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Abstract: Phosphogypsum  (PG),  a  hard-to-dissipate  by-product  of  the  phosphorus  fertilizer  production  industry,  places  strain  on  the
biogeochemical  cycles and ecosystem functions of  storage sites.  This  pervasive problem is  already widespread worldwide and requires
careful stewardship. In this study, we review the presence of potentially toxic elements (PTEs) in PG and describe their associations with
soil properties, anthropogenic activities, and surrounding organisms. Then, we review different ex-/in-situ solutions for promoting the sus-
tainable management of PG, with an emphasis on in-situ cemented paste backfill, which offers a cost-effective and highly scalable oppor-
tunity to advance the value-added recovery of PG. However, concerns related to the PTEs’ retention capacity and long-term effectiveness
limit the implementation of this strategy. Furthermore, given that the large-scale demand for ordinary Portland cement from this conven-
tional option has resulted in significant CO2 emissions, the technology has recently undergone additional scrutiny to meet the climate mit-
igation ambition of the Paris Agreement and China’s Carbon Neutrality Economy. Therefore, we discuss the ways by which we can integ-
rate innovative strategies,  including supplementary cementitious materials,  alternative binder solutions, CO2 mineralization, CO2 curing,
and optimization of the supply chain for the profitability and sustainability of PG remediation. However, to maximize the co-benefits in
environmental, social, and economic, future research must bridge the gap between the feasibility of expanding these advanced pathways
and the multidisciplinary needs.

Keywords: cemented paste backfill; phosphogypsum; carbon dioxide mitigation; potentially toxic elements; solidification and stabilization

  

1. Introduction

Since  the  wide-scale  application  of  phosphorus  fertilizer
for  modern agriculture began in the last  century,  phosphate
ores have been excavated for fertilizer production [1–2]. The
annual excavation of phosphate rock approximately doubled
from 128 to 250 Mt/a in a 25-year range (1994 to 2020, Fig. 1
[3–6]. When raw phosphate ores (fluorapatite (Ca5(PO4)3F))
decompose with concentrated sulfuric acid (H2SO4) at a tem-
perature of approximately 80°C, phosphoric acid and phos-
phogypsum (PG) are produced [7]. Based on the current road-
map for phosphorus fertilizer production, around 1.5–2.0 t of
PG would be generated for each ton of phosphate rock being
processed [8]. This means that the annual generation of PG
could  reach  over  300  or  even  400  Mt.  Considering  the  in-
creasing global population and growing demand for fertilizer,
the PG stockpile  is  predicted to follow fertilizer  production
rates in the coming decades [9–12]. In addition, because sul-
furic acid is the primary agent used in the wet process of fer-
tilizer production, the resulting PG contains free acidic sub-

stances,  such  as  H3PO4,  H2SO4,  and  HF,  thus  creating  a
strong and corrosive solid waste with a pH range of 2–5.

PG  disposal  currently  uses  four  typical  methods:  ocean
dumping, storage in the mine where the phosphate rock ori-
ginated,  and  wet  or  dry  storage  in  tailings  storage  facilities
(ponds  or  dams),  with  the  latter  two  being  the  most  com-
monly used (Fig. 1). China, United States, and Morocco have
the highest number of PG stacks,  even though storage sites
can also be found in many other countries around the world
[5]. Notably, China is not only the world’s largest consumer
of phosphate fertilizer but also the largest producer of PG by-
products (Fig. 2) [4,13]. According to estimates, over 70 Mt
of PG is produced in China annually (Fig. 2(a)), but only 30
Mt have been recycled as soil  amendment [14–15],  cement
retarder [16], construction material [17–19], backfill aggreg-
ates [20–21], and others (e.g., raw materials for rare earth ele-
ments  (REE)  recovery  and  CO2 mineralization)  [22–23]
(Fig.  2(b)).  However,  at  least  in China,  a  significant  gap in
terms of reaching the zero-emission goal must be addressed
regardless  of  advancements  made in  optimizing sustainable
PG management  [24].  In  particular,  many  past  works  have 
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reported that the efficiency of PG recycling is adversely af-
fected by the  impurities  fraction [2,25].  For  instance,  when
reusing PG as a backfill material, studies reported a decline in
workability and mechanical performance with the increase in
PG content, which can be attributed to the presence of fluor-
ides and phosphate compounds in the material [5,26]. Mean-
while,  investigations  on  the  agricultural  use  of  PG  to  im-
prove soil  structure and crop yield have yielded mixed res-
ults concerning the safety of PG application (the leachability
of  potentially  toxic  elements  (PTEs))  to  soils,  thus  limiting
the field applications of this strategy [12,27].

Thus,  in  recent  years,  such  a  hard-to-abate  solid  waste
emission  and  the  inadequacy  of  planned  mitigation  ap-
proaches have been greeted with growing public consterna-
tion,  causing  a  serious  disposal  issue  and  disproportionate
management  expenses  [4,6,9,28].  Moreover,  recent  studies
have suggested that  the  growing need for  more PG storage
may  lead  to  soil  degradation  that  extends  beyond  the  local
land surface and eco-societies—eventually affecting marine
and freshwater systems, as well as people and ecosystems far
away from the storage locations [1,24,29–30]. For instance,
due  to  the  rainwater  interaction  with  exposed  PG  deposits,
fluorine  from  fluoride  minerals  (e.g.,  fluorapatite,  fluorite
(CaF2),  and  malladrite  (Na2SiF6))  in  PG  can  be  channeled
back into the soil and aquifer sediments [30]. Although a low

fluoride concentration can help prevent dental caries, a high
fluoride intake (>1.5 mg/L) is known to cause dental fluoros-
is and crippling skeletal fluorosis [31]. Such fluorine redistri-
bution in PG stockpile sites leads to fluoride accumulation in
freshwater  and  drinking  water  resources.  In  turn,  this  can
cause excessive retention of fluorides in the body, which has
been proven to be a global health concern, potentially affect-
ing  180  million  people  worldwide  [28].  Water  eutrophica-
tion due to the enrichment of phosphorus is another problem-
atic marker that has placed PG storage under harsh scrutiny
[12,21,32]. Studies have proven that the highly soluble phos-
phate  fraction  in  PG  may  be  directly  released  into  aquatic
bodies,  causing  eutrophication  and  killing  aquatic  life
[33–34].  Therefore,  based  on  the  abovementioned  informa-
tion, the scientific management of PG is required to mitigate
the associated environmental  risks  in  the  face of  increasing
global production.

We critically elucidate the currently applicable pathways
of PG management in this review with a particular emphasis
on PG-based cemented paste backfill. This conventional in-
situ immobilization technique has earned recognition as one
of the most effective applications, demonstrating significant
full-scale  potential  and technical  benefits.  We begin  by ex-
porting  the  status  of  PG  storage  in  the  context  of  its  main
physical  properties,  chemical  compositions,  mineralogical
components, and PTEs bioaccessibility. Next, we discuss the
forefront in/ex-situ PG remediation pathways, including REE
recovery,  construction  materials,  agriculture  uses,  and  the
utilization of PG in cemented paste backfill. Finally, we illus-
trate the potential carbon footprint for the current in-situ re-
mediation  strategy,  investigating  what  can  be  implemented
and promoted to achieve decarbonization and profitable dir-
ections in the future. 

