sources  of  density  and  specific  heat  capacity
during the calculation of thermal conductivity. Therefore, the
same expression was used to describe the thermal diffusion
resistance of elements, intermetallic compounds, solid solu-
tions, and multiphase alloys for the Mg–Al–La alloy system.
Finally, the thermal conductivity of the Mg–Al–La alloy was
calculated.

The parameters to be optimized and the interaction para-
meters are based on the experimental data and are evaluated
by the Pan Optimizer of PANDAT using CALPHAD. In es-
tablishing the thermal conductivity databases of  Mg–Al–La
alloys, some other thermodynamic parameters must be con-
sidered,  including  density,  specific  heat  capacity,  elemental
solid solubility, and the second phase fraction, which can be

calculated using the phase diagram thermodynamic database
[48]. Given that the solid solubility of La in the α-Mg phase is
very low, Mg and Al play a major role in the thermal con-
ductivity of the Mg–Al–La system. The experimental data for
pure  Al  and  that  in  the α-Mg+Mg17Al12 two-phase  region
were adopted from the works of Ho [52] and Huang [44], re-
spectively. The expression of pure metal Mg and intermetal-
lic compound LaMg12 in the Mg–Al–La alloy was obtained
from literature [17], as shown in Table 3.
 
Table 3.    Optimized parameters (a, b, and c) between temper-
ature  and  the  thermal  diffusion  resistivity  of  pure  elements
and intermetallic compounds

Element/Phase RTD evaluated equation Reference
Mg 10.614 + 0.004T − 103.692T−1 [17]
Al 3.454 + 0.012T + 953.16T−1 [47]
LaMg12 35.186 − 0.003T + 8018.229T−1 [17]
Mg17Al12 −158.618 + 0.207T + 57581.880T−1 [41]
Al2La 133.26 − 0.052T + 888.09T−1 This work
Al3La 135.75 − 0.040T − 8577.556T−1 This work
Al11La3 102.343 − 0.030T − 6637.071T−1 This work

 
The same test method and equipment were used to obtain

the  thermal  diffusivity  of  binary  Al–La  single-phase  alloys
and ternary design alloys to avoid errors caused by different
experimental  tests.  On  the  basis  of  the  experimental  data,
thermodynamic calculations were performed by the Pan Op-
timizer of PANDAT, and the optimized parameters for cal-
culating the thermal diffusion resistance of pure elements and
intermetallic compound phases are listed in Table 3. Table 4

Table  4.    Calculation  parameters  for  the  thermal  diffusion
resistivity  of  Mg–Al–La  alloys  in  the  solid  solution  and  two-
phase regions
Alloy
system Phase region Assessed parameter

Mg–Al

α-Mg
L0(Mg,Al) = 222.4−6.728T

L1(Mg,Al) = 202.2+6.947T

α-Mg+Mg17Al12

M0
HCP+Mg17Al12

 = −158.4 + 0.316T

M1
HCP+Mg17Al12

 = 257.9 − 0.584T

Mg–La α-Mg+LaMg12

M0
HCP+LaMg12

 = 19.0 + 0.168T

M1
HCP+LaMg12

 = −63.5 − 0.166T

Mg–Al–La

α-Mg+Al2La
M0

HCP+Al2La
 = 1306.0 + 18.357T

M1
HCP+Al2La

 = −1313.0 − 19.248T

α-Mg+Al3La
M0

HCP+Al3La
 = −3771.5 + 43.330T

M1
HCP+Al3La

 = 3876.0 − 45.496T

α-Mg+Al11La3

M0
HCP+Al11La3

 = −69.8 + 199.944T

M1
HCP+Al11La3

 = 46.1 − 48.582T

Note: HCP—hexagonal close packed.
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shows the optimized parameters for thermal diffusion resist-
ance in the solid solution and two-phase regions.