2. Physicochemical  properties  of  PG  and  the
occurrence of fluorides and phosphates

Here, we analyze aspects relating to the physicochemical
properties  of  PG with  different  phosphate  ores  sources  and
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Fig. 1.    Worldwide excavation of phosphate ores from 1994 to
2022. Cumulative phosphate ores are obtained from the United
States Geological Survey (USGS) database [3–6].
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Fig. 2.    (a) Annual production and amount of utilized PG in China from 2010 to 2020 [4]. (b) Primary approaches applied in PG re-
cycling and their utilization rates in China from 2009 to 2019, including reuse in agriculture, cement retarder, construction materials,
backfill aggregates, and others [13].
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different  fertilizer  production  processes,  including  particle
size  distribution,  permeability,  moisture  content,  chemical
compositions,  and  mineralogical  constitutions.  Further,  we
summarized  the  occurrence  of  fluorides  and  phosphates,
which are the primary PTEs within PG. These basic investig-
ations  and  characterizations  of  PG  provide  theoretical  sup-
port and a fundamental basis for its subsequent resource util-
ization research. 

2.1. Physical properties of PG

According  to  the  classification  standard  of  the  United
States Department of  Agriculture (USDA), PG can be con-
sidered finely granulated powder, silt, or silty-sand material,
with its particle size distribution mainly within the range of
10–900 μm [9]. Fig. 3 illustrates differences in maximum PG
particle size across storage sites, ranging from 500 to 900 μm,
wherein  the  majority  (50%–75%)  of  particles  from  all
sources are smaller than 75 μm.
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Fig.  3.     Typical  percentage  curves  of  cumulative  PG  volume
[20,35–39].

The moisture content of PG ranges from 8wt% to 30wt%
and is  influenced by the  duration of  draining after  stacking
and  local  weather  conditions  [9,26,40].  In  addition,  studies
indicate that PG’s permeability is influenced by particle size
distribution, plasticity, sedimentary layer depth, and weather-
ing  process  during  stacking.  Therefore,  the  permeability
coefficient  of  PG  shows  great  fluctuation,  covering  nearly
three orders of magnitude (approximately from 2.7 × 10−7 to
2.9 × 10−4 cm/s) but remains categorized as low permeability
tailings [25,41–42]. 

2.2. Source  and  fate  of  fluorides  and  phosphates:  From
phosphorite ores to PG

PG properties are dependent upon several factors, includ-
ing the nature of the phosphate ore used, the type of wet pro-
cess employed, the disposal method, the plant operation effi-
ciency, and the location of the stack area [43–44]. Typically,
during  phosphate  fertilizer  production  using  a  wet  process,
H2SO4 is  the  primary  agent  used  for  acidulation  [26],  of
which  the  acidified  phosphorite  ores  (mainly  fluorapatite,
(Ca5(PO4)3F))  convert  to  gypsum  (CaSO4·2H2O),  hydro-
fluoric acid (HF), and phosphoric acid (H3PO4) (Eq. (1)) [45].
Then, the phosphoric acid is filtered and reserved for fertil-
izer  production,  with  the  residues  (mostly  PG)  remaining.
However, residual acids tend to remain in PG due to the lim-
itations of the industrial separation procedures, resulting in a
strongly  acidic  pH  value  (<3)  [26]  that  may  gradually  in-
crease  to  a  neutral  pH  value  (approximately  6)  during  the
weathering process [46].
Ca5(PO4)3F+5H2SO4+10H2O→ 5CaSO4 ·2H2O +

3H3PO4+HF (1)

The chemical compositions of PGs produced in different
countries  from  45  cases  are  tabulated  in Fig.  4 [8,19,
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Fig.  4.     Chemical  compositions of  PG from China [19,21,35,47–56],  Turkey [57–61],  Tunisia [8,46,62–64],  India [65–67],  Morocco
[68–72], Egypt [73–74], and Spain [74–81]: mean weight percentage of (a) CaO, (b) SO3, (c) SiO2, (d) Al2O3, (e) P2O5, and (f) F.
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21,35,46–81].  Although  minor  variations  can  be  observed,
PG mainly  consists  of  calcium (Fig.  4(a))  and  sulfate  (Fig.
4(b)),  verifying  the  presence  of  calcium  sulfate  species
(gypsum (CaSO4·2H2O), bassanite (CaSO4·1/2H2O), anhyd-
rite  (CaSO4)),  and  sulfuric  acid  [30].  The  detected  silicates
(Fig.4(c))  and  aluminates  (Fig.4(d))  are  assigned  to  quartz
(SiO2)  and  aluminum  phyllosilicates,  which  are  the  typical
gangue  minerals  found  in  phosphorite  ores  [82].  Common
PG also presents trace amounts of MgO, Fe2O3, and K2O, es-
pecially in those exhibited gangue minerals in different types
of phosphate ores used [26]. The fraction of phosphates and
fluorides,  primary  PTEs,  range  from  0.49wt%  to  1.90wt%
(Fig. 4(e)) and from 0.31wt% to 1.16wt% (Fig. 4(f)), respect-
ively.

Other studies have indicated that the fluoride content is re-
lated to the nature of phosphate rock, while the variation of
phosphates depends on the specific type of wet process [37].
For instance, a high percentage of phosphates may get lost in
the  coarse  fraction  and  remain  in  PG  residues  when  the
crushing and screening settings in the beneficiation facilities
are inappropriate for recovering the phosphate product in the
fine fraction due to the differential friability of the excavated
phosphate ores [83–84]. Regarding the fluoride content dif-
ference,  many  studies  have  reported  that  hydroxy  (hy-
droxyapatite  Ca5(PO4)3OH)  and  chlorine  (chlorapatite
Ca5(PO4)3Cl)  can take the place of  fluorides  because of  the
ability of anions to substitute for fluoride ions in fluorapatite
[85–86]. However, the exact extent to which substitution may
take place is controlled by many factors, such as prevailing
conditions  during  apatite  formation  and  the  subsequent
weathering process [83,87].

Despite the fact that chemical analysis provides gross in-
formation on the bulk PG samples, detailed characterizations
are  still  required  to  advance  our  understanding  of  fluorides
and phosphate changes from phosphate ores to PG residues,
which  are  important  preconditions  for  the  subsequent  re-
mediation.  Many  advanced  techniques  have  been  used  to
bridge  this  knowledge  gap,  including  X-ray  diffraction  for
examining  the  mineralogical  evidence  [43,88],  scanning
electron  microscope  with  energy  dispersive  X-ray  spectro-
scopy (SEM–EDS) [20,47,62] and electron probe micro-ana-
lyze  with  wavelength  dispersive  spectrometry  (EPMA–
WDS)  [21]  for  identifying  PG  morphology  and  elemental
distribution,  solid-state  nuclear  magnetic  resonance  for  de-
termining  possible  F  and  P  speciations  [48–89],  Fourier-
transform  infrared  spectroscopy  (FTIR)  for  revealing  the
functional  groups’ vibrations  [21,49],  and X-ray  photoelec-
tron  spectroscopy  for  determining  the  potential  binding
mechanisms of F and P in PG [90–91].

The concentration of PTEs is not the only factor to con-
sider  when  assessing  PG toxicity.  In  fact,  the  speciation  of
PTEs also plays a role in determining their potential hazard.
As shown in Fig. 5, PG samples have a well-defined crystal-
line  structure,  with  the  typical  morphology  of  rhombic  and
orthorhombic-shaped crystals  and with small  solid  particles
that are adsorbed on the surface [8,21,92]. Furthermore, the

SO2−
4 /HPO2−

4

HPO2−
4

elemental  mapping  characterization  illustrates  that  P  is
mainly scattered on the surface of gypsum crystals (Fig. 5(b),
(e),  and  (h))  [8,21,92],  possibly  assigned  to  water-soluble
and/or  insoluble  compounds precipitation (Ca(H2PO4)2·H2O
and Ca3(PO4)2) and  substitution in the gypsum
crystal lattice [21,29]. In addition, the presence of phosphate
could  also  be  attributed  to  the  surface  complexation  of

 on silicates (e.g., feldspars and muscovite) at acidic
conditions,  as  the  formation  of  Al–Si–F–P–O  complex
(Fig. 5(d) and (e)) verifies the co-existence of phosphate and
aluminosilicates due to the weathering process [21]. The de-
tected fluorides may be classified as acids (i.e., hydrofluoric
acid (HF) and forms of hexafluorosilicic acid (H2SiF6)), sodi-
um fluoride (NaF), calcium fluoride (CaF2), and fluorosilic-
ate  complexes  (e.g.,  Na2SiF6 and  CaSiF6)  [26,93–94]. Fig.
5(c) and (f) reveal that similar to P speciation, F is evenly dis-
tributed on the surface of gypsum particles, with a clear inter-
face observed. Moreover, the elements of Si and F (Fig. 5(c))
also  demonstrate  a  coexisting  preference  [92].  This  is  be-
cause  the  silica  reacts  with  the  generated  HF  and  forms
H2SiF6 during  the  wet  process,  during  which  the  acid  may
convert to a variety of mineralogical speciations. 

2.3. Spatial  distributions  of  fluorides  and  phosphates:
Geogenic and anthropogenic factors

Aside from the sources of PTEs (variable concentrations
of  fluorides  and  phosphates  in  PG  from  different  regions),
geogenic and anthropogenic activities can accelerate the ac-
cumulation  and  transportation  of  fluorides  and  phosphates
from PG to stockpile sites, resulting in contaminants spread
over large spatial regions [24,95]. Therefore, especially con-
sidering the vast amounts of PG that have been produced and
dumped, there is a need to build and fortify long-term isola-
tion  (e.g.,  geopolymers  and  clay  barriers)  in  the  stockpile
sites, which is an important preparatory to prevent the forma-
tion of new acidic and polluted leachates before the in/ex-situ
remediation. A case study of the PG stockpile site in Spain
[30] suggests that geogenic weathering is the dominant factor
affecting trace pollutants’ spatial distribution. The long-term
dynamic wet–dry cycles driven by evaporation, rainfall, and
recharge  induced  a  high  concentration  of  PTEs  in  the  PG-
brine deposits system, with the sampled brines and residues
reflecting  seasonal  changes  in  the  local  weather  conditions
(Fig.  6).  Therefore,  appropriate  actions  to  abate  these  com-
pounds should be implemented in the current roadmap of PG
storage,  especially  given  the  substantially  high  concentra-
tions of pollutants present in mobile forms [30]. Similarly, a
field investigation in Hongfeng Reservoir, one of the largest
artificial  water  bodies  along the Yangtze River  (China),  in-
dicates that the P concentration increase is partially caused by
a PG storage pond located only 800 m from the Yangchang
River  [96].  The  profile  distribution  of  P  fractions  suggests
that, due to the absence of an efficient wastewater treatment
facility and reliable leachate barrier, high P concentration PG
leachates  are  discharged  directly  into  the  Yangchang  River
through  surface  runoff  and  eventually  make  their  way  into
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the reservoir [96].
Apart from geogenic factors, anthropogenic activities are

also the main drivers of PTEs emissions. For instance, dur-
ing the phosphorus fertilizer manufacturing process, the ma-
terial  can release a large amount of gaseous and particulate
PTEs in surrounding areas apart from the massive generation
of PG solid waste [29,97]. Furthermore, the surface soil in a
phosphate chemical factory has a high F content, whereas it is
much lower in deep soil, suggesting that F in the atmospheric
deposition is probably a vital contributor to the industrial area
[29]. In addition, occasional accidents in chemical plants can

lead to increased PTEs concentration in the soil, with a previ-
ous report demonstrating that the accidental spillage of hydro
fluoric  acid  might  pollute  the  surrounding  area  within  a
1000 m radius of the spillage site [98]. Notably, improper en-
gineering procedures and practices can cause potential secon-
dary pollution even though the remediation application is ex-
pected to advance the sustainable management of PG. Usu-
ally, a stabilized PG stack is at a relatively steady state and may
not cause any dust problems; however, dust pollution is typ-
ically  observed during the excavation and shipping proced-
ures as well as during the maintenance of access roads [65]. 
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2.4. Bioavailability of fluorides and phosphates: Toxicity
to flora and fauna

Increased  PTEs  concentration  in  the  ground  body  of
stockpile sites partly due to the weathering process has been
widely reported [27,91,99]. Although the mineralogical spe-

ciation and spatial distribution investigations of fluorides and
phosphates  provide a  basis  for  the  interactions  of  the  PTEs
and stockpile sites, their toxicity is contingent on bioavailab-
ility  because  these  toxic  impurities  are  bio-accumulative  in
both the environment and the food chain (Fig. 7(a) and (b))
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[24,30].  Fluoride  is  not  considered  essential  for  plants;  in
fact, it has a negative impact on vegetation, either limiting its
growth  or  prohibiting  the  action  of  anti-oxidative  enzyme
systems [100–101]. Typically, root fluoride accumulation in
areas receiving fluoride contaminations is the primary factor
for  the  excessive  intakes  of  fluoride  in  plants  [100].  Con-
sequently, the fluoride taken up by the root might be readily
transported and retained in the leaves through the xylem as
F−, F–Al complexes, or less prevalent F–Ca complexes (Fig.
7(c)) [102]. However, small amounts of fluoride can directly
enter  leaves  (cuticle  or  stomata)  by adsorbing atmospheric-
ally emitted fluoride, which is the form of gaseous HF or sil-
icon  tetrafluoride  (SiF4)  [102].  As  a  result,  plants  with  ex-
cessive  fluoride  uptake  may  transfer  to  the  higher  trophic
levels of the food chain, leading to severe risks to mammals.
Apart  from  ingesting  contaminated  crops,  the  inhalation  of
fluoride-bearing dust and fluoride-polluted groundwater may
also put vulnerable people at great risk. Field studies have re-
ported  that  the  amounts  of  atmospheric  fluoride  concentra-
tion in PG storage sites are typically double the permissible
airborne  threshold  due  to  the  prevailing  winds  in  these  re-
gions [103]. Geological hazards (e.g., volcanic eruptions) can
also contribute to soil fluoride contamination and enhance the
fluoride exposure risks of creatures through the uptake of flu-
oride-containing volcanic ash deposits [104]. Regarding the
phosphates cycle, several reports indicate that the dumping of
PG  adversely  affects  the  authigenic  phosphorus  content  in
stockpile  sites  [9,105].  Notably,  although  phosphate  can
reach the soil body easily, its availability is low due to its fix-
ation with iron, aluminum, and calcium, which may precipit-
ate as insoluble forms [1]. In other words, phosphate cannot
be taken up by plants but may be exported from the soil to
water bodies through a variety of pathways even though the
total phosphate content of the soil may be close to the satura-
tion  of  its  storage  capacity  due  to  this  anthropogenic  phos-
phate input; this is one of the primary causes of eutrophica-
tion [106]. 