Fig. 4 shows the calculated curves of the thermal conduct-
ivities of alloys located in different two-phase regions using
the  established  Mg–Al–La  alloy  thermal  conductivity  data-
base.  The  calculated  thermal  conductivities  are  in  good
agreement  with  the  experimental  data,  showing  that  the
thermal conductivity of the alloy decreases gradually with the
increase in alloy elements and second-phase content. In par-
ticular, the Al solid solubility in α-Mg has a greater influence
on the reduction of thermal conductivity compared with the

second phase.
Fig. 5(a) shows the predicted thermal conductivity distri-

bution of the Mg–Al–La system at 323 K. The thermal con-
ductivity of the ternary alloy shows a decreasing trend with
the increase in Al and La contents. Different second phases
have different effects on thermal conductivity. As the second
phase  transforms from Al2La to  Al3La and then to  Al11La3,
the  thermal  conductivity  of  the  alloy  shows  a  downward
trend. In the range of X(Al) > 0.5at%, the thermal conductiv-
ity region in the α-Mg+Al2La two-phase region is higher than
that in the surrounding three-phase region.
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Fig. 5(b) shows the comparison between the experimental
and calculated thermal conductivities of the Mg–Al–La alloy
at 323 K. The calculated results show a SE of ±1.2 W/(m·K)
and a relative deviation of 0.9% with self-tested experiment-
al values. Compared with other experimental data, the relat-
ive  deviation  of  the  prediction  (Δ)  ranges  from  7.2%  to
13.2%. Analysis revealed the following sources of error: (1)
different  alloy  compositions  affect  the  solid  solubility  of
solute  atoms  and  intermetallic  compounds  in  the α-Mg,
thereby  affecting  the  thermal  conductivity  of  the  alloy.  For
example, Feng et al. [34] added 0.4wt% Nd and 0.2wt% Mn
on  Mg2.8–3.7Al3.3–4.4La  alloy,  introduced  new  elements
and formed the Al10RE2Mn7 phase, and replaced La with Ce
to obtain the thermal conductivity of the AE44 alloy. For the
same Mg–Zn system, the reduction in  thermal  conductivity
caused by Ce addition was greater than that caused by La ad-

dition at the same content, proving that the addition of differ-
ent  elements  at  the  same  amounts  affects  the  thermal  con-
ductivity [17]. (2) Different experimental test conditions and
operations will lead to different thermal diffusivities. Differ-
ent preparations have varying cooling rates, resulting in dif-
ferent solid solubilities and intermetallics in alloys. (3) Effect
of precipitates during heating: the precipitates formed during
heating may affect the deviation of thermal diffusivity from
that of the original alloy [17,53].

 5. Conclusions

In this study, the influence of the second phase and solid
solubility  on  the  thermal  conductivity  of  Mg–Al–La  alloys
was  explored  by  measuring  the  thermal  diffusivity  of
Mg95.92–98.3Al1.46–3.69La0.13–0.60 alloys.  A set  of  evaluation para-
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meters for the thermal diffusion resistance of the Mg–Al–La
alloy system in the CALPHAD type database was obtained
by optimizing the experimental data. With these parameters,
the thermal conductivities of alloys with different composi-
tions and at different temperatures can be quantitatively pre-
dicted. The conclusions are summarized as follows.

(1)  Different  types  and  contents  of  intermetallic  com-
pounds  have  different  effects  on  the  thermal  conductivity.
The degree of the negative influence of different intermetal-
lic  compounds  on  the  thermal  diffusivity  follows  the  se-
quence of Al2La > Al3La > Al11La3. With the increase in its
second-phase  content,  the  thermal  conductivity  of  the  alloy
decreases gradually.

(2) Compared with the second phase, the Al solid solubil-
ity in the α-Mg phase significantly affects  the thermal con-
ductivity.  When  the  Al  solid  solubility  is  high,  the  thermal
conductivity decreases significantly.

(3) The evaluation parameters of the thermal diffusion res-
istance of the alloy system are obtained from the experiment-
al data by establishing the relationship between the thermal
diffusion  resistance  and  temperature.  The  calculated  SE  of
the self-test value reaches ±1.2 W/(m·K).
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