3. Value-added use of PG dumps

Concurrently,  the  sustainable  management  and  compre-
hensive utilization of PG is becoming a critical problem due
to stricter legislative requirements, which should be inclined
toward the direction of large dosage, high added value, and
industrial exploitation prospects [107–108]. The growing is-
sue  of  soil  pollution  caused by PG deposits  also  represents
one  of  the  biggest  challenges  for  reaching  the “zero-emis-
sion” goal [32,109]. Considerable research has been conduc-
ted on reusing PG materials (ex-situ and in-situ), such as raw
materials  for  REE  recovery,  soil  amendments,  retarders  in
cement  manufacturing,  and  solidification/stabilization  pur-
poses.  However,  field  and  industrial  applications  have  not
achieved  commercial-level  outputs,  which  are  restricted  by
numerous factors, such as cost, technology barriers, produc-
tion capacity, and potential secondary pollution [9,25]. Espe-
cially  given  that  PG  contains  a  large  number  of  impurities

with  complex  components,  a  considerable  risk  of  leaching
after  generating  resource  products  is  presented.  We discuss
below four different recycling approaches by identifying the
associated mechanisms and applicabilities, as well as by cla-
rifying  the  challenges  and  outlook  of  implementing  the
strategy on a large scale. 

3.1. Ex-situ pathways:  REE  recovery,  construction  ma-
terials, and agriculture applications

With the growing interest  regarding sustainable resource
development and environmental processing of indispensable
elements, extracting REE from PG has become a promising
strategy to reduce the consumption of natural resources and
promote the high value-added valorization of solid waste. Al-
though PG has  a  relatively  low REE content  (ranging  only
from 0.05wt% to 2.00wt% [22,110] or an average of 0.45wt%
according to the wet-process procedures and sources of phos-
phorite  ores  applied in  fertilizer  production),  it  can be  con-
sidered  a  valuable  anthropogenic  source  [22,26,111].  The
common extraction technology includes three steps: (1) wa-
ter/solvent-washing  pretreatment  procedures  to  collect  the
solid components; (2) valuable REE dissolution and enrich-
ment  by  agent  digestion;  (3)  separation  and  purification  of
REEs from the collected liquid solutions [110].

Many  works  have  been  conducted  to  optimize  and  im-
prove the extraction efficiency of valuable metals, such as by
controlling reaction temperatures [22], various acid concen-
trations and types [112],  multiple physicochemical pretreat-
ments  [113],  and  ion  exchange  resin  [22].  In  this  sense,  as
evidenced by many studies [21,111], the extraction process is
technically feasible, implying that both the economy and sus-
tainability  of  the  resource  recovery  could  be  competitive
(Fig. 8) [114]. However, processing PG for REE extraction
has not yet been industrially realized. To date, existing tech-
nical  methodologies  cannot  be  used  for  low-cost  extraction
due  to  the  high  cost  of  field  trails  and  low  content  of  rare
metals compared with common ore minerals (e.g., bastnäsite
and  monazite),  which  have  average  contents  ranging  from
2wt% to 20wt% [22]. As a result, the PG extraction process is
highly challenging and can cause industrial application fail-
ure. In addition, the tiny and complex occurrence phases co-
existing with REE in PG could limit the efficiency of further
selective extraction schemes. If the impurities have not been
removed, their presence can inhibit the emulsification of ex-
traction systems and decrease product purity [22,112].

Another interesting possibility of PG utilization is recyc-
ling PG as a construction material (e.g., retarders for cement
manufacture and alternative gypsum sources for building ce-
mentitious materials, Fig. 9 [115]). The introduction of PG in
the construction materials matrix showed certain advantages,
while  some  properties  deteriorated  [9,26,116].  Recently,
studies  have  indicated  that  the  incorporation  of  PG can  ef-
fectively enhance the mechanical  properties  of  construction
materials, including fly ash, ground-granulated blast-furnace
slag, geopolymers, or Portland cement-based pastes [26,117].
The results are also encouraging for reducing the specimen’s
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density  [56],  increasing  fire  resistance  [26],  and optimizing
resistance  to  water  erosion  [118].  However,  these  benefits
can only be observed at relatively low PG replacement con-
tents  (approximately  2.5wt% to  10wt%)  [26].  Studies  have
reported that the fire resistance and compressive strength de-
creased  accordingly  with  higher  amounts  of  PG  fraction

[26,117]. In addition, the shortages of PG incorporation in the
construction materials matrix included decreasing workabil-
ity  [119],  which  can  lead  to  a  high  possibility  of  drying
shrinkage deformation [59], linear expansion, and mechanic-
al deterioration of the samples at  later periods [26],  and in-
creased thermal conductivity [120].
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Furthermore, safety concerns about the leaching of PTEs
impurities from PG-incorporated materials have been cited as
the  main  defects  that  limit  the  commercial  use  of  PG
[121–122]. Several trials have been conducted to remove or
at least reduce the PTEs content from raw PG to guarantee its
safe use in the construction field, including NaOH washing
[48], calcination [117], and bio-washing [91]. However, the
exact influence of pretreatment on the physicochemical prop-
erties  of  the  PG-incorporated  matrix  and  information  about
the costs of using different pretreatment methods still require
further  investigations  to  obtain  general  conclusions.  There-
fore,  reusing  PG in  construction  materials  has  a  potentially
positive effect on increasing the consumption of PG and mit-
igating the soil pollution caused by PG storage. Prior to step-
ping into field trials, the safety analysis of its long-term im-
pacts  on  surrounding  environments  and  the  profitability  of
applying pretreatment should be clarified in advance.

As indicated in the previous section, the primary compon-
ents  of  PG  are  calcium,  sulfate,  potassium,  and  phosphate,
many of which are essential for plant growth and crop nutri-
tion  [25].  Therefore,  scholars  have  attempted  to  use  large-
tonnage  PG  to  increase  crop  fertility  [9,123–124].  PG  has
also been used as an amendment to eliminate the salinity of
degraded  soil  (e.g.,  saline,  sodic,  acidic,  and  alkaline  soils)
(Fig.  10)  [27,125–126].  Compared  with  industrial  gypsum-
amended soil, PG demonstrates favorable hydraulic conduct-
ivity,  desalinization  efficiency,  and  phosphate  conservation
capacity  by  reducing  electrical  conductivity  and  exchange-
able sodium percentage of the soil body [125,127]. However,
the direct application of PG in agricultural soil faces severe
restrictions and problems due to its strong acidity and abund-

ant PTEs contents. Therefore, essential pretreatments and/or
additional supplements (e.g.,  biochar [124], lime [128], and
lignin sludge [123]) are required for PG utilization in agricul-
ture to avoid the transfer of these elements to the food chain.
In addition, although phosphate is the mandatory nutrient for
crop yield, the eutrophication of natural water and soil bod-
ies due to the excess phosphorus loads can stimulate the rap-
id  growth  of  aquatic  organisms  and  waste  resources
[110,124]. Therefore, the successful commercialization of re-
cycling  PG  is  far  from  an  apparent  breakthrough.  For  this
reason, scientists should focus on the direct use of PG, with
particular emphasis on quality assurance, safety, variability in
PG composition, soil type, and cultivated crops. 

3.2. In-situ solidification/stabilization  pathways:  PG-
based cemented paste backfill

First developed in the late 1950s for sludge management,
cemented paste backfill  (CPB) technology is  currently con-
sidered one of the ideal technologies for the remediation of
solid  waste  due  to  its  convenience  and  effectiveness
[129–130]. This technology can reduce the potential migra-
tion of PTEs by changing the physical and chemical proper-
ties  of  the  wastes  [131–132].  In  the  context  of  phosphorite
ore mining, the preparation of PG-based CPB mainly relies
on the use of PG for the alternative aggregates of CPB, thus
resulting in a mixture consisting of binder (usually ordinary
Portland  cement,  OPC),  PG,  and  water  [20,43,133].  Sub-
sequently,  these  homogenized mixtures  are  transported into
mine goaf to mitigate the massive stockpiling of PG and sup-
port the underground structures of the phosphorite excavated
area  [20,134]  (Fig.  11).  Unlike  the  PG  application  in  con-
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struction  materials,  which  requires  high-quality  mechanical
property thresholds to ensure the structural safety of the urb-
an  architectures,  the  acceptable  mechanical  performance  of
PG-based CPB mixtures is much lower (approximately only
2 MPa at 28 d) [26,43,47]. Another difficulty of commercial
valorization  comes  from  the  redistribution  of  impurities
(Fig. 6). In particular, due to the complexity of underground
structures  (e.g.,  long-term  exposure  to  percolating  water/
groundwater and the interference from the processed mining
operation), hazardous substances—despite already being im-
mobilized  by  binders—may  leach  out  and  contaminate
groundwater  systems  as  well  as  fauna  and  flora  [88,
135–136].  Therefore,  the  current  projects  mainly  focus  on
modifying and purifying PG in advance and identifying PTEs
retention  mechanisms  after  solidification/stabilization
(Fig. 12), ensuring that this strategy can be used as an ecolo-
gical  restoration pathway [20–21,48,91,137].  Therefore,  the
effect of PG on the mechanical properties of the CPB matrix,
the  immobilization  mechanisms of  PTEs,  and the  proposed
optimization  strategies  are  reviewed  and  discussed  in  this
section. 

3.2.1. Influence of PG on the mechanical properties of CPB
mixtures

The unconfined compressive strength of CPB mixtures is
considered one of the critical parameters that directly affect
safety performance. Beyond strength parameters, the setting
time and workability of PG-based CPB mixtures, influenced
by factors such as particle interactions and mix proportions,
are considered integral aspects of practical utility. However,
preliminary studies have suggested that the inclusion of PG
may  impart  negative  alterations  to  the  hydration  processes,
thereby influencing compressive strength and other mechan-
ical properties.

To date, OPC remains the most conventional binder used
in  PG remediation.  In  the  general  formulation of  PG-based
CPB  mixtures  for  optimal  performance,  minimum  propor-
tions (approximately 20wt% of binders) are required to strike
a delicate balance between meeting structural safety and sus-
tainability requirements while maximizing the efficient util-
ization  of  resources  [20,43,138].  Nevertheless,  opting  for  a
lower  binder  content  can  yield  a  more  permeable  mixture,

enhancing  workability  and  potentially  increasing  profitabil-
ity.  However,  there  exists  a  trade-off,  as  this  might  com-
promise  the  mechanical  properties  of  the  hardened  mixture
and  increase  the  risks  of  PTEs  leaching.  Therefore,  the
selection  of  the  appropriate  OPC  content  within  this  range
should  be  based  on  the  specific  engineering  requirements
of  the  project,  in  which  factors  such  as  permeability,  com-
pressive  strength,  and  overall  sustainability  are  equally
considered.

Moreover, the physicochemical properties of PG, includ-
ing  density,  particle  size  distribution,  and  impurities,  exert
varying  degrees  of  influence  on  the  strength  of  CPB  mix-
tures. Notably, when the particle size distribution of PG ad-
heres  to  Fuller’s  ideal  curve,  the  strength  development  of
hardened mixtures  surpasses  that  of  batches  deviating from
this  curve  [47,139].  Likewise,  to  optimize  the  particle  size
distribution of aggregates, Shi et al. [51] incorporated modi-
fied quartz sand, an inactive reactant in cementitious systems,
in the mixing process of CPB mixture preparation. The res-
ults indicate that this approach optimizes the aggregate grad-
ation, thereby promoting hydration reactions and enhancing
strength development (approximately 20.5% higher than that
of  control  groups).  Furthermore,  the  inherent  impurities  of
PG  can  affect  the  hydration  reactions  and  hardening  pro-
cesses of the CPB mixtures. For instance, strength develop-
ment was found to be correlated with phosphate types, with
adverse effects exhibiting the following hierarchy: H3PO4 >
KH2PO4 > Ca3(PO4)2 and K3PO4, where H3PO4 demonstrated
the most significant adverse impact on strength [32]. The in-
sights gained from geochemical modeling and experimental
characterization  suggest  that  the  deterioration  is  predomin-
antly linked to the phosphate species formation. In particular,
the dissolved phosphates precipitate and form calcium-phos-
phate  complexes  after  initial  hydration,  thereby  coating  ce-
ment particles in a protective manner [140]. Similar to the in-
fluence  of  phosphate  on  the  development  of  mechanical
properties, fluorides could also act as triggers for degrading
pore structure formation and hydration product precipitation.
When  fluoride  contents  in  PG  increase  from  0.003wt%  to
3.100wt%, the CPB’s strength at the curing age of 90 d drops
from 2.19 to 1.36 MPa at a rate of >38% [138]. 
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3.2.2. Immobilization  mechanisms  of  PTEs  into  CPB  mix-
tures

With the versatile solidification/stabilization (typically us-
ing OPC) of PG, past studies suggest that phosphorus is im-
mobilized  in  CPB  mixtures  in  the  forms  of  calcium-phos-
phate species (e.g., hydroxyapatite and tricalcium phosphate)
[21,32,141]  or  captured  and  encapsulated  by  hydration
products (e.g., calcium silicate hydrates (CSH) and ettringite)
[51,142]. Furthermore, fluoride tended to precipitate as spar-
ingly  soluble  fluorite  (CaF2),  aluminum fluoride  complexes
(AlF3), and fluorapatite (Ca5(PO4)3F) [21,88,143–144]. Sim-
ilar  to  phosphate  retention,  the  main  hydration  products
(portlandite, CSH, and ettringite) of clinker phases also play a
role in fluoride immobilization [21,32,48]. Although the PG-
based mixtures prepared by OPC have acceptable PTEs re-
tention under laboratory conditions (e.g., using ultrapure wa-
ter as the extraction leachate), their ability under harsh condi-
tions  is  under  significant  scrutiny,  because  they are  vulner-
able to many factors, such as water erosion, permeability, at-
mospheric carbonization, physical degradation, micro/macro
structures,  and  chemical  and  mineralogical  compositions
[20,145].

H2PO−4 CaH2PO−4

Apart from the experimental characterization, geochemic-
al modeling is equally important and urgently required as a
useful tool to estimate the release of pollutants from the sta-
bilized mixtures [21,146–149]. The results from the simula-
tions  suggested  that  different  roles  of  the  captured  phos-
phates and fluorides had varying pH values [1,21,36]. When
the  pH  is  below  5,  H3PO4, ,  and  are  the
main solubility-controlling phases, whereas, around the neut-
ral  and  alkaline  pH  conditions,  sparingly  soluble  calcium
phosphates species (e.g., hydroxyapatite and calcium fluoro-

AlF+2

phosphate) become the main phases. In comparison, the main
controls of fluoride at acidic conditions are mainly assigned
to Al–F complexes (AlF3, , and AlF2+) when the pH val-
ues  increase  to  neutral  and  alkaline  conditions,  after  which
calcium fluoride, calcium fluorophosphate, and CSH matrix
take the roles of fluoride capture [21,88]. Geochemical mod-
eling  adequately  explains  the  PTEs  retention  mechanisms
and sheds new insights into the existing experimentally ob-
served capabilities. However, there is still a need to improve
the thermodynamic database curation and analytical tools, as
well  as  to  extrapolate  the  obtained  results  to  a  larger  scale
(local and regional) while considering the impacts of soil hy-
drology [24] 

3.2.3. Optimization strategies: PG pretreatment
Apart  from  investigations  on  clarifying  and  quantifying

the PTEs immobilization roles, finding an eco-friendly path-
way  to  optimize in-situ solidification/stabilization  has  also
garnered considerable interest. Different studies have delved
into purification pretreatments for PG, such as solution wash-
ing  pretreatment  (e.g.,  water  washings  [47,137,150],  bio-
washing  [91],  hot  aqueous  ammonium  sulfate  solutions
[151],  and  base  washings  [48,152]).  In  addition,  thermal
treatments  [44,73]  and  physical  screening  [153]  were  also
conducted. These investigations revealed that after purifica-
tion,  PG  yielded  a  similar  performance  as  natural  gypsum.
Therefore,  this  purification step has become a pivotal  prac-
tice  in  CPB  technology,  because  it  ensures  that  PG  is  pre-
treated harmlessly to remove or passivate PTEs and organic
substances. In this way, the properties are optimized, and the
potential applications of CPB technology in various mining
engineering endeavors are broadened.

As a relatively practicable and effective method of impur-
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Fig. 12.    Immobilization mechanisms of PTEs in stabilized PG, including encapsulation, precipitation, and adsorption.
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ity removal, solution-based washing finds widespread use in
industrial  applications.  During  the  water/base-washing  pro-
cedures of PG pretreatment,  most soluble impurities can be
removed by water rinsing, filtration leaching, and mechanic-
al  dehydration,  thus  optimizing  the  hydration  kinetics  and
improving  the  mechanical  properties  of  CPB  mixtures
[47–48].  However,  previous  studies  have  underscored  the
constraints of the water-washing method in removing consid-
erable lattice-bounded impurities, particularly co-crystallized
P2O5 within the gypsum lattice. Moreover, this approach pro-
duces substantial volumes of wastewater that require second-
ary treatment, thus increasing energy consumption. In efforts
to refine this procedure, screening was integrated into wash-
ing  protocols,  with  scholars  using  wet  sieving  (300  mesh
sieve) before water-washing and flotation.  This preliminary
screening effectively separates impurities in PG, particularly
phosphorus,  chloride,  and  organic  matter,  thus  providing  a
favorable  foundation  for  the  subsequent  purification  of  PG
[153]. In the context of base-washing procedures, the soluble
phosphates and fluorides can be transformed into insoluble or
partially  soluble  substances  by  adding  alkaline  substances
(e.g., CaO, NH3·H2O, and NaOH) and changing the pH of the
PG  system  [26,48].  This  transformative  process  effectively
mitigates the adverse impacts associated with soluble phos-
phates and fluoride, thus contributing to the overall improve-
ment of the PG-CPB system.

The efficacy of calcination as a pretreatment method has
been mainly attributed to eutectic phosphorus mitigation. In
particular, calcination demonstrates distinct advantages in the
precise  and  targeted  removal  of  eutectic  phosphorus  com-
pared with other conventional PG pretreatment methods. In
the  process  of  calcination,  soluble  phosphate  was  trans-
formed  into  water-insoluble  and  harmless  pyrophosphate
(CaP2O7), facilitating the simultaneous expulsion of organic
matter through evaporation. The efficiency of eutectic phos-
phorus removal was also intricately related to the calcination
temperature, as evidenced by the work of Smadi et al. [154],
where PG was subjected to varying temperatures (170, 600,
750,  850,  and  950°C).  Their  results  suggested  a  significant
increase  in  the  compressive  strength  of  the  thermally  pre-
treated PG-CPB mixtures, with the highest strength observed
at  850  and  950°C.  This  optimization  is  related  to  the  en-
hanced  hydraulic  properties  of  thermally  pretreated  PG,
which activates the activity of cementitious binder [73].

While calcination in PG pretreatment has proven effective
in eliminating specific  impurities,  it  is  essential  to  acknow-
ledge  that  its  constraints  also  limit  its  overall  applicability.
For example, the challenges of heightened energy consump-
tion  at  rising  temperatures  not  only  contribute  to  increased
operational costs but also environmental concerns. Elevated
greenhouse  gas  (GHG)  emissions,  particularly  when  fossil
fuels are used for heating, exacerbate the environmental im-
pact. In addition, economic considerations, such as the costs
associated with establishing calcination facilities, can poten-
tially impede its widespread adoption. 

3.2.4. Optimization strategies: Binder optimization
In recent years,  developing alternative binders and refin-

ing  mix  proportions  have  been  recognized  as  two  key  ap-
proaches to optimize the retention capacity of sensitive PTEs
and  improve  the  engineering  properties  of  CPB  mixtures.
The  appropriate  proportioning  of  CPB  constituents,  mainly
including OPC, common chemical admixtures, and PG, can
also improve the mechanical performance of hardened mix-
tures, thus enhancing the physical encapsulation of PTEs. It
has been shown that the cementitious content can vary by up
to 20wt% and still lead to the equivalent strength (approxim-
ately 1.5 MPa) of CPB mixtures [42,88,140]. Otherwise, for
the same cementitious proportion, there could be up to a 90%
difference in CPB compressive strength (from 1.4 to 0.2 MPa
at  the  same OPC content  of  10wt%) [32].  These  variations
indicate that the use of similar CPB mix proportion scenarios
could lead to the unnecessary overuse of cement due to in-
consistencies  in  the  physicochemical  properties  of  different
batches  of  PG.  In  fact,  just  a  0.5wt%  reduction  in  cement
consumption can save hundreds of thousands of dollars per
year [109]. Therefore, beyond the current research roadmap,
advanced  designs  must  be  introduced  to  provide  the  same
functionality at a lower operating cost, thereby addressing the
issue of CPB performance of different PG sources.

In addition, previous studies have confirmed the potential
of  various  additives,  including  modified  quartz  [51],  silica
fume  [155],  fly  ash  [156],  ground-granulated  blast-furnace
slag  [48,155],  red  mud  [156],  calcium  aluminate  cement
[157], and γ-Al2O3 [88]. These additives can improve the im-
mobilization performance of PTEs and the support of under-
ground structures. Specifically, substituting OPC with modi-
fied  quartz  as  an  alternative  binder  has  been  proposed  to
physically  optimize  aggregate  gradation,  thereby  fostering
hydration reactions and enhancing the mechanical properties
of  CPB  mixtures.  Notably,  the  unconfined  compressive
strength  values  of  CPB with  modified  quartz  at  60  d  (1.82
MPa)  exceeded  that  of  the  control  group  (1.51  MPa)  by
20.5%. The presence of aluminate-rich materials, such as red
mud, fly ash, γ-Al2O3, and calcium aluminate cement, played
a  significant  role  in  forming  crystalline  hydration  products,
particularly  ettringite.  This  is  because  PG  is  mainly  com-
posed of calcium sulfates (gypsum, bassanite, and anhydrite)
that can react with the aluminum released from these alumin-
ate-rich  materials  and  then  promote  the  ettringite  precipita-
tion. This process can further fill the pores of the CPB micro-
structure and improve the densification of the mixture matrix
[156]. Instead, the inclusion of silica-rich substitutes primar-
ily contributes to the formation of CSH, facilitating strength
development at later curing ages (from 7 to 28 d). However,
we must also acknowledge that while alternative binders may
offer superior engineering performance, challenges related to
material  availability,  binder  transportation,  costs,  and  tech-
nical  limitations  of  each  specific  case  can  render  them im-
practical  from the  technical  and  resource  perspectives.  Un-
fortunately, many of the proposed methodologies have yet to
achieve commercialization in existing enterprises.

Overall, the use of CPB may contribute to technical feas-
ibility,  manufacturing  scalability,  and  economic  rationality,
among other comprehensive utilization schemes. Unlike oth-
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er value-added applications of PG in agriculture and REEs,
which are difficult to achieve the purpose of profitably large-
scale utilize PG, such a highly feasible process provides op-
portunities to manage the PG stockpile while simultaneously
controlling the possible public health issues associated with
the rising amount of PG generated. Nonetheless, there is also
a need to gain more insights into the consequential impacts of
PTEs  release  at  large  scales  under  critical  environmental
stresses,  as  well  as  bridge  the  knowledge  gap  referring  to
maximizing  the  socioenvironmental  co-benefits,  including
long-term effectiveness and sustainability concerns. 

4. New  vitalities  of in-situ solidification/stabil-
ization of PG toward CO2 mitigation

Although PTEs retention efficiency and practical scalabil-
ity are recognized as important issues plaguing the trial  ap-
plications  of in-situ solidification/stabilization  of  PG
(Fig.  13),  the  most  commonly  discussed  impact  in  recent
years is the substantial GHG emissions related to cement pro-
duction [158–159].  According to studies,  approximately 1 t
of  CO2 is  produced  per  ton  of  OPC  generated  [160–161],
with the global cement industry accounting for 36% of emis-
sions related to construction activities and 8% of total anthro-
pogenic  emissions  [160].  In  the  2015  Paris  Agreement,  all
major  economic sectors  worldwide committed to taking re-
sponsibility for global CO2 emission, which is estimated to be
halved by 2030 and reach net zero by 2050, to limit global
warming to around 1.5°C [162].

In particular, China is currently the world’s largest emitter
of  CO2 [162–163],  and  in  recognition  of  the  importance  of
curbing carbon emissions in China, many policies and regu-
latory  frameworks  have  been  proposed  [164].  Two  of  the
best-known policies  are the Nationally  Appropriate Mitiga-
tion  Actions and Nationally  Determined  Contributions,
which aim to reduce CO2 emissions by 45% and 60% in 2020
and  2030  compared  with  the  CO2 intensity  levels  of  2005,
thus  ushering  China’s “carbon  neutrality  economy”
[159,164].  In  addition,  China  announced  to  the  United  Na-
tions  General  Assembly  its  commitment  to  peak  emissions
before  2030  and  achieve  carbon  neutrality  by  2060.  [165].
Considering the vast amount of OPC used in the PG solidi-
fication/stabilization  process,  as  well  as  limited  PTEs  cap-
ture capacity, there is an urgent need to focus on reducing the
environmental impacts in this time period by establishing ad-
vanced strategies  and schemes along with the principal  tar-
gets (Fig. 13), including minimizing bioavailability, mitigat-
ing CO2 emissions, and decreasing expenses. In this light, de-
veloping alternative mixture compositions offers  one of  the
most  important  technologies  for  acquiring  low-level  expos-
ure and carbon-negative emissions despite concerns regard-
ing  crucial  costs,  technical  challenges,  and  actual  contribu-
tions to broad communities [159,164,166]. Low-carbon sup-
plementary  cementitious  materials  (SCMs)  and  sustainable
alternative  binders  are  latent  routes  to  mitigate  the  carbon
footprint relative to conventional in-situ solidification/stabil-
ization by partially or entirely replacing OPC content [167].
As  indicated  in  the  previous  section,  multiple  SCMs  have
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been  adopted  to  date,  including  limestone  [168],  ground-
granulated blast-furnace slag [48,169], modified quartz [51],
silica fume [155], fly ash [16], metakaolin [170], and γ-Al2O3

[88].
Aside  from  minimizing  PTEs  bioavailability,  some  of

them have shown advantages in curbing carbon footprint in
recycling  PG  [88,48,169].  Fly  ash  and  ground-granulated
blast-furnace slag are both typical industrial by-products, of
which the former is collected from power plants, and the lat-
ter is generated by the iron and steel industry [48,171–172].
Thus,  using  such  by-products  and/or  alkaline  solid  wastes
from other industries can effectively decrease the emissions
of PG-based mixture preparation because their direct applic-
ation would no longer emit additional CO2 apart from trans-
portation [160]. However, fine limestone [160,168], a typical
solid  waste  from  construction  and  demolition  waste  that
already undergoes carbonization during its service, has lim-
ited hydraulic reactivity. Therefore, it can only be used as a
filler material instead of an activator or SCMs. Furthermore,
although calcination can facilitate  the  reactivity  of  recycled
limestone (from limestone to lime), this process has risks of
increasing the overall carbon footprint [173].

Meanwhile, CO2 reduction may also be achieved via the
substitution of metakaolin and γ-Al2O3, which are both pro-
duced  from clay  minerals  with  different  thermal  treatments
[88,167,170]. Metakaolin is a product from the natural clay
mineral named kaolin (the main constituent in kaolin is kaol-
inite mineral: Al2O3·2SiO2·2H2O) with a thermal treatment of
600–800°C,  whereas  900°C  is  required  for γ-Al2O3.  It  has
been reported that although it amounts to approximately 60%
CO2 emission of the overall production process, the calcina-
tion of kaolin would not lead to direct CO2 emission, unlike
the decomposition of limestone, which is the precursor pro-
cess for OPC production [88].

Further  CO2 savings  could  be  achieved  by  alternative
binders, with many works indicating that they could act as a
full alternative for conventional OPC [71,122,174–175]. To
date, calcium aluminate cement [174], lime-activated fly ash
[176], MgO-activated slag and bentonite mixture [156], and
geopolymer [71,177] have been devoted to PG remediation,
thus providing considerable benefits. Calcium aluminate ce-
ment is manufactured using limestone and bauxite rather than
the  limestone  and  clay  used  for  OPC,  thus  demonstrating
several environmental benefits, such as low CO2 emissions,
low levels of energy consumption, and high early mechanic-
al properties [160,174,178]. With the substitution of calcium
aluminate cement, the compressive strength of the prepared
PG-based CPB mixture also significantly increased due to the
promoted  ettringite  precipitation  [174].  However,  biosafety
issues, including the possibility of PTEs transfer, must be fur-
ther investigated before introducing this solution into the en-
vironment.

The  alkaline-activated  binders  (lime-activated  fly  ash
[176] and MgO-activated slag and bentonite mixture [156])
are mainly based on the reaction between the alkali activator
(lime  and  MgO)  and  alkaline  aluminosilicates  (fly  ash  and

bentonite),  which  have  also  shown economic  and  technical
viability  [160,167].  In  addition,  PTEs  retention  can  be  im-
proved  by  the  notably  enhanced  mechanical  strength  and
anti-permeability  properties  [160,167].  Geopolymer  is  not
only seen as a concept for a green society but also as a prag-
matic solution for reducing CO2 emissions [167,177]. Like-
wise, the use of geopolymer in PG remediation requires al-
kaline activators, such as sodium silicate and sodium hydrox-
ide [177,179], to promote early hydration reactions. The res-
ults indicate that due to the excess sulfate disturbing the geo-
polymer  structure  by  forming  ettringite,  PG-geopolymer
mixtures  might  achieve  better  mechanical  performance  at
low  PG content  (about  <5wt%)  but  decreased  compressive
strength at higher PG content (about >10wt%) [177].

However, the technical limitations, challenges associated
with the availability of raw materials, and the overall cost of
implying  such  new  technologies  may  mean  that  these
schemes might be unrealistic. For example, although fly ash
and  ground-granulated  blast-furnace  slag  have  been  proven
to  facilitate  PG  remediation,  almost  all  their  sources  have
been used in cement production and/or additives in concrete
[61,160].  Similarly,  the  lack  of  high-alumina  raw materials
(bauxite)  limits  the  large-scale  application  of  calcium  alu-
minate cement and γ-Al2O3 [88]. In addition, the most critical
issue  in  engineering  is  cost,  which  means  that  alternative
binders and SCMs should be highly scalable and cost-effect-
ive [160]. However, due to their rarity, the preparation costs
of aluminum-rich mixtures are much higher than those using
OPC [88]. Thus, it is also important to systematically check
the long-term performance of the introduced alternative bind-
ers and SCMs, which is now insufficient.

Meanwhile,  techniques  for  CO2 curing  and  direct  atmo-
spheric  carbon capture  may highlight  a  picture  of  the zero-
emission target (Fig. 13, marked in green), which can simul-
taneously achieve the ambitious goals of carbo-negative and
value-added  resource  utilization  of  PG.  Generally,  PG  has
high calcium ion content (e.g., gypsum, bassanite, anhydrate,
and sulfuric acid) that is able to react with the CO2 present in
the  atmosphere  and  permanently  store  the  captured  CO2 in
the form of stable calcite. Such carbonation-based CO2 min-
eralization using PG as the raw material  for carbon capture
and storage has been rapidly developed in recent years and is
considered one of the promising technologies for combating
global warming [180]. Although several scholars have con-
ducted laboratory investigations on fixating CO2 through oth-
er  alkaline  solid  wastes  (e.g.,  demolished  construction
wastes, steel slags, lime mud, and fly ash) [173,180], its ap-
plications  in  PG remediation  should  be  strengthened,  espe-
cially the implements related to the massive industrial applic-
ation. The primary obstacle arises from the intricate nature of
PG. This means that the contents and compositions of impur-
ities remaining in PG may be diverse due to changes in phos-
phoric  acid  production processes  or  changes  in  regional  le-
gislation. Furthermore, stored Pb may present more complex
feedstocks because of the weathering process, which induces
interactions between PG and storage sites. The variability in
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PG waste contributes to the formation of impure carbonation
products, thereby constraining their potential for subsequent
industrial  utilization  (e.g.,  construction  materials,  paper  in-
dustry, and chemical production) [181]. 

5. Summary and future perspectives

Over the past decades, the challenges related to PG stocks
have curbed the sustained phosphorus supply for the agricul-
tural  sector.  This  has  led  to  adverse  effects  on  soil  ecosys-
tems and the surrounding flora and fauna, including the ex-
cessive uptake of bio-accumulative fluoride in plants, water
eutrophication,  and  potential  hazards  to  mammals.  Various
advanced  technologies  for  PG recovery,  including  REE re-
covery,  construction  material  utilization,  agricultural  abate-
ment, and in-situ CPB solidification/stabilization, have been
employed to mitigate the accumulation of PG. Among these,
the integration of PG into the in-situ remediation pathway is
considered a promising imperative methodology with the ad-
vantages  of  technical  feasibility,  manufacturing  scalability,
and economic rationality. However, the prevalent use of OPC
in formulating PG-based CPB mixtures is presently confron-
ted  with  various  challenges,  including  concerns  related  to
GHG emissions and sensitive durability.  To effectively im-
plement this sustainable and highly scalable remediation ap-
proach  as  a  feasible  pathway  in  PG  management,  ongoing
technological  advancements  must  ensure  the  enduring  sus-
tainability of PTEs retention in accordance with the climate
goal of achieving zero-carbon practices.

Further  developments  can  be  pursued with  regard  to  the
components  of  PG-based  CPB  mixtures,  such  as  using
SCMs,  alternative  binders,  pre-CO2 mineralization  on  PG
and/or  post-CO2 curing on hardened samples,  which,  if  de-
veloped  commercially  in  the  coming  decades,  will  have  a
significant impact on the mitigation of CO2 emissions. Fur-
thermore,  while  decarbonization  of  the  technology  can  be
achieved through advanced low-carbon CPB components, it
can  also  be  attained  by  low-carbon  mixture  designs.  Thus,
given that most of the current standards are primarily based
on technical or economic performance, with little regard for
their  environmental  characteristics,  shifting  the  current  mix
design standard toward a more environmentally friendly per-
spective could provide a basis for realizing climate gains. Ef-
forts from stakeholders and policymakers, such as the imple-
mentation of carbon criteria and carbon tax,  can effectively
accelerate the decarbonization of this strategy. There is also
an  urgent  need  to  achieve  further  progress  in  standardized
techno-economic analysis and life cycle assessment of these
advanced technologies, which could shed light on the overall
socioenvironmental cost involved and, therefore, help avoid
potential market failures.

Finally, a comprehensive understanding of PTEs immob-
ilization  mechanisms  and  accurate  prediction  of  PTEs  re-
lease  also  play  key  roles  in  convincing  the  market  of  the
long-term  performance  of  PG-incorporated  materials.  A
combination of multiple experimental techniques and simu-

lations would allow for a more consistent description of the
interactions among the CPB mixtures, soil, water, and weath-
ering processes. 
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